

Intro Math Problem Solving
October 3

plot() needs x and y lists
linspace() can create an x list
MATLAB functions: y lists from x lists
Special “dot” format for array arithmetic
Plotting formulas involving lists
Taylor Polynomials

A Reference

Most of today’s discussion is covered in
Chapter 4, Section 1, of “Insight
Through Computing”.

A PDF, “insight_chapter4.pdf” of this
information is in Canvas class directory
of files for “10_03”.

Exercise

Our goal is a nice plot of the function:
 y = sin(5x) exp(-x/2) / (1+x^2)
over the interval [-2,3].

I encourage you to try to set up the xlist and ylist data, and
the plot commands for this goal, even though you probably
don’t know enough to get it to work completely.

We should be able to do this by the end of the class.

We will also know how to customize the plot with thicker
lines of our chosen color, grid lines, titles and so on.

The plot() command uses x and y lists

Think of the plot command this way:
 plot (xlist, ylist)
where xlist and ylist represent x values and the

corresponding y values.

The actual names of the lists don’t matter, but
the lists must be the same length.

Typically, the x values are listed in order (unless
you’re doing something really interesting!)

Short lists can be created using “[*,*]”

If we don’t have much data to enter, we
can create lists by listing the data in
square brackets:

xlist = [0.0, 1.57, 3.14, 4.71, 6.28];
ylist = [0.0, 1.0, 0.0, -1.0, 0.0];
plot (xlist, ylist);

Plot sin(x) using 5 values: sine_5.m

 x sin(x)
0.00 0.0
1.57 1.0
3.14 0.0
4.71 -1.0
6.28 0.0

5 Points Not Enough, Try 9

To improve our plot, use more x values.
xlist = [0.0 1.57 3.14 4.71 6.28];
xlist = [0.0 0.78 1.57 2.35 3.14 3.92 4.71 5.49 6.28];
To update our ylist, we could compute the sine of

each new value and insert it into our ylist:
 ylist = [0.0, (compute this), 1.0, (compute this), …];
OR we could try this:
 ylist = [sin(0.0), sin(0.78), sin(1.57), …];
OR BETTER YET:
 ylist = sin (xlist);

Plot sin(x) using 9 values: sine_9.m

 x sin(x)
0.000 0.000
0.784 0.707
1.571 1.000
2.357 0.707
3.142 0.000
3.927 -0.707
4.712 -1.000
5.498 -0.707
6.283 0.000

Don’t Enter Values By Hand!

A good sine plot needs more x and y data, but
this is not a job for humans!

Step 1: create equally spaced xlist in [0, 2pi]:
 xlist = linspace (0.0, 2*pi, 9);
Step 2: evaluate the sine at each x in xlist:
 ylist = sin (xlist);
Step 3: Your plot is ready:
 plot (xlist, ylist);

A 9 Point Plot, “Automatically”

 x sin(x)
0.000 0.000
0.784 0.707
1.571 1.000
2.357 0.707
3.142 0.000
3.927 -0.707
4.712 -1.000
5.498 -0.707
6.283 0.000

x = linspace(0,2*pi,9);
y = sin(x);
plot(x,y)

Now Get a Smooth Plot

Once you can set up your data
automatically, then it’s easy to ask for
more data to get a smoother curve.

The only change we have to make is to ask
linspace() for more points:

 xlist = linspace (0.0, 2*pi, 200);
 ylist = sin (xlist);
 plot (xlist, ylist);

Plot sin(x) using 200 values: sine_200.m

Although the graph looks smooth, we can ZOOM IN to see that
it’s really a sequence of straight line segments! Look at the peak!

Fact #1: Linspace makes lists easily

x = linspace(1,3,5)

1.0 1.5 2.0 2.5 3.0x :

“x is a list”
“x is a table of values”
“x is an array”
“x is a vector”
"x is a row vector"
"x is a 1 by 5 matrix"

For nice spacing, may need 1 extra value.

x = linspace(0,1,101)

0.00 0.01 0.02 0.99 1.00…x :

If you want to take N steps from 0 to 1, you need to use N+1 points.
To take steps of size 1/10, you want 11 points; steps of size 100 require 101.

FACT #2: Built-In Functions Take Arrays

 x y=sin(x)
0.00 ?
1.57 ?
3.14 ?
4.71 ?
6.28 ?

0.00 1.57 3.14 4.71 6.28 sin

And…

Return a new array of function values

 x y=sin(x)
0.00 0.0
1.57 1.0
3.14 0.0
4.71 -1.0
6.28 0.0

0.00 1.00 0.00 -1.00 0.00sin

x = linspace(0,1,200);

y = exp(x);

plot(x,y)

x = linspace(1,10,200);

y = log(x);

plot(x,y)

Examples

Our goal: a plot of this formula

f (x)=
sin(5 x)exp(−x /2)

1+x2 -2 <= x <= 3

It’s Natural to Try This:

f (x)=
sin(5 x)exp(−x /2)

1+x2 -2 <= x <= 3

x = linspace(-2,3,200);
y = sin(5*x)*exp(-x/2)/(1 + x^2)
plot(x,y)

We try this, but MATLAB refuses!

Why is MATLAB Confused?

Our formula makes perfect sense if x is just
a number. But now x is a list. In order for
“*” and “/” and “^” to do what we want, we
need to put a “dot” in front of each of
these commands.

When we operate on lists, “dots” are needed
when “*”, “/” or “^” are applied to lists.

(The reason is that in linear algebra, “*”, “/”
and “^” represent other ways of combining
lists.)

Use “DOT” on Times, Divide, Power
example5.m

-2 <= x <= 3

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2)
plot(x,y)

Array operations

For arithmetic on lists, we need to use a “dot”

f (x)=
sin(5 x)exp(−x /2)

1+x2

example1.m

f (x)=2sin (x)−cos (3 x)+. 1*sin (20 x)

Scale list by ONE number (*) No dot!

10 8 -5

2

20 16 -10

a:

s:

c:

c = s*a

Add Two Lists: + (No dot needed)

10 8 -5

2 4 1

12 12 -4

a:

b:

c:

c = a + b

Subtract Lists: - (No dot)

10 8 -5

2 4 1

8 4 -6

a:

b:

c:

c = a - b

Example 1: No Special “Dot” Operations

x = linspace(0,4*pi,200);
y1 = sin(x);
y2 = cos(3*x);
y3 = sin(20*x);
y = 2 * y1 - y2 + 0.1 * y3;
plot(x,y)

example2.m

f (x)=
5

1+x2

Powers of a List: “DOT ^”

10 8 -5

2

100 64 25

a:

s:

c:

c = a.^s

.^

Add ONE Number to List: “+”

10 8 -5

2

12 10 -3

a:

s:

c:

c = a + s

Divide One Number by List: “DOT /”

10 8 -5

 .1 .125 -.2

a:

c:

c = 1./a

Example 2 Solution:

The division and power operations
must use a “dot”:

x = linspace(-5,5,200);
y = 5./(1+ x.^2);
plot(x,y)

example3.m

f (x)=exp(−x /2)sin (10 x)

Change Sign of a List: “-”

10 8 -5

-10 -8 5

a:

c:

c = -a

A list divided by ONE number: “/”

10 8 -5

2

 5 4 -2.5

a:

s:

c:

c = a/s

Multiply One List by Another: “DOT *”

10 8 -5

2 4 1

20 32 -5

a:

b:

c:

c = a .* b

.*

Equation 3 Solution

We multiply one list by another.
For that, we need “DOT *”:

x = linspace(0,3,200);
y = exp(-x/2).* sin(10*x);
plot(x,y)

f (x)=
. 2 x3−x
1.1+cos(x)

example4.m

One List Divided by Another: “Dot /”

10 8 -5

2 4 1

 5 2 -5

a:

b:

c:

c = a ./ b

./

Equation 4 Solution

Power of a list: DOT ^
List divided by list: DOT /

x = linspace(-2*pi,2*pi,200);
y = (0.2*x.^3 - x)./(1.1 + cos(x));
plot(x,y)

When we need a DOT:

a * b -> a .* b if a and b are BOTH lists;

a / b -> a ./ b if b is a list;

a^b -> a .^ b if a is a list
 or b is a list (rare case).

Question Time

How many errors in the following
statement given that
x = linspace(0,1,100):

 y = (3*x .+ 1)/(1 + x^2)

A. 0 B. 1 C. 2 D. 3 E. 4

Question Time

How many errors in the following
statement given that
x = linspace(0,1,100):

 y = (3*x .+ 1)/(1 + x^2)

A. 0 B. 1 C. 2 D. 3 E. 4

y = (3*x + 1) ./ (1 + x.^2)

Question Time

Does this assign to y the values
sin(0o), sin(1o),…,sin(90o)?

 x = linspace(0,pi/2,90);

 y = sin(x);

A. Yes B. No

Question Time

Does this assign to y the values
sin(0o), sin(1o),…,sin(90o)?

 %x = linspace(0,pi/2,90);

 x = linspace(0,pi/2,91);

 y = sin(x);

A. Yes B. No

Nicer Plots

The default plot line thickness is 1, but you can change it:
 plot (xlist, ylist, ‘LineWidth’, 3);

The default plot line color is blue; You can make it red(r) (or
green(g), black(k), cyan(c), yellow(y), magenta(m):

 plot (xlist, ylist, ‘r-’);

You can add grid lines, titles, and labels:
 plot (xlist, ylist);
 grid (on);
 title (‘This is my plot!’);
 xlabel (‘Centuries’);
 ylabel (‘ - How many ants I saw- ’);← →

Saving Plots

A MATLAB plot appears in a separate figure window.
Under its FILE menu is an option to "save as" which
includes options:

 Save As: specify a file name
 Where: specify a directory
 Format: a menu including JPEG and PNG

You can also use a command, such as:
 print ('-djpeg', 'myfile.jpg'); <- JPEG
or
 print ('-dpng', 'myfile.png'); <- PNG

Tricks with plot()

The plot() command just connects each pair of
(x,y) values to the next one.

When we plot formulas, we naturally assume
that the x values must be a list that goes
from left to right, and the y values are
determined by a formula.

But there are lots of other things we can do
too.

Let me show you how to draw a triangle, a
square, and a circle.

Try for a Triangle: triangle_plot.m

A triangle involves three points, so we
might expect the following to work:

txlist = [0.0, 2.0, 1.0];
tylist = [0.0, 1.0, 3.0];
plot (txlist, tylist);

...We almost got our triangle, but what’s
missing...and why?...and how do we fix it?

Can We add a Square?

Let’s use different names for the data, so
we still have our triangle data around:

 sxlist = [0.0, 1.0, 1.0, 0.0, 0.0];
 sylist = [0.0, 0.0, 1.0, 1.0, 0.0];
 plot (sxlist, sylist, ‘r-’);

Hey, where did our triangle go?

Fix #1: Two plots in one call:

To plot the square and the triangle
together, the plot command will let us
list the two sets of data in one
command:

 plot (txlist, tylist, ‘b-’, …
 sxlist, sylist, ‘r-’);
 title (‘Triangle and Square together!’);

Fix #2: Hold On/Hold Off

We can make several plot commands all appear on the same image, if
we first say “hold on”, then make our plots, and then say “hold off”:

 hold on
 plot (txlist, tylist, ‘g-’);
 plot (sxlist, sylist, ‘m-’);
 [...MORE PLOT COMMANDS POSSIBLE..]
 hold off

To erase all previous plot information before issuing a "hold on"
command, you can type

 clf % <- "Clear the figure"

The "fill" command: triangle_fill.m

MATLAB's fill() command:
 fill (xlist, ylist, color);
 lets us list the corners of a shape, and

fill it with a color. The easy colors are
'r', 'g', 'b' (red/green/blue),
'c', 'm', 'y' (cyan/magenta/blue)
'k', 'w' (black/white)

Drawing a filled triangle: triangle_fill.m

txlist = [0.0, 2.0, 1.0];
tylist = [0.0, 1.0, 3.0];
fill (txlist, tylist, 'r');
grid on
title ('Triangle fill()', 'FontSize', 24);
xlabel ('<-- X -->');
ylabel ('<-- Y -->');
axis equal
print ('-djpeg', 'triangle_fill1.jpg');

A filled triangle

Last Trick: Sine, Cosine, Circle

alist = linspace (0.0, 2*pi, 101);
clist = cos (alist);
slist = sin (alist);

hold on
plot (alist, clist);
plot (alist, slist);
title (‘Cos(x) and Sin(x) from 0 to 2pi’);
hold off

Draw a Circle

plot (clist, slist);

%
% That doesn’t look right! Try again!
%
axis equal;
plot (clist, slist); It’s a circle now!←

"axis equal" tells MATLAB to use the same scale in
both X and Y directions.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

