3. Introduction to Conditionals

Boolean expressions

The If-Else Construct

And, or, not

Insight Through

What We Cannot Do So Far

We don't know how to make a computation depend upon a condition.

IF the value of the arithmetic expression Dice1 + Dice2 is 7, THEN increase the value of GamesWon by 1 .

The If-Else Construct Solves this Problem

We introduce this language feature while considering the behavior of a quadratic function

$$
q(x)=x^{2}+b x+c
$$

on a given interval $L<=x<=R$.

Insight Through

Assume Variables
 $$
\begin{gathered} \mathrm{b}, \mathrm{c}, \mathrm{~L}, \mathrm{R} \\ \text { are Initialized } \end{gathered}
$$

$$
\begin{aligned}
& \left.\mathrm{b}=\text { input ('Enter } \mathrm{b}^{\prime}:\right) \\
& \mathrm{c}=\text { input }\left({ }^{\prime} \text { Enter } \mathrm{c}^{\prime}:\right) \\
& \mathrm{L}=\text { input }\left({ }^{\text {Enter }} \mathrm{L}^{\prime}:\right) \\
& \left.\mathrm{R}=\text { input ('Enter } \mathrm{R}^{\prime}:\right)
\end{aligned}
$$

The Situation

$$
q(x)=x^{2}+b x+c \quad \bullet x_{c}=-b / 2
$$

Problem 1

Because the coefficient of $x^{\wedge} 2$ is 1 , the parabola always has the same shape (down, then up).

Its low point occurs $a t x=-b / 2$.
Over the interval $[L, R]$, does the parabola only go up (increasing)?

No!

$$
q(x)=x^{2}+b x+c \quad \bullet x_{c}=-b / 2
$$

Yes!

$q(x)=x^{2}+b x+c$

$$
\text { - } x_{c}=-b / 2
$$

Requirement:

$$
\mathrm{x}_{\mathrm{c}}<=\mathrm{L}
$$

Insight Through
L
R

Solution Fragment

$\mathrm{xc}=-\mathrm{b} / 2$;
if (xc <= L) disp('Yes')
else disp('No')
end

Problem 2

Can we determine the maximum value that the quadratic function reaches for any x in the interval $[L, R]$?
(There are two ways to answer this question!)

Maximum at L

$$
q(x)=x^{2}+b x+c \quad \bullet x_{c}=-b / 2
$$

Maximum at R

$$
q(x)=x^{2}+b x+c
$$

$$
\text { - } x_{c}=-b / 2
$$

Solution Fragment

$$
\begin{aligned}
& \mathrm{xc}=-\mathrm{b} / 2 ; \\
& \text { Mid }=(\mathrm{L}+\mathrm{R}) / 2 ; \\
& \text { if }(\mathrm{xc}<=\mathrm{Mid}) \\
& \quad \operatorname{maxVal}=R^{\wedge} 2+b * R+c \\
& \text { else } \\
& \quad \text { maxVal }=L^{\wedge} 2+b * L+c \\
& \text { end }
\end{aligned}
$$

Problem 3

Can we report whether the point $x c$ is in the interval $[L, R]$?

(Harder question: can we report the minimum value of the quadratic function in [L,R]?)
$q(x)=x^{2}+b x+c$

- $x_{c}=-b / 2$

$$
q(x)=x^{2}+b x+c \quad \bullet x_{c}=-b / 2
$$

Because R < xc

Yes!

$$
q(x)=x^{2}+b x+c \quad \bullet x_{c}=-b / 2
$$

Because
 $L<=x c$ and
 $x c<=R$

Solution Fragment

$$
\begin{aligned}
& \mathrm{xc}=-\mathrm{b} / 2 ; \\
& \text { if }(\mathrm{L}<=\mathrm{xc}) \& \& \quad(\mathrm{xc}<=\mathrm{R}) \\
& \quad \operatorname{disp}\left(' Y e s^{\prime}\right) \\
& \text { else } \\
& \left.\quad \text { disp(' } \mathrm{No} \mathrm{o}^{\prime}\right) \\
& \text { end }
\end{aligned}
$$

Legal Math, Illegal MATLAB: L <= xc <= R Insight Through

Saying the Opposite

$x c$ is in the interval $[L, R]$ if

$$
\mathrm{L}<=\mathrm{xc} \text { and } \mathrm{xc}<=\mathrm{R}
$$

$x c$ is not in the interval $[L, R]$ if

$$
x c<L \text { or } R<x c
$$

[^0]
Another Solution

$$
\begin{aligned}
& \mathrm{xc}=-\mathrm{b} / 2 ; \\
& \text { if }(\mathrm{xc}<\mathrm{L}) \text { II (R < xc) } \\
& \quad \text { disp('No') } \\
& \text { else } \\
& \quad \text { disp('Yes') } \\
& \text { end }
\end{aligned}
$$

The if-else Construct

if boolean expression

Commands to execute if the expression if TRUE

else

Commands to execute if the

expression if FALSE

end
Insight Through

Boolean Expressions

$$
(x c<L) \quad \text { || }(R<x c)
$$

Their value is either true or false.

Connected by logical operators: and, or, not

Insight Through

Boolean Expressions

(x c $<\mathrm{L}$) || ($\mathrm{R}<\mathrm{xc}$)

Their value is either true or false.

The AND, OR, and NOT operators can be used to build more complicated expressions.

Insight Through

Relational Operators

$<$ Less than
$>\quad$ Greater than
<= Less than or equal to
$>=$ Greater than or equal to
== Equal to
~= Not equal to

The And Operator \&\&

Insight Through

The Or Operator II

Insight Through

The not Operator ~

Insight Through

The ELSEIF Statement

For the quadratic problem, suppose we wanted to know whether xc was in $[L, R]$, OR to the left $O R$ to the right.
We have three possible results, so we need a more complicated statement than IF or IF/ELSE.
The ELSEIF statement follows an IF statement, but includes a new condition.

IF/ELSEIF/ELSE

if $(x c<L)$ disp (' $X C$ is left of [L, R].') elseif ($L<=x c \& \& x c<=R$) disp ('XC is in the interval $[L, R]^{\prime}$) else disp (' $X C$ is to the right of $[L, R]^{\prime}$) end
(We could have used a simpler "elseif"!)
Insight Through

Question Time

What is the value of X and Y after the following script is executed:

$$
\begin{aligned}
& \mathrm{X}=6 ; \mathrm{Y}=8 ; \\
& \mathrm{If}(\mathrm{X}<\mathrm{Y}) \\
& \mathrm{Y}=\mathrm{Y} / 2 ; \\
& \text { else } \\
& \mathrm{X}=\mathrm{X} / 2 ; \\
& \text { end }
\end{aligned}
$$

$$
A: X \text { is } 3 \text { and } Y \text { is } 4
$$

$$
B: X \text { is } 6 \text { and } Y \text { is } 8
$$

$C: X$ is 5 and Y is 4
$D: X$ is 3 and Y is 8

Insight Through

[^0]: Insight Through

