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1 Introduction

2 Evaluating The Strong Navier-Stokes Equa-
tions

Now that we have some idea of the geometry of our region, and how the basis
functions are generated, we are ready to use these ideas to treat the Navier-
Stokes equations. We begin with the classical form of the equation.

Suppose we are interested in the particular form of the Navier Stokes equa-
tions represented by time-independent 2D incompressible flow, as discussed ear-
lier. Let us suppose that we have an arbitrary pair of functions (v, p). We say
this pair of functions solves (our version of) the Navier Stokes Equations in the
strong sense, or is a strong solution if

−∆v(x, y) +R (v(x, y) · ∇)v(x, y) +∇p(x, y) = 0 (1)

∇v(x, y) = 0 ∀(x, y) ∈ Ω (2)

Yes, a strong solution is really what we would usually just call a solution;
we only mention the term strong solution to distinguish it from the kind of
solutions we’re actually going to be able to compute, which are termed “weak
solutions”.

3 The Weak Form of the Navier-Stokes Equa-
tions

If a pair of functions is a strong solution to the Navier Stokes equations, then
it satisfies those equations pointwise. Certainly, this pair will still be a solution
if we multiply the Navier Stokes equations by any functions we like. In partic-
ular, we could multiply the momentum equation by any velocity basis function
ψi(x, y) and the continuity equation by any pressure basis function φj(x, y). A
strong solution will surely satisfy:

(−∆v(x, y) +R(v(x, y) · ∇)v(x, y) +∇p(x, y))ψi(x, y) = 0 (3)

∇v(x, y)φj(x, y) = 0 (4)

∀(x, y) ∈ Ω (5)

We could take a step further and integrate these equations over the domain.
For any strong solution, it must be the case that∫

Ω

(−∆v(x, y) +R(v(x, y) · ∇)v(x, y) +∇p(x, y))ψi(x, y)dΩ = 0 (6)∫
Ω

∇v(x, y)φj(x, y)dΩ = 0 (7)

(To cut down on the length of the equations, we are now going to suppress
the explicit dependence of quantities on x and y.)
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4 Lowering the Order using Integration by Parts

We are going to apply integration by parts to modify this equation a little
further. Consider, then, the following:

d

dx
(
dv

dx
ψi) =

d2v

dx2
ψi +

dv

dx

dψi

dx
(8)

If we integrate and rearrange, we have∫
Ω

−d
2v

dx2
ψidΩ = − d

dx
(
dv

dx
ψi)|∂Omega +

∫
Ω

dv

dx

dψi

dx
dΩ (9)

Now if we suppose ψi is a basis function whose associated node is not on the
boundary, then ψi is identically zero on the boundary. Therefore, the boundary
term disappears, and we have∫

Ω

−d
2v

dx2
ψidΩ =

∫
Ω

dv

dx

dψi

dx
dΩ (10)

Repeating this process for the y derivative, we then have∫
Ω

−∆vψidΩ =

∫
Ω

dv

dx

dψi

dx
+
dv

dy

dψi

dy
dΩ (11)

and hence we can rewrite the momentum equation as∫
Ω

∇v · ∇ψi + (R(v · ∇)v +∇p)ψidΩ = 0 (12)∫
Ω

∇vφjdΩ = 0 (13)

Why is this an accomplishment? Well, we have lowered the order of differ-
ention on v. That means our weak form of the equation now only requires that
v be a C1(Ω) function. This allows us to consider a larger class of solutions
than the classical strong form of the equation would require.

We have done this at the cost of assuming that the basis functions are
differentiable, but in fact, they are polynomials, so that’s not a problem at all.

This, then, is our weak form of the Navier Stokes equations. Notice that,
up to this point, we have not explicitly used anything from finite elements. The
appearance of the function ψi(x, y) should suggest what is on our minds, but so
far, everything we have said is true for arbitrary sufficiently smooth functions
v, p, ψi and φi.

5 The Discretized Weak Equation

But now, let us consider the idea that, instead of looking for any functions (v, p)
whatsoever, we might reasonably look for a solution in the finite dimensional
space spanned by the velocity and pressure basis functions. A solution from this
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space can be specified by 2∗Nu +Np coefficients; that is, of course, exactly how
many distinct equations we could get by multiplying the (vector) momentum
equation by every possible velocity basis function, and the continuity equation
by every possible pressure basis function.

The process of multiplying the equations you are trying to satisfy by a set
of test functions, and then integrating, is called the Galerkin method. What the
method is actually doing is requiring that the error be orthogonal to the space
spanned by the test functions. Here, our “dot product” is simply the L2 inner
product

< u, v >≡
∫

Ω

u(x, y)v(x, y)dΩ (14)

When, as in our case, the test functions are also the set of basis functions
used to represent solutions, the process is called the Petrov-Galerkin method.

So far, we have not worried much about the boundary conditions...

6 The Nonlinear System for the Finite Element
Coefficients

For a problem like the Poisson equation, we would be done now. The Petrov-
Galerkin method, along with the application of boundary conditions, results in
a linear system for the finite element coefficients of the form K∗c = f . However,
the Navier Stokes equations are nonlinear, and the finite element form of them
inherits this property.
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