
Lectures - Week 8

Eigenvalues & Numerical Methods for Finding a Single Eigenvalue

and the Singular Value Decomposition Theorem

Review

First we will summarize some of the facts we saw last week for the algebraic eigenvalue
problem of finding a nonzero vector ~x and a scalar λ such that A~x = λ~x

• The characteristic equation det(A− λI) = 0 is a polynomial of degree n in λ and the
eigenvalues of A are the roots of this equation.

• If we know an eigenvector ~x of A, then the corresponding eigenvalue can be found by
the Rayleigh Quotient λ = (~xTA~x)/(~xTA~x).

• If we know an eigenvalue λ of A, then the corresponding eigenvector is in the null
space of A − λI.

• A is not invertible if and only if at least one of its eigenvalues is zero; in that case the
corresponding eigenvector is a vector in N (A).

• If A~x = λ~x then (λk, ~x) is an eigenpair of Ak and (1/λ, ~x) is an eigenpair of A−1, if it
exists.

• The algebraic multiplicity (a.m.) is the number of times an eigenvalue is repeated and
the geometric multiplicity (g.m.) is the number of linearly independent eigenvector
corresponding to the eigenvalue; g.m. ≤ a.m.; if g.m. ¡ a.m. for any eigenvalue we say
the matrix is defective; if an n×n matrix has n linearly independent eigenvectors then
we say it is nondefective or equivalently has a complete set of linearly independent
eigenvectors; if an eigenvalue is distinct then a.m.=g.m.=1

• If A is symmetric then its eigenvalues are real.

• If A is symmetric and positive definite then its eigenvalues are real and greater than
zero.

• If A is orthogonal then its eigenvalues have magnitude one.

• Eigenvectors corresponding to distinct eigenvalues are linearly independent.

• Similar matrices (i.e., B = M−1AM) have the same eigenvalues.

• Schur’s Theorem. Any matrix can be made orthogonally similar to a triangular matrix
and any symmetric matrix can be made orthogonally similar to a diagonal matrix.

• If M−1AM = Λ is a diagonal matrix, then the diagonal entries of Λ are the eigenvalues
of A; we say A is diagonalizable. A is diagonalizable if and only if it is nondefective;
the matrix that diagonalizes A is the matrix whose columns are the eigenvectors of A.

• What matrices are guaranteed to be similar to a diagonal matrix? A matrix with dis-
tinct eigenvalues is diagonalizable because it has n linearly independent eigenvectors;
a symmetric matrix.

1



The matrix norm induced by the Euclidean vector norm

When we studied norms, we defined ‖A‖2 to be the matrix norm of A induced by the ℓ2

vector norm (the Euclidean norm)

‖A‖2 = max
x6=0

‖A~x‖2

‖~x‖2

but we did not discover an easy way to compute it as we did for the norms ‖A‖1, ‖A‖∞.
It turns out that ‖A‖2 is related to the eigenvalues of A.
The set of eigenvalues of a matrix is sometimes called its spectrum and the largest eigenvalue
in magnitude called its spectral radius and denoted ρ(A). In many problems the spectral
radius tells us a lot about a matrix. For example, in iterative methods for linear systems
the spectral radius of the iteration matrix (which depends on the method used) must be
≤ 1 to guarantee convergence.

Lemma The ‖A‖2 is determined by

‖A‖2 =
√

ρ(AT A) .

Recall that AT A is a symmetric matrix which is always at least positive semi-definite and
thus has real eigenvalues ≥ 0 so taking the square root makes sense. Also if A has linearly
independent columns it is also positive definitWe will not prove this here because it is quite
lengthy but we would demonstrate it in a similar way to the proofs for the other norms;
i.e., we show ‖A‖2 ≤

√

ρ(ATA) and then show the opposite inequality. An easy way to
remember this is to consider each term in the numerator and denominator of the definition
where we have squared the expression for convenience

‖A‖2
2 = max

x6=0

‖A~x‖2
2

‖~x‖2
2

= max
x6=0

~xT AT A~x

~xT~x

Now if ~x is an eigenvector of A then this quotient is just an eigenvalue of AT A. Of course
this doesn’t prove the result because how do we know that the maximum occurs when ~x
is an eigenvector of A but rather it is a way to remember the definition.
Once we have this way of calculating ‖A‖2 we can easily determine the K2(A). When A
is symmetric it has an especially nice form.

Lemma Let A be an n × n invertible matrix. Then K2(A) is determined by

K2(A) = ‖A‖2‖A−1‖2 =
√

ρ(AT A)
√

ρ(A−T A−1) =
σmax

σmin

where σmax is the spectral radius of AT A, i.e., the dominant eigenvalue in magnitude, and
σmin is the smallest eigenvalue of AT A in magnitude.

Moreover, if A is symmetric and has eigenvalues ordered as λmin = λ1 ≤ λ2 ≤ · · · ≤ λn =
λmax then

K2(A) = ρ(A)ρ(A−1) =
λmax

λmin
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The expression for K2(A) is just an obvious substitution of the definition of the condition
number K(A) and the ‖B‖2 for B = A and B = A−1. Of course we should point out
again that the matrix AT A is symmetric positive definite because A is invertible and so
its eigenvalues σi are real and positive so that this expression makes sense. The simplified
expression when A is symmetric requires a bit of work. Let A = AT so that AT A = A2

and A−T A−1 = (A−1)2. Using this in the definition of the condition number and the
expression for calculating the 2−norm we obtain

K2(A) = ‖A‖2‖A−1‖2 =
√

ρ(AT A)
√

ρ(A−T A−1) =
√

ρ(A2)
√

ρ
(

(A−1)2
)

Recall that if λ is an eigenvalue of A then λ2 is an eigenvalue of A2 and 1/λ is an eigenvalue
of A−1 and we know λ 6= 0 because A is invertible. By assumption λmax is the largest
eigenvalue of A so ρ(A) = λmax and thus ρ(A2) = λ2

max. Similarly λmin is the smallest
eigenvalue of A and thus 1/λmin is the largest eigenvalue of A−1; so ρ(A−1) = 1/λmin and
thus ρ((A−1)2) = 1/λ2

min. Using these results gives us

K2(A) =
√

ρ(A2)
√

ρ
(

(A−1)2
)

=
√

λ2
max

√

1

λ2
min

=
λmax

λmin

when A = AT .

Example Find K2(A) for each A

A1 =

(

2 1
1 3

)

A2 =

(

2 1
0 3

)

A1 is a symmetric matrix so we can simply calculate the eigenvalues and take the ratio of
the maximum over the minimum. The eigenvalues of A are the roots of the characteristic
polynomial

det

(

2 − λ 1
1 3 − λ

)

= (2 − λ)(3 − λ) − 1 = 0 ⇒ λ2 − 5λ + 5 = 0 ⇒ λ =
5 ±

√
5

2

so K2(A2) = 5+
√

5

5−
√

5
≈ 17.94.

The matrix A2 is not symmetric so we have to form AT
2 A2 and look at its eigenvalues; we

have

AT
2 A2 =

(

2 0
1 3

) (

2 1
0 3

)

=

(

4 2
2 10

)

and its eigenvalues are the roots of the characterisitic polynomial

(4 − λ)(10 − λ) − 4 = 0 ⇒ λ2 − 14λ + 36 = 0 ⇒ λ = 7 ±
√

13

and thus K2(A2) ≈ 3.12.

Gerschgorin Circle Theorem
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Before we look at methods for finding a specific eigenvalue of a matrix, we consider a
localization theorem which gives us an estimate for a region that the eigenvalues are in;
this could give us a “ball park” estimate on the size of the eigenvalues. This theorem is
just one of many localization theorems available for eigenvalues.

Theorem Gerschgorin Circle Theorem Let A be an n × n real matrix and define the
circles or disks

Di = {z such that |z − aii| ≤
n

∑

i=1

i 6=j

|aij |}

Then the eigenvalues of A lie in the union of these disks, ∪n
i=1Di. Moreover if p of the

disks are disjoint then exactly p eigenvalues lie in the union of these p disks.

Lets look at what this theorem says. First of all, we did not assume that A was symmetric
so its eigenvalues can be complex and so the disks are regions in the complex plane and
z here represents a complex number. If A happens to be symmetric then the disks are
really just intervals on the real line. The iith disk is centered at the diagonal entry aii of
the matrix with radius determined by the sum of the absolute values of the off-diagonal
entries in that row.

Example Use the Gerschgorin Circle Theorem to obtain an estimate for each eigenvalue

A1 =





2 2 −2
2 4 1
1 1 10





For A1 we first create the disks in the complex plane

D1 = {z such that |z − 2| ≤ 4}

D2 = {z such that |z − 4| ≤ 3}
D3 = {z such that |z − 10| ≤ 2}

When we draw these disks we see that D3 is disjoint from the other two so one eigenvalue
lies in D3 and two in D1 ∪D2. Note that this does NOT say that one eigenvalue is in each
disk; in this case all we know is that two eigenvalues are in the union of D1 and D2 so, for
example, both could be in D1 or both in D2.

For A2 the matrix is symmetric so instead of disks we have intervals on the real line.

The Power Method and its Variants

We now look at a algorithms for determining a specific eigenvalue; for example the spectral
radius of a matrix, the minimum eigenvalue (in magnitude) or the eigenvalue nearest a
specific value. We will not look at the QR method or its variants for finding all eigenvalues
and eigenvectors of a matrix.

4



The Power Method is an iterative method for find ρ(A) which simply takes powers of the
original matrix A. The assumption for the method to work is that A must have a complete
set of linearly independent eigenvectors. We will assume that A has real eigenvalues and
a complete set of linearly independent eigenvectors; for example, if A is symmetric so that
we know its eigenpairs are real and it is guaranteed to have a complete set of linearly
independent eigenvectors. The method will give us an approximation to the eigenvector
corresponding to ρ(A) and we will use the Rayleigh Quotient to obtain an approximation
to the corresponding eigenvalue.

Power Method - Case 1

Let A have real eigenvalues and a complete set of linearly independent eigenvectors. As-
sume that the dominant eigenvalue is unique (not repeated) and the eigenvalues are ordered
as follows

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|
and the associated eigenvectors are denoted ~vi, i = 1, . . . , n.

Given ~x0 then we generate a sequence of iterates ~xk from

xk+1 = σkAxk

where σk is a suitably chosen scaling factor. Then xk → C~v1 as k → ∞ and the Rayleigh
Quotient ((~xk)T A~xk)/(~xk)T~xk → λ1.

In this algorithm we are simply multiplying the previous iterate by the matrix A and scaling
the result. We have to scale because otherwise the entries in the resulting vectors could
become unbounded or approach zero. We now want to see why this method converges to
the eigenvector corresponding to the dominant eigenvalue and at what rate it converges.

From the algorithm we choose an arbitrary starting vector ~x0 so

~x1 = σ1A~x0, ~x2 = σ2A~x1 = σ1σ2A
2~x0

Continuing in this manner we see that

~xk = σkA~xk−1 = σkσk−1A
2~xk−2 = · · · =

(

Πk
i=1σi

)

Ak~x0 .

Because we have assumed that A has a complete set of linearly independent eigenvectors
these vectors can be used as a basis for IRn. Consequently there are constants ci such that

x0 =
n

∑

i=1

ci~vi

Using this expression in our formula for xk and the fact that Ak~vi = λk
i ~vi gives

~xk =
(

Πk
i=1σi

)

Ak~x0 = ǫkAk
[

n
∑

i=1

ci~vi

]

= ǫk

[

n
∑

i=1

ciA~vi

]

= ǫk

[

n
∑

i=1

ciλi~vi

]

.
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where we have written the product of the constants Πk
i=1σi as ǫk for ease of exposition.

We now factor out the dominant eigenvalue term λk
1 to get

~xk = ǫkλk
1

[

c1~v1 + c2

(λ2

λ1

)k

~v2 + c3

(λ3

λ1

)k

~v3 + · · ·+ cn

(λn

λ1

)k

~vn

]

.

As k → ∞ all the terms in the expression except the first approach zero because we have
assumed that λ1 > λi for all i 6= 1. Now if we don’t scale, then the first term either
approaches ∞ or 0 depending on whether λ1 > 1 or λ1 < 1. One can demonstrate that
if the scaling is chosen as, e.g., ‖ · ‖∞ then the first term goes to a a scalar times ~v1,
the eigenvector corresponding to λ1; this calculation is straightforward but tedious and we
don’t include it here. As k → ∞ the largest term in the expression (not counting the first) is
a constant times (λ2/λ1)

k because we have assumed the ordering |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.
Consequently the rate at which we have convergence is governed by (|λ2|/|λ1|)k. This
means, e.g., if λ2 = .5λ1 at the tenth iteration we would have (λ2/λ1)

10 = (0.5)10 ≈
.000976 but if the eigenvalues are clustered, e.g., λ2 = 0.95λ1 at the tenth iteration we
would have (λ2/λ1)

10 = (.95)10 ≈ 0.5987 and the convergence would be very slow.

In practice we must scale the iterates at each step. One way to do this is to normalize the
iterates by some norm. For example, we could compute our iterates as

~yk+1 = A~xk ⇒ ~xk+1 =
~yk+1

‖~yk+1‖

where we could use the Euclidean norm, the infinity norm or any of our choosing. This
way our iterates have length one in some norm. Also note that our analysis works for any
starting vector ~x0; it only relies on the fact that A is non-defective.

Example Calculate four iterates of the power method for

A =

(

2 −1
−1 2

)

~x0 =

(

1
0

)

This matrix has eigenvalues of 3 and 1. As a scaling use ‖ · ‖∞ and calculate the corre-
sponding approximate eigenvalue by using the Rayleigh quotient. Tabulate your results
and include columns for the error in the eigenvalue and a column giving (λ2/λ1)

k = (1/3)k.

k yk = A~xk−1 xk+1 = ~yk/‖yk‖∞ λk
1 error (λ2/λ1)

k

0 (1, 0)T

1 (2,−1)T (1,−1/2)T 2.8 0.2 0.33333

2 (5/2,−2)T (1,−4/5)T 2.9761 0.02439 0.11111

3 (14/5,−13/15)T (1,−13/14)T 2.9973 0.00274 0.037037

4 (41/14,−20/7)T (1,−40/41))T 2.99997 0.000033870.004115
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It turns out that if the dominant eigenvalue of A is repeated r times but A still has a
complete set of linearly independent eigenvectors then ~xk approaches a linear combination
of the r eigenvectors corresponding to λ1 which is itself an eigenvector corresponding to
λ1 (see homework for proof). If the root is not unique, e.g., the spectral radius is one but
both ±1 are eigenvalues then the algorithm can be modified to work.

Inverse Power Method

Suppose we want to determine the smallest eigenvalue in magnitude. Because we know
that if λi is an eigenvalue of A then 1/λi is an eigenvalue of A−1; thus one over the smallest
eigenvalue of A in magnitude is the largest eigenvalue of A−1. Consequently we can simply
use the Power Method with the matrix A−1 to determine the eigenvector corresponding to
the smallest eigenvalue of A. However, we also know that we never really want to calculate
A−1 so we want to implement this without actually forming A−1. How do we do this? As
usual, we do an LU decomposition of A once and then perform solves at each iteration.

Inverse Power Method - Case 1 Let A have real eigenvalues and a complete set of
linearly independent eigenvectors. Assume that the smallest eigenvalue in magnitude is
unique (not repeated) and the eigenvalues are ordered as follows

|λ1| ≥ |λ2| ≥ · · · ≥ |λn−1| > |λn| ⇒
1

|λn|
>

1

|λn−1|
≥ 1

|λn−2|
≥ · · · ≥ 1

|λ1|

and the associated eigenvectors are denoted ~vi, i = 1, . . . , n.

Given ~x0 then we generate a sequence of iterates ~xk from

xk+1 = σkA−1xk

where σk is a suitably chosen scaling factor. This is equivalent to solving the linear system

Axk+1 = σkxk

To implement this algorithm we determine A = LU (or use PA = LU) and for each
iteration we perform a back and forward solve. Convergence is analogous to the Power
Method. Specifically we form A = LU before the iteration starts then for each iteration
we must do the following.

• solve L~y = σk~xk using a forward solve
• solve U~z = ~y using a back solve
• set ~xk+1 = ~z/σk+1 for a scaling σk+1 Of course when we use the Rayleigh Quotient

we are computing an approximation to an eigenvalue of A−1 so we need to take the
reciprocal to obtain the eigenvalue of A.

Shifted Inverse Power

Sometimes we might want to find the eigenvalue nearest some number, say µ. In addition,
we saw that the convergence for the Power Method (and thus the Inverse Power Method)
can be slow if the eigenvalues are clustered so sometimes we can perform a shift in the
method to obtain faster convergence.
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First note that if A~x = λ~x then for the shifted matrix A − µI we have

A~x = λ~x ⇒ A~x − µI~x = λ~x − µI~x ⇒ (A − µI)~x = (λ − µ)~x

so the eigenvalues of A − µI are just λ − µ and the eigenvectors are the same as A.
Suppose now that we want to find the eigenvalue of A that is nearest to µ. This means
that we are looking for the smallest eigenvalue of A−µI so we just apply the Inverse Power
Method using the matrix A − µI. When we use the Rayleigh Quotient we are finding an
approximation to an eigenvalue of (A − µI)−1 so we first take the reciprocal to get an
approximation of an eigenvalue of A− µI and then shift the result by µ because if σ is an
eigenvalue of A − µI then σ = λ − µ ⇒ λ = σ + µ.
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