
Finite Element Treatment of the Navier Stokes Equations, Part III

John Burkardt
School of Computational Science

Florida State University
http://people.sc.fsu.edu/∼jburkardt/presentations/fem ns3.pdf

07 September 2005

1

1 Introduction

At this point in our discussion, we have developed a system of partial differential equations of interest, and
we have set up the finite element “machinery” of spatial geometry and basis functions. The next step would
be to apply the finite element method to these partial differential equations. But the Navier Stokes equations
are nonlinear; this means there will be some extra complications when we try to solve them. Therefore, it
seems best to turn first to a related, but linear system, reserving the full Navier Stokes equations for our
second example of a finite element implementation.

For our first example, we will look at the Stokes equations, which can be thought of as the Navier Stokes
equations with the nonlinear term dropped. Since the nonlinear term is multiplied by the Reynolds number,
you can assume that the Stokes equations may be suitable for very low Reynolds numbers; more vividly,
flows involving low speeds and high viscosity, such as syrup or oil,

There are other benefits of starting with the Stokes equations. Since the Navier Stokes equations are
nonlinear, there will be an iteration involved in solving them. The Stokes solution can be used as a reasonable
starting value for this iteration. Moreover, the linear system Ax = b associated with the Stokes equations is
very strongly related to the Newton system F ′ dx = −F to be set up for the Navier Stokes equations.

2 The Stokes Equations and a Strong Solution

By dropping the nonlinear momentum term from the Navier Stokes equations, we have the (steady incom-
pressible) Stokes equations:

−∆v +∇p = 0 (1)

∇v = 0

Now suppose that we have an arbitrary pair of functions (v, p). We say this pair of functions is a strong
solution of the Stokes equations if

−∆v(x, y) +∇p(x, y) = 0

∇v(x, y) = 0 ∀(x, y) ∈ Ω

Yes, a strong solution is really what we would usually just call a solution; but we define a strong solution
first, so that we can now look at ways of defining a weaker solution.

There are some natural reasons for wanting to weaken the definition of a solution. First, a pair of
functions cannot be a strong solution to the Navier Stokes equations if its definition fails even at a single
point. But we are quite familiar with functions, such as the Dirac delta function, whose pointwise definition
is ambiguous, but which have other useful properties, particularly under the integral sign.

Secondly, a pair of functions cannot be a strong solution if it is not suitably continuosly differentiable
at every point in the region. But in other areas of mathematics, we are comfortable with functions such as
the step function or the absolute value function for which there are pointwise problems. Again, one way to
make minor problems of differentiability disappear is to use the smoothing properties of the integral.

Finally, the equations require second order differentiability of v. Rather than merely allowing pointwise
or integrable singularities in the second derivatives of v, we would like to be able to lower the equation to
first order. This would allow us to admit more interesting kinds of shock waves as solutions.

Thus, before we even begin to try to solve it, we will spend some time considering how we can weaken
the concept of a solution to our system.

3 The Weak Form of the Stokes Equations

If a pair of functions is a strong solution to the Stokes equations, then it satisfies those equations at every
point in the region. Certainly, this pair will still be a solution if we multiply the Stokes equations by any

2

function we like. Let us multiply the momentum equation by a function ψi(x, y) and the continuity equation
a function φi(x, y). Although it might make sense to call these “multiplier functions”, we will call them test
functions. For the moment, we will allow these test functions to be arbitrary, although their names should
suggest what we eventually intend them to be! For arbitrary test functions, then, a strong solution will
surely satisfy:

(−∆v(x, y) +∇p(x, y)) ψi(x, y) = 0

∇v(x, y) φi(x, y) = 0

∀(x, y) ∈ Ω

(To cut down on the length of the equations, we are now going to suppress the explicit dependence of
quantities on x and y.)

Since these equations are true at every point in the domain, we can integrate them over the domain, and,
it must be still be the case that, for any test functions for which the product remains integrable:∫

Ω

(−∆v +∇p) ψi dΩ = 0∫
Ω

∇v φi dΩ = 0

Now it is true that a strong solution of the Stokes equations will satisfy these integrated equations. On
the other hand, it should be clear that a pair of functions that satisfy these integrated equations, for all test
functions ψi and φi in a “reasonably large” space, such as the space of all polynomials, must be very much
like a strong solution. On the other hand, with this integral form of the equations, the solution functions
have much more freedom to “misbehave”; that is, there may be points where the functions are undefined, or
tend to infinity, and the derivatives may fail to exist, as long as these problems don’t affect integrability.

We promised to lower the order of the equation as well, and we now proceed to this last step in weakening
the requirements of a solution.

4 Lowering the Order using Integration by Parts

We are going to apply integration by parts to modify our integrated momentum equation a little further.
The quantity of concern is the Laplacian operator. To see what we can do, consider the following fact about
a smooth functions u(x) and v(x):

d

dx
(
du

dx
v) =

d2u

dx2
v +

du

dx

dv

dx

If we integrate over some interval Ω and rearrange, we have∫
Ω

−d
2u

dx2
v dx = −(

du

dx
v)|∂Ω +

∫
Ω

du

dx

dv

dx
dx

The analogy for our two dimensional region Ω allows us to rewrite the horizontal momentum equation
term involving the Laplacian:∫

Ω

−(
∂2u

∂x2
+
∂2u

∂y2
) ψidΩ = −

∫
∂Ω

∂u

∂n
ψi ds+

∫
Ω

∇u · ∇ψi dΩ

Let us consider two assumptions. First, we suppose that the test function ψi is not entirely arbitrary,
but is, in fact a finite element basis function associated with some node ni. For our work, this will always be
the case. Second, suppose that the node ni is not a node on the boundary ∂Ω. (We will look later at how
to handle cases where this is not so.) In that case, the basis function ψi will be identically zero along the
boundary. Under these two assumptions, the boundary term disappears, and we have:

3

∫
Ω

−(
∂2u

∂x2
+
∂2u

∂y2
) ψidΩ =

∫
Ω

∇u · ∇ψi dΩ

We can repeat this process for the vertical momentum equation and combine the two scalar equations back
into a vector equation. The vector equation tells us how we may rewrite integrals involving the Laplacian of
the velocity field v and a function ψi which vanishes on the boundary:∫

Ω

−∆v ψidΩ =

∫
Ω

∇v · ∇ψi dΩ

This result allows us to write down our final form for the weak Stokes equations.∫
Ω

∇v · ∇ψi +∇p ψi dΩ = 0 (2)∫
Ω

∇v φi dΩ = 0

We say that a pair of functions (v, p) is a weak solution of the Stokes equations if they satisfy the weak
Stokes equations for all test functions ψi and φi from a given set, with the functions ψi vanishing on the
boundary of Ω.

This form of the system is a considerable accomplishment. The smoothing function of the integral allows
us to be more daring in what sort of solutions we can consider. It has also allowed us to lower the order of
differentiation on our velocity field v, requiring only that v be a C1(Ω) function. We have done this at the
cost of assuming that the velocity test functions are differentiable and vanish at the boundary, but in fact,
they are polynomials, and they will vanish at the boundary, so that’s not a problem at all.

This, then, is our weak form of the Stokes equations. We still haven’t quite said what test functions ψi

and φi we are going to use. We haven’t explained any relationship between these test functions and the
solution pair (v, p). And we haven’t really worked out any way yet to actually determine a solution pair.
All we know so far is how to judge whether a pair of functions is a strong or weak solution pair, as long as
someone is kind enough to tell us what test functions to use.

5 The Discretized Weak Stokes Equations

Everything that we said in the earlier discussion about building suitable finite element spaces for the Navier
Stokes variables v and p also applies to the Stokes equations. Therefore, we will suppose as before that we
triangulated the flow region, and constructed the corresponding sets of basis functions ψi(x, y) and φi(x, y).

Now we are prepared to relate the Stokes equations and our finite element spaces. We have already
become familiar with the idea that we shall look for weak solutions to the equations.

Now we take two further steps, both involving the finite element basis functions.
First, we take the fairly obvious step of specifying the test functions. The test functions for the momentum

equations will be the set of velocity basis functions ψi; the test functions for the continuity equation will be
the pressure basis functions φi.

Second, we will no longer consider solution functions from some arbitrary space. Instead, the candidate
solution functions (v, p) must be constructed as sums of the finite element basis functions.

In other words, we will only be considering solutions of the weak Stokes equations which can be represented
in the form:

vh(x, y) =

Nu∑
j=1

vvalj ψj(x, y)

ph(x, y) =

Np∑
j=1

pvalj φj(x, y)

4

The superscript is intended to remind us that we have discretized our system, replacing our previous
solution space by one in which every element can be described by a finite set of coefficients. In fact, the
represention of the solution pair has 2Nu +Np unknown coefficients.

We now have the discretized weak Stokes equations, for which we are given sets ψi and φi which
will play the roles of both basis and test functions; we wish to find a discrete weak solution (vh, ph) so that,
for all the test functions: ∫

Ω

∇vh · ∇ψi +∇ph ψi dΩ = 0 (3)∫
Ω

∇vh φi dΩ = 0

When we form our set of weak Stokes equations by multiplying the (vector) momentum equation by each
of the Nu velocity basis functions ψi, and the continuity equation by each of the Np pressure basis functions
phii, we arrive at a total of 2Nu+Np equations.

Thus, the number of unknown coefficients is matched by the number of equations, and this has a com-
forting feeling of completeness to it; we know that we probably have just enough information to determine
the unknown coefficients. We have transformed a set of partial differential equations with an infinite number
of degrees of freedom into a relatively puny set of algebraic equations, which, under reasonable assumptions,
can be guaranteed to be solvable.

Of course, anybody can replace a hard problem by an easy, solvable one. But the test is, does solving
the easier problem tell you anything about the hard problem you gave up on? At this point, I will simply
promise you that, as long as we are willing to solve the finite element version of the Stokes equations on a
“fine enough” grid, the errors in our approximate solution will become arbitrarily small.

The process of multiplying the equations you are trying to satisfy by a set of test functions, and then
integrating, is called the Galerkin method. What the method is actually doing is requiring that the error
be orthogonal to the space spanned by the test functions. Here, our “dot product” is simply the L2 inner
product

< uh, vh >≡
∫

Ω

uh(x, y) vh(x, y) dΩ

When, as in our case, the test functions are also the set of basis functions used to represent solutions,
the process is called the Petrov-Galerkin method.

6 The Form of One Discretized Weak Continuity Equation

Let’s look closely at the form of the discretized weak continuity equation associated with a given pressure
node ni. This pressure node has an associated pressure basis function φi(x, y), and therefore our system of
finite element equations will include a copy of the continuity equation, multiplied by φi(x, y) and integrated
over the flow region: ∫

Ω

∇vh φi dΩ = 0

In terms of the horizontal and vertical velocity component functions u(x, y) and v(x, y), this equation
has the form: ∫

Ω

(
∂uh

∂x
+
∂vh

∂y
) φi dΩ = 0

and if we replace each component function by its underlying finite element form, we have:∫
Ω

Np∑
j=1

(uvalj
∂ψj

∂x
+ vvalj

∂ψj

∂y
) φi dΩ = 0

5

This system can be regarded as a linear equation in the unknown velocity coefficients. In particular, the
coefficient Aij of uvalj is ∫

Ω

∂ψj

∂x
φi dΩ

and the coefficient Aij of vvalj is ∫
Ω

∂ψj

∂y
φi dΩ

But we have formulas for the basis functions, and we could even work out a formula for the partial
derivatives, so if we could carry out the integration, we’d be able to determine these numbers, and hence we
could reduce this weak continuity equation to a linear equation.

7 Sparseness

Although the continuity equation seems to involve all the velocity basis functions, we should note that most
of the coefficients will actually be zero. This is fairly easy to see. The weak continuity equation associated
with node ni involves the integral of the product of the pressure basis function φi and derivatives of the
velocity basis function ψj . We know that φi is only nonzero in elements which include node ni as a vertex.

So consider the coefficient of an arbitrary velocity basis function ψj , associated with velocity node nj . If
nodes ni and nj are not both nodes in some common element, then in fact, in every element, either φi or ψj

is identically zero. And of course, if ψj is uniformly zero in an element, then so are its partial derivatives.
So if a velocity node is “too far” from the pressure node, then its basis function does not participate in the
continuity equation.

Thus, the continuity equation associated with node ni will actually only have a few “interesting” coef-
ficients. For a simple grid of triangles made by splitting squares on the diagonal, this would amount to at
most 19 nonzero coefficients involving uvalj and another 19 involving vvalj .

Althought they are more complicated, you may also verify that each momentum equation also has a
similar property. Each momentum equation only has a limited number of nonzero coefficients. These nonzero
coefficients are associated with velocity and pressure basis functions whose defining nodes are “nearby” the
node associated with the test function for the given momentum equation.

This fact means that the linear system defining the finite element coefficients is sparse, or mostly zero.
It is generally true that a sparse linear system can be constructed, stored, factored and solved much more
efficiently than a general linear system. This counts as another advantage of the finite element method.

Even if you don’t want to take full advantage of sparseness, the linear system is also most likely banded;
that is, there are some lower and upper bandwidths ml and mu, so that any entry is guaranteed to be zero
if you more than ml below the diagonal or mu entries above it. The exact values of the bandwidths usually
need to be figured out after you’ve set up your geometry. In a 1D problem, the matrix really is tightly
banded and the matrix can be stored in a very compact form. In a 2D problem, the band structure is less
compact; there are bands near the diagonal, but also several more sets at some distance, with many zeros
in between. Band storage can still be used, but the savings are less dramatic. In 3D, trying to use a band
structure for the matrix will probably not save enough time or space to be worthwhile, and instead a sparse
structure is really necessary!

8 The Form of One Discretized Weak Momentum Equation

Writing out a sample momentum equation, we have

∫
Ω

∇(

Nu∑
j=1

vvalj ψj) · ∇ψi +∇(

Np∑
i=1

pvalj φj) ψi dΩ = 0

6

We can interchange summation and differentiation:∫
Ω

(

Nu∑
j=1

vvalj ∇ψj) · ∇ψi + (

Np∑
i=1

pvalj ∇φj) ψi dΩ = 0

Again, this is a linear system for the finite element coefficients. The multiplier Aij of a horizontal velocity
coefficient uvalj or a vertical velocity coefficient vvalj is∫

Ω

∇ψj · ∇ψi dΩ

The multiplier Aij of a pressure coefficient pvalj is∫
Ω

∇φj ψi dΩ

9 Numerical Quadrature

The discretized Stokes equations have been transformed into a linear system for the coefficients of the basis
functions. We know formally what these coefficients are, but we need a way to evaluate the integrals so that
we can do numerical work.

The integrals we deal with are defined over the entire region Ω, but in fact, are generally only nonzero
in a much smaller region. That region, in turn, is simply the set of triangular elements over which the
appropriate test function is nonzero. By the linearity of the integral, we really only need to be able to figure
out how to integrate a general function over a general triangular element.

A straightforward approach begins with a numerical quadrature rule for the unit triangle ∆ defined by

∆ = {(ξ, η) : 0 <= ξ, 0 <= η, ξ + η <= 1}

A quadrature rule of order nq specifies a set of abscissas (ξi, ηi) in the unit triangle, and weights µi so that
the integral of a function f(x, y) over the unit triangle can be approximated by∫

∆

f(ξ, η) dξdη ≈
nq∑
i=1

µi f(ξi, ηi)

For instance, a simple quadrature rule of order nq = 3 uses the three vertices as abscissas, with equal
weights of 1

6 . This “vertex quadrature rule” is actually a fairly poor rule. It’s no better, in fact, than
using the one point centroid rule. And if we are willing to use nq = 3 points in a quadrature rule, the rule
that uses the midpoints of the sides as quadrature points is of higher accuracy than the vertex quadrature
rule. In general, a higher order rule, such as with nq = 7 or nq = 13 is preferred to improve the degree of
approximation.

To approximate integrals over a general triangular element T , with vertices (x1, y1), (x2, y2), and (x3, y3),
we need to adjust the quadrature rule. Each of the unit triangle abscissas (ξ, η) is transformed to an abscissa
(x, y) in the general element as follows:

x = ξx1 + ηx2 + (1− ξ − η)x3

y = ξy1 + ηy2 + (1− ξ − η)y3

Each corresponding weight µ for the unit triangle is transformed to a weight w for the general element by

w = µ (x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2))

which simply multiplies the old weight by the ratio of the areas of T and ∆.

7

10 Assembly Code

Here is sample MATLAB code to assemble the finite element equations for the Stokes problem. I have
removed most of the comments, but you should be able to figure out what is going on by making correspon-
dences with the formulas we are trying to implement. Note that qbf and lbf are functions that evaluate the
quadratic (velocity) and linear (pressure) basis functions at a given point. We also include a few lines to take
care of source terms, which are discussed in a following section. Finally, note that while every node has an
associated velocity, only some nodes have associated pressure; as we loop through test and basis functions,
we must always ask ourselves, is this a node with 2 or with 3 degrees of freedom? The indx array is used to
keep track of the degrees of freedom; a positive entry in this array indicates the index of the equation used
to constrain the corresponding degree of freedom.

function [a, f] = assemble (node_num, node_xy, nnodes, element_num, ...

element_node, nq, wq, xq, yq, element_area, indx, nunk)

f(1:nunk) = 0.0;

a(1:nunk,1:nunk) = 0.0;

for element = 1 : element_num

for quad = 1 : nq

x = xq(quad,element);

y = yq(quad,element);

w = element_area(element) * wq(quad);

for test = 1 : nnodes

in = element_node(test,element);

iu = indx(1,in);

iv = indx(2,in);

ip = indx(3,in)

[bi, dbidx, dbidy] = qbf (x, y, element, test, node_xy, ...

element_node, element_num, nnodes, node_num);

if (0 < ip)

[qi, dqidx, dqidy] = lbf (x, y, element, test, node_xy, ...

element_node, element_num, nnodes, node_num);

end

%

% Handle source terms.

%

[u_rhs, v_rhs, p_rhs] = rhs (x, y);

f(iu) = f(iu) + w * u_rhs * bi;

f(iv) = f(iv) + w * v_rhs * bi;

if (0 < ip)

f(ip) = f(ip) + w * p_rhs * qi;

end

for basis = 1 : nnodes

8

jn = element_node(basis,element);

ju = indx(1,jn);

jv = indx(2,jn);

jp = indx(3,jn);

[bj, dbjdx, dbjdy] = qbf (x, y, element, basis, node_xy, ...

element_node, element_num, nnodes, node_num);

if (0 < jp)

[qj, dqjdx, dqjdy] = lbf (x, y, element, basis, node_xy, ...

element_node, element_num, nnodes, node_num);

end

a(iu,ju) = a(iu,ju) + w * (dbidx * dbjdx + dbidy * dbjdy);

if (0 < jp)

a(iu,jp) = a(iu,jp) + w * bi * dqjdx;

end

a(iv,jv) = a(iv,jv) + w * (dbidx * dbjdx + dbidy * dbjdy);

if (0 < jp)

a(iv,jp) = a(iv,jp) + w * bi * dqjdy;

end

if (0 < ip)

a(ip,ju) = a(ip,ju) + w * qi * dbjdx;

a(ip,jv) = a(ip,jv) + w * qi * dbjdy;

end

end

end

end

end

11 Source Terms

We have seen how the discretized Stokes equations may be regarded as a linear system for the finite element
coefficients C. We might write this linear system as

AC = F

We have seen how the entries of A come from terms in the momentum and continuity equations. But what
about the right hand side F? At the moment, this right hand side is zero, which means our coefficients C
must be zero as well. It seems like we are still missing some key ingredient of our formulation.

The first thing to note is that we have looked at the homogeneous Stokes equations. That is, the original
partial differential equations had zero right hand sides, and this fact has carried over to the discretized
system. It would, in fact, be possible to supply nonzero right hand side functions f1(x, y) and f2(x, y).

These source terms might come from extra physical effects to be modeled. They might also come simply
by deciding that you want the solution (v, p) to have a particular form. If you simply plug your desired

9

solution into the homogeneous equations, it will almost surely not satisfy the equations, producing instead
two residuals. But you can now simply replace the zero right hand sides of the equations by functions f1(x, y)
and f2(x, y) which are equal to these two residuals. Your desired solution will now be consistent with the
new, nonhomogeneous system. (This is one way to manufacture a test case for your code.)

However, if you specify source terms in your continuous pde’s, then this will, of course, affect the dis-
cretized pde’s in the obvious way. In particular, the nonhomogeneous discretized Stokes equations will
be: ∫

Ω

∇vh · ∇ψi +∇phψi dΩ =

∫
Ω

f1(x, y)ψidΩ (4)∫
Ω

∇vhφi dΩ =

∫
Ω

f2(x, y)φidΩ

It is easy to evaluate the source term integrals that define the nonzero entries Fi of the linear system,
in the same way that you work out the integrals that define the coefficient matrix entries Ai,j . And if the
right hand side of your linear system is nonzero, then at least some of the finite element coefficients will be
nonzero, so our solution will finally be more interesting.

12 Boundary Conditions

Perhaps a more natural way in which we can avoid solving a homogeneous problem is to specify boundary
conditions, that is, values that the solution must attain at certain points of the boundary of the region. In
Stokes flow, it is common to specify the velocity, or its tangential or normal component, at every point on
the boundary.

If part of the boundary is a physical wall, a typical condition is that the flow is exactly zero along the
boundary. This is sometimes called a no-slip condition. In some cases, a wall may be treated as impenetrable,
but “slippery”; in that case, we specify that the velocity component normal to the wall must be zero, while
the tangent component is not specified. This “free slip” condition might also be applied at a free surface of
the liquid, or a plane of symmetry.

It is frequently the case that, along some portion of the boundary, we are pumping fluid into the region.
This is known as an inflow boundary condition, and we are presumably able to specify the value of both
components of the velocity vector at any point along this inflow interface.

Finally, if we have inflow, we most likely also have outflow, and hence we generally have to say something
about the behavior of the outflow. It’s natural to assume that we can specify the inflow, but it is not so
reasonable to say the same thing about the outflow. You can squirt water into a box at any angle and
speed you like; but what comes out (eventually) will usually be a surprise! The physics of outflow boundary
conditions are shaky; therefore, the outflow conditions we impose are usually much weaker; when possible,
we try to impose the outflow boundary conditions far enough downstream, so that we don’t worry about
nonphysical effects.

A common choice for an outflow boundary condition might specify something like “straight flow”, which
says that along the outflow interface, the normal derivative of the velocity (relative to the interface) is
zero, and the tangential velocity is zero. Straight flow doesn’t guarantee outflow; it’s quite possible to have
“negative outflow” at an interface. This is usually undesirable, since it means that your problem is pulling
in phantom liquid. All you can do is watch for such cases, and adjust your boundary conditions, initial
conditions, or other quantities to avoid such a problem.

For the pressure, it is common to specify a single value at one point, or to specify some normalizing
condition, such as requiring that the integral of the pressure over the flow region is zero.

Since we are desperately trying to keep things simple, let us assume for the moment that the only
boundary conditions we want to apply are Dirichlet conditions, that is, constraints that specify the value of
a solution component, but that do not involve derivatives of the solution.

10

Normally, our Dirichlet boundary conditions will be specified in continuous form. For instance, we might
specify that, along some vertical portion of the boundary, the horizontal velocity u is equal to y(1− y) and
the vertical velocity component is 0. We need to discretize our boundary conditions in the same way as we
discretized our pde’s. In this case, it is natural to interpret the boundary conditions as saying that, for each
node ni along the given portion of the boundary, the finite element solution should agree with the boundary
function. Thus, in particular, we would want ui = yi(1− yi) and vi = 0.

Our discretization of the boundary condition amounts to replacing the continuous boundary function
y(1−y) by the piecewise quadratic interpolant generated by our finite element geometry along the boundary
nodes. For this particular boundary function, there is no loss of information because we can capture a
continuous quadratic function exactly. But if our boundary function was, say, sin(y(1− y)), then it should
be clear that our discretized boundary condition will not be dealing with the original function, but with a
discrete interpolant. Usually, this is not a serious problem, and refining the mesh will reduce the discrepancy
between the true and discretized boundary functions.

Now our original finite element system already had exactly one equation for every unknown. Adding
boundary conditions increases the number of equations without increasing the number of unknowns. How
do we reduce the number of equations, and which ones do we need to get rid of?

In our Dirichlet boundary condition setting, we can break down our boundary conditions into conditions
that constrain individual finite element coefficients. To say, for instance, that u has a given value along the
left side of the region is to say that for each velocity node along the left side, the corresponding horizontal
velocity coefficient uvali has the appropriate value.

If we suppose we have already set up our finite element equations, then there is, in fact, an equation in
our system associated with the value of uvali, namely, the horizontal component of the momentum equation
which was multiplied by the velocity basis function ψi associated with node ni. This equation is no longer
appropriate; it should be replaced by the information that the boundary condition is supplying. But to do
so is easy. We can simply replace the original equation by the following

1 uvali = yi(1− yi)

In other words, we wipe out the original row of A and the corresponding entry of F . Then we put a 1 in the
diagonal position of A, and the boundary value into the entry of F .

Doing this seems complicated, but it is much simpler than trying to apply the boundary condition by
eliminating the known value from the linear system. The size and shape of the linear system is preserved.

Similarly, the boundary condition for vi would result in replacing the original finite element equation by

1 vvali = 0

A condition on the pressure is handled similarly, except that we will be replacing an instance of the
continuity equation that was associated with the test function φi associated with the pressure degree of
freedom that we are constraining.

13 Sample Boundary Condition Code

Here is a sample MATLAB routine which enforces Dirichlet boundary conditions by modifying the finite
element matrix and right hand side. It is assumed that the nodes are arranged in a rectangular 2ny-1 by
2nx-1 array, and that indx keeps track of the index of the equation associated with the horizontal and
vertical velocity and pressure associated with each node.

function [a, f] = boundary (nx, ny, node_num, node_xy, indx, a, f)

%

% Consider each node.

%

node = 0;

11

for row = 1 : 2 * ny - 1

for col = 1 : 2 * nx - 1

node = node + 1;

%

% The value of U is to be set to X^2+Y^2 at every boundary node.

%

if (row == 1 | row == 2 * ny - 1 | col == 1 | col == 2 * nx - 1)

x = node_xy(1,node);

y = node_xy(2,node);

i = indx(1,node);

a(i,1:neqn) = 0.0;

a(i,i) = 1.0;

f(i) = x^2 + y^2;

end

%

% The value of V is to be set to 0 at every node on the left and right.

%

if (col == 1 | col == 2 * nx - 1)

i = indx(2,node);

a(i,1:neqn) = 0.0;

a(i,i) = 1.0;

f(i) = 0.0;

end

end

end

%

% The value of P is to be set to 1 at node number 1.

%

node = 1;

i = indx(3,node);

a(i,1:neqn) = 0.0;

a(i,i) = 1.0;

f(i) = 1.0;

14 Outroduction

The Stokes equations have gotten us a long way - from a pair of partial differential equations, through a
weak formulation, and a discretization, to a set of algebraic linear equations. Because the Stokes equations
were reasonably simple, we could spend some time worrying about the form of particular elements of the
finite element matrix, and the effect of adding source terms and boundary conditions.

We are now ready to turn to the Navier Stokes equations. Everything we have learned about the Stokes
equations will be useful in this new setting. The main new feature will, of course, be the addition of the
nonlinear term to the momentum equations. This means that we can no longer simply set up a linear system
for the finite element coefficients and solve it. Instead, we will encounter a nonlinear system whose solution
requires a good starting point, and the application of Newton’s method or some other iterative procedure.

At that time, we will also return to the question of boundary conditions, and explain how to deal with
Neumann boundary conditions that involve constraints on the derivative of the velocity.

12

