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SOLUTION OF DISCRETE CONVECTION–DIFFUSION
PROBLEMS

As shown in Chapter 3, the coefficient matrix arising from discretization of
the convection–diffusion equation is nonsymmetric. To develop iterative solution
algorithms for these problems, as well as those arising in other settings such as the
Navier–Stokes equations, the algorithms discussed in Chapter 2 must be adapted
to handle nonsymmetric systems of linear equations. In this chapter, we outline
the strategies and issues associated with Krylov subspace iteration for general
nonsymmetric systems, together with specific details for convection–diffusion
systems associated with preconditioning and multigrid methods.

4.1 Krylov subspace methods

We are considering iterative methods for solving a system Fu = f , where, for the
moment (i.e. in this section), F represents an arbitrary nonsymmetric matrix
of order n. Recall that for symmetric positive-definite systems, the conjugate
gradient method has two properties that make it an effective iterative solution
algorithm. It is optimal, in the sense that at the kth step, the energy norm of the
error is minimized with respect to the k-dimensional Krylov space Kk(F, r(0)).
(Equivalently, the error is orthogonal to Kk(F, r(0)) with respect to the energy
inner product.) In addition, it is inexpensive: the number of arithmetic operations
required at each step of the iteration is independent of the iteration count k. This
also means that the storage requirements are fixed. Unfortunately, there are
no generalizations of cg directly applicable to arbitrary nonsymmetric systems
that have both of these properties. A Krylov subspace method for nonsymmetric
systems of equations can display at most one of them: it can retain optimality
but allow the cost per iteration to increase as the number of iterations grows, or
it can require a fixed amount of computational work at each step but sacrifice
optimality.

Before discussing what can be done, we note that one way to apply Krylov
subspace methods to a nonsymmetric system is to simply create a symmetric pos-
itive definite one such as that defined by the normal equations FTFu = FT f .
The problem could then be solved by applying the conjugate gradient method to
the new system. This approach clearly inherits some of the favorable features of
cg. However, the Krylov subspace generated is Kk(FTF, FT r(0)) and therefore
convergence will depend on properties of FTF . For example, recall Theorem 2.4,
which specifies a bound that depends on the condition number of the coefficient
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matrix. Since the condition number of FTF is the square of that of F , this
suggests that using cg in this way may be less effective than when it is applied
directly to symmetric positive-definite systems. In our experience with problems
arising in fluid mechanics such as the convection–diffusion equation, this is
indeed the case; convergence of cg applied to the normal equations is slower
than alternative approaches designed to be applied directly to nonsymmetric
problems.

Let us consider instead iterative methods for systems with nonsymmetric
coefficient matrices that generate a basis for Kk(F, r(0)). Effective strategies are
derived by exploiting the connection between algorithms for estimating eigen-
values of matrices (more precisely, for constructing nearly invariant subspaces
of matrices) and those for solving systems. This connection was introduced in
Section 2.4, where we established a relation between the conjugate gradient
method and the Lanczos method for eigenvalues: the cg iterate is a linear com-
bination of vectors generated by the Lanczos algorithm that constitute a basis for
Kk(F, r(0)). Here we will show how generalizations and variants of the Lanczos
method for nonsymmetric matrices can be exploited in an analogous way.

4.1.1 GMRES

Our starting point is the generalized minimum residual method (gmres), defined
below. This algorithm, developed by Saad & Schultz [165], represents the stand-
ard approach for constructing iterates satisfying an optimality condition. It is
derived by replacing the symmetric Lanczos recurrence (2.29) with the variant
for nonsymmetric matrices known as the Arnoldi algorithm.

To show how this method works, we identify its relation to the Arnoldi
method for eigenvalue computation. Starting with the initial vector v(1), the
main loop (on k) of Algorithm 4.1 constructs an orthonormal basis{

v(1),v(2), . . . ,v(k)}
for the Krylov space Kk(F,v(1)). To make v(k+1) orthogonal to Kk(F,v(1)), it is
necessary to use all previously constructed vectors {v(j)}kj=1 in the computation.
The construction in Algorithm 4.1 is analogous to the modified Gram–Schmidt
process for generating an orthogonal basis. Let Vk = [v(1),v(2), . . . ,v(k)] denote
the matrix containing v(j) in its jth column, for j = 1, . . . , k, and let Hk =
[hij ], 1 ≤ i, j ≤ k, where entries of Hk not specified in the Algorithm are zero.
Thus, Hk is an upper-Hessenberg matrix (i.e. hij = 0 for j < i− 1), and

FVk =VkHk + hk+1,k [0, . . . , 0,v(k+1)]
Hk =V T

k FVk .
(4.1)

The Arnoldi method for eigenvalues is to use the eigenvalues of Hk as estimates
for those of F . This technique is a generalization of the Lanczos method that
is applicable to nonsymmetric matrices. When F is symmetric, Hk reduces to
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the tridiagonal matrix produced by the Lanczos algorithm, and (4.1) is identical
to (2.30).

Algorithm 4.1: The Gmres Method
Choose u(0), compute r(0) = f − Fu(0), β0 = ‖r(0)‖, v(1) = r(0)/β0
for k = 1, 2, . . . until βk < τβ0 do

w(k+1)
0 = Fv(k)

for l = 1 to k do

hlk = 〈w(k+1)
l ,v(l)〉

w(k+1)
l+1 = w(k+1)

l − hlkv(l)

enddo

hk+1,k = ‖w(k+1)
k+1 ‖

v(k+1) = w(k+1)
k+1 /hk+1,k

Compute y(k) such that βk =
∥∥∥β0e1 − Ĥky(k)

∥∥∥ is minimized,

where Ĥk = [hij ]1≤i≤k+1,1≤j≤k

enddo
u(k) = u(0) + Vky(k)

To derive a Krylov subspace iteration for solving systems of equations, we
let u(k) ∈ u(0) + Kk(F, r(0)). For the choice v(1) = r(0)/β0, with β0 = ‖r(0)‖ as
in Algorithm 4.1, this is equivalent to

u(k) = u(0) + Vky(k) (4.2)

for some k-dimensional vector y(k). But the first line of (4.1) can be rewritten
as FVk = Vk+1Ĥk, and this implies that the residual satisfies

r(k) = r(0) −AVky(k) = Vk+1

(
β0e1 − Ĥky(k)

)
, (4.3)

where e1 = (1, 0, . . . , 0)T is the unit vector of size k. The vectors {v(j)} are
pairwise mutually orthogonal, so that

‖r(k)‖ = βk =
∥∥∥β0e1 − Ĥky(k)

∥∥∥ . (4.4)

In particular, the residual of the iterate (4.2) with smallest Euclidean norm is
determined by the choice of y(k) that minimizes the expression on the right side
of (4.4).

This upper-Hessenberg least squares problem can be solved by transforming
Ĥk into upper triangular form

(
Rk

0

)
, where Rk is upper triangular, using k + 1

plane rotations (which are also applied to β0e1). Here, Ĥk contains Ĥk−1 as a
submatrix, so that in a practical implementation, Rk can be updated from Rk−1.
Moreover, by an analysis similar to that leading to (2.37), it can be shown that
‖r(k)‖ is available at essentially no cost. Hence, a step of the gmres algorithm
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consists of constructing a new Arnoldi vector v(k+1), determining the residual
norm of the iterate r(k) that would be obtained from Kk(F, r(0)), and then either
constructing u(k) if the stopping criterion is satisfied, or proceeding to the next
step otherwise.

By construction, the iterate u(k) generated by the gmres method is the
member of the translated Krylov space

u(0) +Kk(F, r(0))

for which the Euclidean norm of the residual vector is minimal. That is,

‖r(k)‖ = min
pk∈Πk, pk(0)=1

‖pk(F )r(0)‖ . (4.5)

As in the analysis of the cg method, the Cayley–Hamilton theorem implies that
the exact solution is obtained in at most n steps. Bounds on the norm of the
residuals associated with the gmres iterates are derived from the optimality
condition.

Theorem 4.1. Let u(k) denote the iterate generated after k steps of gmres
iteration, with residual r(k). If F is diagonalizable, that is, F = V ΛV −1 where Λ
is the diagonal matrix of eigenvalues of F , and V is the matrix whose columns
are the eigenvectors, then

‖r(k)‖
‖r(0)‖ ≤ κ(V ) min

pk∈Πk, pk(0)=1
max
λj

|pk(λj)|, (4.6)

where κ(V ) = ‖V ‖ ‖V −1‖ is the condition number of V . If, in addition, E is any
set that contains the eigenvalues of F , then

‖r(k)‖
‖r(0)‖ ≤ κ(V ) min

pk∈Πk, pk(0)=1
max
λ∈E

|pk(λ)|. (4.7)

Proof Assertion (4.6) is derived from the observations that, for any polyno-
mial pk,

‖pk(F )r(0)‖= ‖V pk(Λ)V −1r(0)‖
≤ ‖V ‖ ‖V −1‖ ‖pk(Λ)‖ ‖r(0)‖
≤ ‖V ‖ ‖V −1‖max

λj

|pk(λj)| ‖r(0)‖.

The bound (4.7) is an immediate consequence of (4.6).

These “minimax” bounds generalize the analogous results (2.11) and (2.12)
for the conjugate gradient method. There are, however, two significant differ-
ences. First, there is the presence of the condition number κ(V ) of the matrix of
eigenvectors. It is difficult to bound this quantity, but its presence is unavoidable
for polynomial bounds entailing the eigenvalues of F . Second, it is more difficult
to derive an error bound for the gmres iterates in a form that is as clean as
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Theorem 2.4 for cg. This is partly due to the factor κ(V ), but it also depends
on the need for bounds from approximation theory for maxλ |pk(λ)|.

The results of Theorem 4.1 can be used to gain insight into the convergence
behavior of gmres by taking the kth root of (either of) the bounds. In particular,(‖r(k)‖

‖r(0)‖

)1/k

≤κ(V )1/k
(

min
pk∈Πk, pk(0)=1

max
λj

|pk(λj)|
)1/k

.

κ(V ) does not depend on k, and it therefore follows that κ(V )1/k → 1 as k
increases. This suggests consideration of the limit

ρ := lim
k→∞

(
min

pk∈Πk, pk(0)=1
max
λj

|pk(λj)|
)1/k

. (4.8)

Since gmres constructs the exact solution in a finite number of steps, this does
not lead to a simple statement about the error at any given step of the com-
putation. However, it does give insight into the asymptotic behavior for large
enough k: as the iteration proceeds, it can be expected that the norm of the
residual will be reduced by a factor roughly equal to ρ at each step. We refer
to ρ of (4.8) as the asymptotic convergence factor of the gmres iteration. It is
an interesting fact that asymptotic estimates for large k are often descriptive of
observed convergence behavior for k � n. It is rarely the case that n iterations
are necessary for an accurate solution to be obtained.

For later analysis, we mention that for a simple (stationary) iteration (as
in (2.26)) with iteration matrix T =M−1R, the norms of successive error vectors
will asymptotically (for large numbers of iterations) reduce by a factor which is
simply the eigenvalue of T of maximum modulus. We will therefore denote by
ρ(T ) the eigenvalue of T of maximum modulus since this reflects the ultimate
rate of convergence for a simple iteration as does ρ defined above for gmres
iteration.

Returning to gmres, a bound on ρ can be obtained using the fact that any
polynomial χk ∈ Πk with χk(0) = 1 satisfies, for any set E that contains the
eigenvalues of F ,

min
pk∈Πk, pk(0)=1

max
λ∈E

|pk(λ)| ≤ max
λ∈E

|χk(λ)|.

This was used in Theorem 2.4 to construct a bound on the error for the cg
method, where χk was taken to be a scaled and translated Chebyshev polynomial.
The same approach can be used to derive a bound on the asymptotic convergence
factor for the gmresmethod when the enclosing set E is an ellipse in the complex
plane.

Theorem 4.2. Suppose F is diagonalizable and its eigenvalues all lie in an
ellipse E with center c, foci c ± d and semi-major axis a, and E does not con-
tain the origin. Then the asymptotic convergence factor for gmres iteration is
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