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Chapter 6

Finite Element Spaces

One of the advantages of the finite element method is that it can be used with
relative ease to find approximations to solutions of differential equations on general
domains. So far we have only considered approximating in one dimension or in
higher dimensions using rectangular elements. The goal of this chapter is to formally
define a finite element, present some examples of commonly used elements and to
establish a taxonomy for describing elements. Isoparametric elements, which are
used for domains with curved boundaries, are discussed in a later chapter.

To precisely describe a particular finite element, it is not enough to give the
geometric figure, e.g.,a triangle, rectangle, etc. One must also specify the degree of
polynomial that is used. Does describing these two pieces of information uniquely
determine the choice? In fact, no. If we recall in R1 using an interval as the geomet-
ric element and specifying a cubic polynomial on each interval does not completely
describe the finite element because we can determine the cubic by function values at
four points or by function and derivative values (as in Hermite cubic) at two points.
Consequently, three pieces of information must be provided to give an adequate
description of a finite element; we must specify the geometric element, the degree of
polynomial, and the degrees of freedom which are used to uniquely determine the
polynomial.

Once we have chosen a particular finite element, we subdivide the domain
into a finite number of geometric elements; this meshing must be “admissible”,
i.e.,satisfy certain properties. We want to construct a finite element space, Sh, over
this mesh which possesses specific properties. A basic property which we said is a
distinguishing feature of the finite element method is that we use a piecewise poly-
nomial which is a kth degree polynomial when restricted to the specific element.
For conforming finite elements we require our finite element space to be a subspace
of the underlying Hilbert space. For second order problems this space was H1(Ω)
or a subspace and for fourth order problems the underlying space was H2(Ω). Con-
sequently a second property we require is a global smoothness requirement on the
space. Finally, for the finite element method to be computationally efficient we
must be able to construct a basis which has small support. Before addressing some
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Figure 6.1. Inadmissible triangulation due to “hanging node”

of these issues we consider the admissible “triangulations” of a domain.

6.1 Construction of a finite element space

6.1.1 Admissible triangulations

Once a specific geometric element is chosen, we subdivide the domain Ω̄ into a finite
number of individual subsets or geometric elements. We will use the terminology
triangulation to refer to a subdivision of Ω̄ even if the specific geometric element
is not a triangle. The subsets form a triangulation of Ω̄, denoted T h, which must
satisfy certain properties. Some of these properties are obvious, such as the fact
that their union is Ω̄, while others may not be as obvious. For example, we must
add a condition which guarantees there are no “hanging nodes” as indicated in
Figure 6.1.

Definition 6.1. A subdivision T h of Ω into subsets {K1,K2, . . . ,KM} is an ad-
missible triangulation of Ω if it satisfies the following properties:

(i) Ω = ∪M
j=1 Kj ;

(ii) for each j, j = 1, 2, . . . ,M , the set Kj is closed and the interior of Kj is
non-empty;

(iii) for each Kj, j = 1, 2, . . . ,M , the boundary ∂Kj is Lipschitz continuous1 ;

(iv) if the intersection of two elements Kj and K` is nonempty then the intersection
must be a common vertex of the elements if the intersection is a single point;
otherwise the intersection must be an entire edge or face common to both K`

and Kj.

1A domain in Euclidean space with Lipschitz boundary is one whose boundary is “sufficiently
regular”. Formally, this means that the boundary can be written as, e.g., z = f(x, y) where f is
Lipschitz continuous. Recall that a function g is Lipschitz continuous if ‖g(p)− g(q)‖ ≤ C ‖p− q‖.
for all p, q.
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The penultimate condition in Definition 6.1 allows the application of Green’s for-
mula over each element.

The parameter h in the triangulation T h is related to the size of the geometric
elements and generally gives a measure of the coarseness or fineness of the mesh. It
is usually taken to be the diameter of the largest element, i.e.,for ~p, ~q ∈ Rn

hj = max
~p,~q∈Kj

(
n∑

i=1

|pi − qi|2
)1/2

, j = 1, 2, . . . ,M

and
h = max{h1, h2, . . . , hM} .

If we have a mesh where all the geometric elements are congruent, then the trian-
gulation is uniform if all the elements are the same size; otherwise the triangulation
is called nonuniform.

Clearly, we are interested in obtaining approximations on successively finer
triangulations. For this reason, it is important to look at properties of families of
triangulations. For example, we know that when we refine a mesh we can’t just
make the elements smaller in one portion of the domain but rather refine in some
uniform way. To define the concept of a shape regular triangulation we introduce the
parameter ρ = minj ρj where ρj denotes the diameter of the largest ball contained
in an element Kj . Then a triangulation is called shape regular provided there exists
a constant σ such that

σ =
h

ρ
. (6.1)

A family of triangulations is called shape regular (or just regular) provided σ is
uniform over the triangulations.

6.1.2 Formal definition of a finite element

From our previous examples in one and two dimensions, we saw that to completely
describe a finite element we had to give more information than simply the choice
of the geometric element and the degree of the polynomial. In fact, we need three
pieces of information – the geometric element, the specific polynomial space defined
over the geometric element, and the degrees of freedom needed to uniquely deter-
mine the polynomial. We follow Ciarlet’s approach for the formal definition of a
finite element.

Definition 6.2. A finite element in Rn is a triple (K,PK,ΘK) where

(i) K is a closed subset of Rn with nonempty interior and a Lipschitz continuous
boundary.

(ii) PK is a space of dimension s of real-valued functions over the set K;

(iii) ΘK is a set of s linearly independent functionals, θi, 1 ≤ i ≤ s, defined over
the space PK.
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It is assumed that every p ∈ PK is uniquely determined by the values of the s
functionals in ΘK.

The set K is the specific geometric element in an admissible triangulation.
The space PK usually consists of a polynomial defined over K; however, we allow
a broader definition so as to include some less common elements. In practice, we
take these functions to be our basis for the space PK. The set ΘK consists of the
degrees of freedom which uniquely determine an element of PK.

We can not arbitrarily choose a triple (K,PK,ΘK) to define a finite element
because p ∈ PK may not be uniquely determined by the degrees of freedom specified
by ΘK. An obvious example is the case where we don’t have enough degrees of
freedom specified; however, even if we have enough constraints they still may not
uniquely determine the polynomials. To demonstrate that the degrees of freedom
uniquely determine the polynomial several approaches can be taken. One approach
is to show that the system of equations which results from imposing the degrees of
freedom on an arbitary p ∈ PK has a unique solution. An alternate approach which
is to actually construct a basis for the space PK. We demonstrate both techniques
when we consider specific finite elements.

6.1.3 Properties of finite element spaces

We subdivide the domain into a finite number of individual elements Kj . On each
Kj the polynomial space PKj

is specified along with the degrees of freedom which
uniquely determine a polynomial p ∈ PKj on the element Kj . Then, an associated
finite element space is defined through a systematic process. In every instance, this
space is a finite-dimensional space of functions defined over Ω. An outline of the
process is given as follows.

First, one defines the local properties with respect to each set Kj of the finite
element space Sh. Restricted to each subset Kj ⊂ Ω, functions belonging to Sh

belong to PKj
. Furthermore, over each Kj , the functions in Sh are determined by

the specified degrees of freedom.
Second, one defines the global properties with respect to Ω of the finite element

space. In particular, the desired order of global continuity and differentiability for
Sh must be specified. For example, one could merely require that Sh ⊂ C0(Ω) or
it may be necessary to require that Sh ⊂ C1(Ω).

The global properties are dictated by the differential equation which is being
approximated. We have seen that for second order differential equations the un-
derlying global smoothness of the finite element space is Sh ⊂ H1(Ω) whereas for
fourth order problems we require Sh ⊂ H2(Ω). The question then arises how we
can guarantee these global properties. Clearly the choice of local properties of Sh

influences the global properties.
The following two propositions give conditions which guarantee the standard

global smoothness conditions on Sh. The significance of the first proposition is that
imposing the global smoothness Sh ⊂ H1(Ω) does not require the functions in Sh to
be continuously differentiable but merely continuous; this should be contrasted with
the smoothness requirements for the classical solution of a second order boundary
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value problem. Similarly, the requirement Sh ⊂ H2(Ω) only requires functions
vh ∈ Sh to be in C1(Ω). In the proposition, the additional assumption that PKj ⊂
H1(Kj) is automatically satisfied when PKj

is a polynomial space on Kj .

Proposition 6.3. Assume that T h is an admissible triangulation of Ω ⊂ Rn into
the subsets {Kj}. Let PKj

⊂ H1(Kj) for all j, let Sh ⊂ C0(Ω), and let vh|Kj
∈ PKj

for all vh ∈ Sh. Then Sh ⊂ H1(Ω). Moreover, if Sh
0 consists of those functions in

Sh which vanish on the boundary of Ω, then

Sh
0 ≡ {vh ∈ Sh : vh = 0 on ∂Ω} ⊂ H1

0 (Ω) .

Proof. Let vh ∈ Sh; we must show that vh ∈ H1(Ω), i.e.,that vh ∈ L2(Ω) and that
its first-order weak derivatives belong to L2(Ω). Since vh ∈ C0(Ω) we have that
vh ∈ L2(Ω). To demonstrate that its first-order weak derivatives are in L2(Ω), we
must find functions wh

i , i = 1, . . . , n, such that∫
Ω

vh ∂φ

∂xi
dΩ = −

∫
Ω

wh
i φ dΩ ∀ φ ∈ C∞

0 (Ω) .

For each i, we choose the function wh
i to be the function whose restriction on each

finite element Kj is the function ∂(vh|Kj
)/∂xi; this is possible since PKj

⊂ H1(Kj).
Since each finite element Kj has a Lipschitz-continuous boundary ∂Kj , we may
apply Green’s formula to obtain∫

Kj

∂

∂xi

(
vh|Kj

)
φdx = −

∫
Kj

(
vh|Kj

) ∂φ

∂xi
dx +

∫
∂Kj

vh|Kj
φ ni,Kj

dS ,

where ni,Kj is the ith component of the unit outer normal along the boundary of
Kj . Summing over all the elements, we obtain∫

Ω

wh
i φdΩ = −

∫
Ω

vh ∂φ

∂xi
dΩ +

∑
j

∫
∂Kj

vh|Kj φ ni,Kj dS .

We are done if we can show that the last term vanishes. The boundary of the
elements ∂Kj can be broken up into segments that are part of ∂Ω and segments
that are also part of the boundary of an adjacent subset, say K`. In the first case,
φ = 0 so that clearly those terms vanish. In the other case, the boundary integrals
from the two adjacent elements cancel since, by hypothesis, vh ∈ C0(Ω) and if two
elements Kj and K` are adjacent then on their common boundary, ni,Kj

= −ni,K`
.

The fact that Sh
0 ⊂ H1

0 (Ω) follows since ∂Ω is Lipschitz continuous and if
vh ∈ Sh

0 , vh = 0 on ∂Ω.

Proposition 6.4. Assume that T h is an admissible triangulation of Ω ⊂ Rn into
the subsets {Kj}. Let PKj

⊂ H2(Kj) for all j, let Sh ⊂ C1(Ω), and let vh|Kj
∈ PKj
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for all vh ∈ Sh. Then, Sh ⊂ H2(Ω). Moreover, if Sh
b consists of all functions that

vanish on the boundary, then

Sh
b ≡ {vh ∈ Sh : vh = 0 on ∂Ω} ⊂ H2(Ω) ∩H1

0 (Ω) (6.2)

and if Sh
0 consists of all functions that vanish on the boundary and whose derivative

in the direction of the unit outer normal also vanish on the boundary, then

Sh
0 ≡ {vh ∈ Sh : vh =

∂vh

∂~n
= 0 on ∂Ω} ⊂ H2

0 (Ω) . (6.3)

Proof. The proof is analogous to the proof of Proposition 6.3. The details are left
to the exercises.

6.2 Examples of finite elements on n-simplices
In R2 the common choices for a geometric element are a triangle and a quadrilateral.
If the domain is polygonal and not rectangular, then triangular elements are needed
to discretize. In R3 the commonly used elements are tetrahedra and cubes or bricks.
In a later chapter we consider isoparametric elements to handle domains with curved
boundaries. In this section we look at some of the more commonly used triangular
elements and their variants.

We have seen that to completely specify a finite element, it is not enough to
just choose a geometric element. We must also specify the degree of polynomial on
the element and the degrees of freedom which uniquely determine the polynomial.
To use the element we must also specify a basis which has small support. In the last
chapter we saw that for rectangular elements we could simply use tensor products
of the basis in one-dimension. For triangles or tetrahedra, this approach does not
work. In the following section we see that barycentric coordinates are a useful tool
in writing basis functions on a triangle or tetrahedron. In addition, in Section ??
we consider the approach of determining the basis functions on a reference element
and mapping them to the desired element.

In this section and the next we develop a taxonomy for identifying finite
elements whether in one, two or three dimensions. We identify the element by its
geometric shape which is called an n-simplex or an n−rectangle; by its type which
indicates the polynomial space, and by whether it is a Lagrange or Hermite element
which indicates the kind of degrees of freedom used.

6.2.1 n-simplices

The first class of finite elements we consider uses subsets K of Rn that are simplices,
e.g.,line segments in R1, triangles in R2 or tetrahedra in R3. Formally, we define an
n-simplex in the following way.
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Definition 6.5. Let zk, k = 1, . . . , n + 1, denote n + 1 points in Rn. The convex
hull of these n + 1 points, i.e.,the intersection of all convex sets 2 containing zk,
k = 1, . . . , n + 1, is called an n-simplex and the points zk, k = 1, . . . , n + 1, are
called the vertices of the n-simplex.

For example, for n = 2 we specify three points {z1, z2, z3} and a 2-simplex is
simply a triangle with vertices (zi1 , zi2), i = 1, 2, 3, provided the three points are not
collinear. To enforce the noncollinearity of the points, we require that the matrix

 z11 z21 z31

z12 z22 z32

1 1 1


is nonsingular. Note that the magnitude of the determinant of this matrix is just
the area of the parallelogram formed by the vectors z2 − z1 and z3 − z1. For n = 3,
we specify four points {z1, z2, z3, z4} and a 3-simplex is just a tetrahedron with
vertices zi, i = 1, . . . , 4, provided the four points are not coplanar, i.e.,provided the
matrix 

z11 z21 z31 z41

z12 z22 z32 z42

z13 z23 z33 z43

1 1 1 1


is nonsingular. Note that the magnitude of the determinant of this matrix is the
volume of the parallelepiped formed by the vectors zi − z1, i = 2, 3, 4.

For an integer j such that 1 < j ≤ n, any j-simplex whose vertices are a subset
of the (n + 1) vertices of a given n-simplex is called a j-face of the n-simplex. An
(n-1)-face is simply called a face and any 1-face is called an edge. In R2, triangles
have edges, i.e.,1-faces. In R3, tetrahedra have faces (2-faces) and edges (1-faces.)

6.2.2 Barycentric coordinates

A geometric concept which is useful in easily writing polynomial basis functions
on an n-simplex is the idea of barycentric coordinates which were first defined by
Möbius in 1827 (Coexeter 1969, p 27; Fauvel 1993). We know that if we are given a
frame in Rn, then we can define a local coordinate system with respect to the frame;
e.g.,Cartesian coordinates. If we are given a set of n + 1 points in Rn then we can
also define a local coordinate system with respect to these points; such coordinate
systems are called barycentric coordinates.

Suppose we are given a set of n+1 points zk ∈ Rn, k = 1, . . . , n+1, such that

2Recall that a set S is convex if given any two points x and y in S then the line segment joining
x and y lies entirely in S.
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the determinant of the matrix
z11 z21 · · · zn+11

z12 z22 · · · zn+12

...
...

...
...

z1n
z2n

· · · zn+1n

1 1 · · · 1

 (6.4)

is nonzero. As we have seen, this is just the condition which guarantees in R2 that
the points are not collinear and in R3 that the points are not coplanar. Consider
the set of all linear combinations of these points of the form

q = λ1z1 + λ2z2 + · · ·λn+1zn+1

where
n+1∑
j=1

λj = 1 .

Then the coordinates (λ1, λ2, . . . , λn+1) are called the barycentric coordinates of
points of the space with respect to the given points zk, k = 1, . . . , n + 1.

As an example of barycentric coordinates consider three specific points in R2,
z1 = (0, 0), z2 = (1, 0) and z3 = (1, 1); the points form a triangle. Any linear
combination of these three points such that λ1 + λ2 + λ3 = 1 gives the barycentric
coordinates (with respect to z1, z2, z3) of a point in R2. For example, the barycentric
coordinates ( 1

2 , 1
4 , 1

4 ) is the point in space with Cartesian coordinates ( 1
2 , 1

4 ) since

1
2
(0, 0) +

1
4
(1, 0) +

1
4
(1, 1) = (

1
2
,
1
4
) .

Similarly, the barycentric coordinates (1,−1, 1) is the point in space with Cartesian
coordinates (0, 1) since

1 · (0, 0) + (−1) · (1, 0) + 1 · (1, 1) = (0, 1) .

We notice that the point (1
2 , 1

4 ) with barycentric coordinates ( 1
2 , 1

4 , 1
4 ) lies within the

triangle formed by the given zi, i = 1, 2, 3 whereas the point (0, 1) with barycentric
coordinates (1,−1, 1) is not inside the triangle. In general, one can demonstrate
that if 0 ≤ λ1, λ2, λ3 ≤ 1 then the point q = λ1z1 + λ2z2 + λ3z3 lies inside the
triangle. If any λk, k = 1, 2, 3, is less than zero or greater than one, then the point
q lies outside the triangle. If, for example, λ1 = 0, then the point q lies on the edge
of the triangle through z2 and z3. The justifications of these statements are left to
the exercises.

Suppose now we are given a point (x1, x2, . . . , xn), in a Cartesian coordinate
system or some other frame and want to determine the barycentric coordinates of
the point with respect to a given set of n + 1 points. The barycentric coordinates
(λ1, λ2, . . . , λn+1) of the point with respect to the prescribed points n+1 points z1,
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z2, . . . , zn+1 are found by solving the system

n+1∑
j=1

zji
λj = xi i = 1, . . . , n

n+1∑
j=1

λj = 1 .

(6.5)

Here zji denotes the ith component of the point zj . The coefficient matrix of (6.5)
is just the matrix in (6.4) and hence we are guaranteed a unique solution. If we
solve this system for the barycentric coordinates, then we see that the λj(x), j =
1, · · · , n+1, are linear functions of the coordinates of the point x = (x1, x2, . . . , xn) ∈
Rn, i.e.,

λj =
n∑

k=1

ζj,kxk + ζj,n+1 j = 1, . . . , n + 1 , (6.6)

where ζi,j denotes the i, j entry of the inverse of the matrix given in (6.4). For
example, the barycentric coordinates with respect to the points z1 = (0, 0), z2 =
(1, 0) and z3 = (1, 1) for the Cartesian point ( 3

4 , 1
2 ) are found by solving the system 0 1 1

0 0 1
1 1 1

λ1

λ2

λ2

 =

 3
4
1
2
1


to get ( 1

4 , 1
4 , 1

2 ). We can write the barycentric coordinates asλ1

λ2

λ2

 =

−1 0 1
1 −1 0
0 1 0

 3
4
1
2
1


or in the form of (6.6) as λ1 = (−1)x1 + (0)x2 + 1, λ2 = (1)x1 + (−1)x2 + 0, etc.

We now want to see how barycentric coordinates can assist us in writing a basis
for a polynomial space defined on a triangle or tetrahedron where we require that
the basis is a nodal basis, i.e.,it has the property that it is one at one vertex and is
zero at the other vertices. Consider the example of a 2-simplex, i.e.,a triangle, with
vertices {z1, z2, z3}. Then, the barycentric coordinates of a point x = (x1, x2) ∈ R2

are determined by solving the linear system

z11λ1 + z21λ2 + z31λ3 = x1

z12λ1 + z22λ2 + z32λ3 = x2

λ1 + λ2 + λ3 = 1 .

It is easy to see that if x is one of the vertices of the 2-simplex, say x = zk, , then
λj(zk) = δjk where δjk = 0 if j 6= k and is equal to one if j = k. For example, if
x = z1 then the barycentric coordinates of x are (1, 0, 0). Note also that λ1(x) is
zero along the edge formed by z2 and z3 since it is a linear function which is zero
at z2 and z3; thus the side of the triangle formed by the vertices z2 and z3 can be
described by the equation λ1 = 0.
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Figure 6.2. n-simplicies of type(1)
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Summarizing, we have that the barycentric coordinates (λ1, λ2, λ3) are linear
functions of x (from (6.6) ) which take on the values (1, 0, 0) at x = z1, the values
(0, 1, 0) at x = z2 and (0, 0, 1) at x = z3. Consequently, λ1 is a linear function of x
which is one at the vertex z1 and is zero at the other two vertices z2 and z3; similar
conditions hold for λ2 and λ3. Hence these barycentric coordinates can serve as
basis functions for the space of linear polynomials over the triangle formed by the
points z1, z2, and z3. When we consider quadratic or higher order basis functions
we see that we can simply take appropriate products of the λj , j = 1, . . . , n + 1.

6.2.3 Lagrange finite elements on n-simplices

When all the specified degrees of freedom are function values, then the finite element
is referred to as a Lagrange finite element. Lagrange finite elements on n-simplices
lead to finite element spaces that are subspaces of C0(Ω) and hence by Proposi-
tion 6.3 they are subspaces of H1(Ω). Such finite elements are often referred to
as “C0-elements”. In the taxonomy of finite elements such elements are called n-
simplices of type (`) where the qualifier “type (`)” refers to the degree of polynomial
specified on the n-simplex.

Lagrange finite element on an n-simplices of type (1)

We first consider an n-simplex of type (1); i.e.,we are using a linear polynomial
defined over an interval in R1, a triangle in R2 or a tetrahedron in R3. These are
illustrated in Figure 6.2. We choose P(K) = P1(K) to be linear polynomials defined
over K. Since the dim(P1(K)) = 3 in R2 and dim(P1(K)) = 4 in R3, we expect a
linear function on K to be uniquely determined by its values at the n + 1 nodes of
the n-simplex. This can be proved in several ways; in the following proposition we
prove the result using a linear algebra argument and then following the proof we
outline an alternate argument.
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Proposition 6.6. Let K be an n-simplex in Rn, n = 1, 2, 3, with vertices z1, . . . , zn+1.
A polynomial p(x) ∈ P1(K) is uniquely determined by its values at the vertices.

Proof. We present a proof for the case n = 2 and leave the case n = 3 to the
exercises; we have already addressed the case of an interval in R1. Let p = c0 +
c1x1 + c2x2 where c0, c1, c2 are constants and let ηi, i = 1, 2, 3 be the prescribed
values of p(x) at the vertices. Then we must show that there is a unique function
p(x) ∈ P1(K) such that p(zi) = ηi, i = 1, 2, 3; i.e.,that the linear system

ηi = c0 + c1zi1 + c2zi2 for i = 1, 2, 3

has a unique solution. Note that the requirement that this coefficient matrix be
nonsingular is equivalent to the condition which guaranteed that the vertices were
not collinear in R2.

Alternately, we could have shown that any polynomial p(x) ∈ P1(K) can
be written in terms of its values ηi at the vertices. Recall that the barycentric
coordinates satisfy λi(zk) = δik for 1 ≤ i, k ≤ 3 so that in R2 the polynomial

η1λ1(x) + η2λ2(x) + η3λ3(x)

has the desired property; i.e.,when we evaluate it at the vertices we get the nodal
values. Thus any linear polynomial on an n-simplex with vertices {z1, . . . , zn+1}
can be written as

p(x) =
n+1∑
i=1

p(zi)λi(x) .

Summarizing, we define the 2-simplex of type(1) to be the set K where K is a
triangle with vertices zi, i = 1, 2, 3 together with the space P1(K) and the degrees
of freedom of the finite element consisting of the values at the three vertices. A 3-
simplex of type(1) is a setK, whereK is a tetrahedron with vertices zi, i = 1, 2, . . . , 4,
together with the space P1(K) and the degrees of freedom of the finite element being
the values at the four vertices.

Lagrange finite element on n-simplices of type (2)

Results for n-simplices of type ` for ` > 1 follow in an analogous fashion. In R2

we know that the dimension of P2(K) is six so we must specify a second degree
polynomial at six points to uniquely determine it; the dimension of P3(K) is ten
so that a third degree polynomial must be specified at ten points on the triangle.
The most commonly chosen points are the obvious ones. These points form the `th

order principal lattice of an n-simplex K given by

L(`, n) =
{

x =
n+1∑
k=1

σk zk :
n+1∑
k=1

σk = 1,

σk ∈
{
0,

1
`
,
2
`
, · · · , `− 1

`
, 1
}
, 1 ≤ k ≤ n + 1

} (6.7)
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Figure 6.3. `th order lattice for a 2-simplex
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where z1, z2, . . . , zn+1 are the vertices of K. It is easy to demonstrate that L(`, n)
contains

(
`+n

`

)
points. For example, in R2 for ` = 1 σk ∈ {0, 1} so that the points

in L(1, 2) are {z1, z2, z3}, i.e.,the vertices of the triangle. For ` = 2, σk ∈ {0, 1
2 , 1}

so that

L(2, 2) =
{

z1, z2, z3,
z1 + z2

2
,
z1 + z3

2
,
z2 + z3

2

}
,

i.e.,the verticies of the triangle and the midpoints of the sides. The `th order princi-
pal lattice for a 2-simplex for ` = 1, 2, 3, 4 is illustrated in Figure 6.3. The following
proposition states that an `th order polynomial on an n-simplex is uniquely deter-
mined by its values at the points in the corresponding principal lattice.

Proposition 6.7. Let K be an n-simplex in Rn with vertices zk, 1 ≤ k ≤ n + 1.
Then for a given integer ` ≥ 1, any polynomial p ∈ P` is uniquely determined by its
value at the points in L(`, n) defined by (6.7).

Proof. The proof is left to the exercies.

We now know that any quadratic polynomial on an n-simplex is uniquely
determined by its values at the nodes and the midpoints of the edges of the n-
simplex. If we can write any p ∈ P2(K) in terms of the specified values at these
nodes then we will have a basis for the space. For example, for a 2-simplex we want
to write

p(x) =
3∑

i=1

p(zi)qi(x) + p(z12)q12(x) + p(z13)q13(x) + p(z23)q23(x) ,

where qi, i = 1, 2, 3, and q12, q13, and q23 are quadratic functions on K and zij

represents the midpoint of the edge joining the nodes zi and zj . We use products
of the linear barycentric coordinates to write these quadratic functions which serve
as our basis functions with small support. First, consider the function q1 which is
a quadratic function which has the properties q1(z1) = 1 and q1(x) = 0 at the five
points z2, z3, z12, z13, and z23. Recall that λ1(x) is a linear function such that
λ1(z1) = 1, λ1(z2) = λ1(z3) = 0, so in barycentric coordinates the equation of the
line through z2 and z3 is just λ1 = 0; similarly, the equation through the midpoints
z12 and z13 is λ1 = 1/2. Since the point z23 lies on the line λ1 = 0 we have that
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the quadratic function

λ1(x)
(

λ1(x)− 1
2

)
vanishes at the five points z2, z3, z12, z13, and z23. Hence we choose q1(x) =
Cλ1(x)

(
λ1(x)− 1

2

)
and normalize so that q1(z1) = 1. Since λ1(z1) = 1 we set

C = 2. In a similar manner qi = λi(x)(2λi(x)−1), i = 2, 3. Now we must construct
a quadratic function q12 which has the properties that q12(z12) = 1 and q12(x) = 0
at the vertices and the remaining midpoints. In this case the equation of the line
through z1 and z3 is λ2 = 0 and the line through z2 and z3 is λ1 = 0. Thus
the quadratic λ1(x)λ2(x) has the property that it is zero at the verticies and the
midpoints z23, z13 and takes on the value one-fourth at z12; consequently we take
q12(x) = 4λ1(x)λ2(x). In general, qij(x) = 4λi(x)λj(x). Combining these results
we have that for p ∈ P2(K) where K is a 2-simplex

p =
3∑

i=1

p(zi)λi(2λi − 1) + 4p(z12)λ1λ2 + 4p(z13)λ1λ3 + 4p(z23)λ2λ3 .,

For a n-simplex

p =
n+1∑
i=1

p(zi)λi(2λi − 1) +
n+1∑
i,k=1
i<j

4p(zik)λiλk ∀ p ∈ P2(K) . (6.8)

Recall that to determine the barycentric coordinates with respect to the points zi,
i = 1, . . . , n + 1 we had to solve an (n + 1)× (n + 1) linear system of equations.

We now define the n-simplex of type (2) to be an n-simplex K together with the
space P2(K) and the degrees of freedom consisting of the values at the vertices and
the midpoints of the edges. Properties of the n-simplex of type(2) are summarized
in Table 6.1

The cases ` ≥ 3 can be handled in a similar manner. Their properties are
summarized in Table 6.1. See the exercises for details.

6.2.4 Hermite 2-simplices

In our examples so far in this chapter we have considered Lagrange finite elements
whose degrees of freedom were function values at a prescribed set of points and the
resulting finite element spaces were subspaces of H1(Ω). In the examples in this
section, we consider finite elements in which some of the degrees of freedom are
partial derivatives, or more generally, directional derivatives. We denote the partial
derivative of a function p(x) in the direction of the line segment through two points
a, b ∈ Rn and evaluated at a point x = c ∈ Rn by D[a,b]p(c). Of course, knowledge
of the directional derivatives at a point is equivalent to the knowledge of the partial
derivatives.

Hermite 2-simplex of type(3)

Recall that in R1 we used the space of cubic Hermite polynomials to construct a
subspace of H2(Ω). However, we see that in R2 (and also in R3) using Hermite
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cubics generates a finite element space which is only a subspace of C0(Ω) and thus
only a subspace of H1(Ω) by Proposition 6.3. In the next section we consider an
example of a C1(Ω) triangular element in R2.

To uniquely determine a cubic polynomial on a triangle, we must specify ten
conditions since dim P3 = 10. The following result gives ten degrees of freedom
which are combinations of function and derivative values that uniquely determine
a polynomial p ∈ P3.

Proposition 6.8. Let K be an 2-simplex with vertices zi, 1 ≤ i ≤ 3, and let
z123 = 1

3 (z1 + z2 + z3). Then any polynomial p(x) in the space P3(K) is uniquely
determined by its value at the vertices, p(zi), i = 1, 2, 3 and the value of its two first
partial derivatives at the vertices zj, 1 ≤ j ≤ 3, and its value at the point z123.

Proof. First note we are specifying 10 degrees of freedom and dim(P3) = 10 in
R2. To show uniqueness we demonstrate that if p ∈ P3(K) and ξi, ηij , ζ are given
values then the 10× 10 system

p(zi) = ξi for i = 1, 2, 3
∂p

∂xj
(zi) = ηij for i = 1, 2, 3 and j = 1, 2

p(z123) = ζ

has a unique solution. An easy way to show this is to set all the given values, ξi,
ηij and ζ, to zero and prove that p(x) must be identically zero.

If we show that p ∈ P3(K) is zero along each edge of the triangle, then we know
that p = αλ1λ2λ3 for some constant α where λj are the barycentric coordinates
defined by (6.5). Then, since p(z123) = 0 we have that α = 0 and thus p(x) must
be identically zero in K. To demonstrate that p ∈ P3(K) is zero along each edge
of the triangle we note that along the line containing the vertices zi and zj p is
a cubic polynomial of one variable and hence we need four conditions to uniquely
determine it. But p(zi) = p(zj) = 0 and that D[zi,zj ]p(zi) = D[zi,zj ]p(zj) = 0 and
thus p is zero on each edge [zi, zj ].

We can now define the finite element which is called the Hermite 2-simplex of
type(3) where the partial derivatives at each vertex are degrees of freedom as well
as the values at the vertices and the barycenter. Since knowledge of the directional
derivatives at each vertex is equivalent to the knowledge of the partial derivatives
at each vertex, we can specify either as degrees of freedom. The properties of
the Hermite 2-simplex of type (3) are summarized in Table 6.1. Note that in the
illustration of the element in the table we indicate the partial derivative degrees of
freedom at zi by a circle centered at zi.

We now associate a finite element space Sh with a subdivision of Ω ⊂ R2 into
Hermite 2-simplices of type(3). Then a function vh ∈ Sh implies that the restriction
vh|Kj is in the space PKj = P3(Kj) for each Kj and is defined by its values at all the
vertices of the subdivison, its values at the centers of gravity of all the triangles, and
the values of its two first partial derivatives at all the vertices of the subdivision. If
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we assume that we have an admissible triangulation of our domain into 2-simplices
then we are able to obtain the following result.

Lemma 6.9. Let Sh be the finite element space associated with Hermite 2-simplices
of type(3). Then the inclusion

Sh ⊂ C0(Ω) ∩H1(Ω) (6.9)

holds.

Proof. Because of Proposition 6.3 it suffices to show that Sh ⊂ C0(Ω). Along any
common side of two adjacent triangles, there is a unique polynomial of degree three
in one variable which takes on the prescribed values and prescribed first derviatives
at the endpoints of the side yielding a total of four conditions and thus uniquely
determines a cubic in one variable.

It is tempting to think that the inclusion Sh ⊂ C1(Ω) holds for Hermite n-
simplices of type(3); however, this is not the case. Although the tangential deriva-
tive along an edge is continuous from element to element, the normal derivative is
not.

Finally, we should produce a basis set consisting of functions of minimial
support. As before, we can use the barycentric coordinates to write a polynomial
p ∈ P3 in terms of its values at the vertices and the barycenter, and the six values
of its directional derivatives at the vertices; ultimately they are used to construct
a basis for our corresponding finite element space. In particular, we want to write
any p ∈ P3 as a linear combination of appropriate cubic polynomials times the value
of p and its partial derivatives at the vertices, zi, i = 1, 2, 3, and its value at the
barycenter z123. For example, the cubic basis function at the vertex z1 should have
the property that it is one at z1, zero at z2, z3, z123 and, in addition, its partial
derivatives at nodes zi, i = 1, 2, 3, should be zero. Specifically, for all p ∈ P3(K),
K ⊂ R2

p(x) =
3∑

i=1

p(zi)
(
−2λ3

i + 3λ2
i − 7λ1λ2λ3

)
+27p(z123)λ1λ2λ3 +

3∑
i=1

3∑
j=1
j 6=i

D[zi,zj ]p(zi)λiλj(2λi + λj − 1) .

(6.10)

It is easy to see that when we evaluate p(x) given by (6.10) at zi, 1 ≤ i ≤ 3 and
at z123 we get the corresponding function values p(zi), 1 ≤ i ≤ 3, and p(z123).
It is a little more difficult to show that when we evaluate D[zi,zj ]p(x) at zi then
the terms multiplying p(zi) and p(z123) are zero and the polynomial multiplying
D[zi,zj ]p(zi) is one. The proof of this is left to the exercises but basically we must
show that D[zi,zk](λiλjλk)(zi) = 0, when we differentiate the term −2λ3

i + 3λ2
i the

terms cancel, and a relationship of the form D[zi,zk]λj = δjk − λj(zi), 1 ≤ k ≤ 3,
k 6= i then if k = j 6= i we get the desired result.
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6.2.5 C1 elements on n-simplices

For fourth order differential equations, the inclusion Sh ⊂ H2(Ω) is needed; how-
ever, none of the examples presented so far satisfy this condition. Recall that the
difficulty in the Hermite 2-simplex was the fact that the normal derivatives did not
agree along an edge common to two adjacent elements.

The Argyris triangle

The first C1 element which we consider is the Argyris triangle which uses a complete
polynomial of degree five. The degrees of freedom consist of function values and
first and second derivatives at the vertices in addition to normal derivatives at the
midpoints of the sides. It can be shown that in R2 any p(x) ∈ P5 is uniquely
determined by the 21 degrees of freedom given by

ΘK = {Dαp(zi), |α| ≤ 2, 1 ≤ i ≤ 3,
∂

∂ni
p(zjk), 1 ≤ i ≤ 3} ,

where ni denotes the normal along the edge of the triangle formed by zj , zk, j 6=
k 6= i and zjk denotes the midpoint of that edge. Note that we have used multi-
index notation to denote the derivatives to simplify the statement of the degrees
of freedom. The Argyris 21-degree of freedom triangle is illustrated in Table 6.1
where we use | to indicate normal derivatives and a circle to indicate derivatives at
vertices.

A finite element space is constructed in the usual manner. Since we require
the normal derivative at the midpoint of each edge to be a degree of freedom, we
expect the normal derivative as well as the tangential derivative along an edge to
be continuous. The following result demonstrates that the finite element space
generated by using the Argyris triangle is a subspace of H2(Ω) and thus can be
used to approximate fourth order problems.

Proposition 6.10. Let Sh be the finite element space associated with the Argyris
triangle. Then the inclusion

Sh ⊂ C1(Ω) ∩H2(Ω)

holds.

Proof. By Proposition 6.4, it suffices to show that Sh ⊂ C1(Ω). Let Ki and Kj be
two adjacent triangles with a common side [bk, b`] where bk, b` denote vertices of
the triangulation and let vh ∈ Sh. Considered as functions of an abscissa t along
[bk, b`] the functions vh|Ki and vh|Kj are polynomials of degreee five in the variable
t. Call these polynomials q1 and q2. Since, by the definition of the space Sh, we
have

q(bk) = q′(bk) = q′′(bk) = q(b`) = q′(b`) = q′′(b`) = 0

where q = q1 − q2; it then follows that q = 0 and hence the inclusion Sh ⊂ C0(Ω)
holds. Likewise, call r1 and r2, the restrictions to the side [bk, b`] of the functions
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∂

∂~n
vh|Ki

and
∂

∂~n
vh|Kj

. Then r1 and r2 are polynomials of degree four in the variable

t and again, from the definition of Sh, we have the five conditions

r(bk) = r′(bk) = r(bk`) = r(b2) = r′(b`) = 0

where r = r1 − r2 and bk` is the midpoint of the side [bk, b`]. Therefore, r = 0. We
have thus shown the continuity of the normal derivative. Since q = 0 along [bk, b`],
q′ = 0 along [bk, b`] also. Therefore, the first derivatives are also continuous on Ω.

One difficulty with the Argyris triangle is that there are 21 degrees of freedom.
A modification to the Argyris triangle is the Bell element which suppresses the
values of the normal slopes at the nodes at the three midpoint sides, reducing the
degrees of freedom to 18. Functions in the finite element space associated with the
Bell element are in a space PB where P4 ⊂ PB ⊂ P5. Here PB denotes the space of
all fifth degree polynomials whose normal derivatives along each side of the triangle
are third degree polynomials. Note that, in general, in the Argyris triangle the
normal derivative of p ∈ P5 along each edge is a fourth degree polynomial. In this
element the degrees of freedom are

ΘK = {Dαp(zi), |α| ≤ 2, 1 ≤ i ≤ 3} .

The determination of the basis functions for both the Argyris and Bell triangles
is somewhat involved. The reader is referred to [?] for details.

Hsieh-Clough-Toucher triangles

In an effort to create an element which generates a finite element space that is
a subspace of H2(Ω) but which has fewer degrees of freedom, researchers have
developed composite type elements commonly called macro elements. In the Hsieh-
Clough-Tocher triangle, the triangle is first decomposed into three triangles by
connecting the barycenter of the given triangle with each of its vertices. On each
of the subtriangles a cubic polynomial is constructed so that the resulting function
is C1 on the original triangle. There are a total of 12 degrees of freedom which
consist of the function values and first partial derivatives at the three vertices of the
original triangle in addition to the normal derivative at the midpoints of the sides
of the original triangle.

There is also a reduced Hsieh-Clough-Toucher triangle where the degrees of
freedom have been reduced to nine. Once again, the construction of the basis
functions are involved; the reader is referred to [?, ?] for details.

6.3 Examples of finite elements on n-rectangles
In this section we assume that Ω ⊂ Rn is a region that can be subdivided into
rectangular elements. Many of the results are analogous to those when we subdivide
a polyhedral region into n-simplices.
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Table 6.1. Triangular elements

degrees of element P`(K) dimPK
freedom
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Bell triangle PB ⊂ P5(K) 18

We let Q`, for positive integers `, be the space of all polynomials of degree
less than or equal to ` with respect to each of the n variables x1, x2, . . . , xn. For
example, if n = 2 and ` = 1 Q1 =span{1, x1, x2, x1x2}. We note that we always
have the inclusion P` ⊂ Q` and in general,

dim(Q`) = (` + 1)n . (6.11)

We formally define an n-rectangle in Rn as a product of compact intervals with
non-empty interiors.

Definition 6.11. An n-rectangle, K in Rn is defined by

K =
n∏

i=1

[ai, bi] = {~x = (x1, x2, . . . , xn) : ai ≤ xi ≤ bi, 1 ≤ i ≤ n} (6.12)

for finite ai, bi for each i = 1, . . . , n.
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6.3.1 n-rectangles of type(`)

As in the case of n-simplices, once we have chosen the degree of Q` then we must
specify points for the degrees of freedom, i.e.,points where if we prescribe a polyno-
mial of degree ` in the n-rectangle then the polynomial is uniquely determined. An
easy way to specify the degrees of freedom is to consider a particular n-rectangle,
namely the unit hypercube [0, 1]n and specify the points on it. Then a linear map-
ping gives the points on an arbitrary n-rectangle. The following proposition gives
a set of points which guarantees that a polynomial in Q` is uniquely determined by
its values on the set.

Proposition 6.12. A polynomial p ∈ Q` is uniquely determined by its values on
the set

M(`, n) =
{

x =
(

i1
`

,
i2
`

, · · · , in
`

)
∈ Rn : ij ∈ {0, 1, · · · , `}, 1 ≤ j ≤ n

}
. (6.13)

Proof. See exercises.

For example, in R2

M(1, 2) = {(0, 0), (0, 1), (1, 0), (1, 1)}

and in R3

M(1, 3) = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)} .

Thus a 2-rectangle of type(1) consists of a rectangular element K, the space of
linear polynomials on K, Q1(K), whose dimension is 4 and whose degrees of freedom
consist of the values at the four vertices. Similarly a 3-rectangle of type(1) consists
of a rectangular element K, the linear polynomials on K, Q1(K), whose dimension
is 8 and whose degrees of freedom consist of the values at the eight vertices.

For n-rectangles of type(2)

M(2, 2) = {(0, 0), (0, 1), (1, 0), (1, 1), (0,
1
2
), (

1
2
, 0), (

1
2
,
1
2
), (1,

1
2
), (

1
2
, 1)}

Thus a 2-rectangle of type(2) consists of a rectangular element K, the space of
quadratic polynomials on K, Q2(K), whose dimension is 9 and whose degrees of
freedom consist of the values at the four vertices, the midpoints of the edges and
the barycenter of the rectangle. Similar properties hold for a 3-rectangle of type(2),
2- and 3-rectangles of type(3).

6.3.2 Example of a rectangular C1 element

For fourth order problems, the inclusion Sh ⊂ H2(Ω) is needed. We can easily
define a rectangular element in R2 for which Sh ⊂ H2(Ω) holds. The element is
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Figure 6.4. Example of an affine transformation in a 2-simplex

defined by prescribing p(zi),
∂p

∂x1
(zi),

∂p

∂x2
(zi),

∂2

∂x1∂x2
p(zi) at the four vertices

of the rectangular element. The resulting polynomial p is in the space Q3 which
has dimension 16. The element is referred to as the Bogner-Fox-Schmit rectangle.
The proof that the finite element space constructed in the usual manner using this
element is a subspace of C1(Ω) is left to the exercises.

6.4 Affine families of finite elements
In this section we want to demonstrate that for many choices of finite elements,
instead of specifying a finite element discretization by the data K, PK, and ΘK, we
can prescribe one reference finite element and the affine or linear function which
maps the vertices of the reference element into the vertices of the geometric element
in the admissible triangulation of the domain. We begin discussion of affine families
of finite elements with an example.

We first consider the specific situation depicted in Figure 6.4 where we wish
to find an affine mapping which maps the vertices of triangle K̂ into the vertices
of triangle K; i.e.,we seek FK such that FK(ẑi) = zi, i = 1, 2, 3 where ẑi are the
vertices of triangle K̂ and zi the vertices of triangle K. In this case, FK(x̂) can be
explicitly written as(

x1

x2

)
= FK(x̂1, x̂2) =

1
2

(
3 1

−1 1

)(
x̂1

x̂2

)
+

1
2

(
1
1

)
.

Clearly FK maps the vertices in the reference triangle K̂ into the corresponding
vertices in triangle K. Moreover, since the mapping is linear, FK( 1

2 , 0) = ( 5
4 , 1

4 ),
FK(0, 1

2 ) = ( 3
4 , 3

4 ), and FK( 1
2 , 1

2 ) = ( 3
2 , 1

2 ); i.e.,the midpoints are preserved under
the transformation. In addition, the center of mass is preserved as well other points
which we may use as degrees of freedom.

Suppose now that we choose PK = P1(K) and PK̂ = P1(K̂) and we want to
compare a basis function φ̂i ∈ P1(K̂) evaluated at a point x̂ with the corresponding
basis function in PK evaluated at x = FK(x̂). For example, the basis function
φ̂3 defined on K̂ which is associated with node z3 = (0, 1) is φ̂3 = x̂2 and the
basis function φ3 defined on K which is associated with node z3 = (1, 1) is φ3 =
1
2x1 + 3

2x2 − 1. If we evaluate each basis function at, e.g.,the barycenter we get
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the same value, i.e.,φ̂3( 1
3 , 1

3 ) = 1
3 and φ3( 7

6 , 1
2 ) = 1

3 . This is because ( 7
6 , 1

2 ) =
FK( 1

3 , 1
3 ). Consequently, to evaluate basis functions on K at quadrature points on

K, we simply evaluate the corresponding basis function on the reference triangle
at the corresponding quadrature point. However, this is not true when we deal
with derivatives of basis functions as when we construct a stiffness matrix. For
example, ∂φ̂3

∂x̂1
= 0 and ∂φ3

∂x1
= 1

2 . We shouldn’t expect this to hold because we are
differentiating with respect to different variables so clearly we must consider the
transformation. The Jacobian of our transformation is given by

J =
( ∂x1

∂x̂1

∂x1
∂x̂2

∂x2
∂x̂1

∂x2
∂x̂2

)
=
(

3
2

1
2

− 1
2

1
2

)
.

By the chain rule we have

∂φ

∂x̂i
=

∂φ

∂x1

∂x1

∂x̂i
+

∂φ

∂x2

∂x2

∂x̂i

so that ( ∂φ
∂x̂1
∂φ
∂x̂2

)
=
( ∂x1

∂x̂1

∂x2
∂x̂1

∂x1
∂x̂2

∂x2
∂x̂2

)( ∂φ
∂x1
∂φ
∂x2

)
= JT

( ∂φ
∂x1
∂φ
∂x2

)
.

Thus ( ∂φ
∂x1
∂φ
∂x2

)
= J−T

( ∂φ
∂x̂1
∂φ
∂x̂2

)
.

For our problem this just becomes( ∂φ
∂x1
∂φ
∂x2

)
=
(

1
2 − 1

2
1
2

3
2

)( ∂φ
∂x̂1
∂φ
∂x̂2

)
.

so that with φ̂3 = x̂2 we have

∂φ3

∂x1
=

1
2

∂φ̂3

∂x̂1
− 1

2
∂φ̂3

∂x̂2
= 0− 1

2
=

1
2

∂φ3

∂x2
=

1
2

∂φ̂3

∂x̂1
+

3
2

∂φ̂3

∂x̂2
= 0 +

3
2

=
3
2

which agrees with what we would get if we differentiated φ3(x1, x2) = 1
2x1+ 3

2x2−1.
In summary, we have seen that if we have a reference element and an affine

function which maps the reference element into a particular K of our admissible
triangulation, then all of the calculations can be performed on the reference element.
Moreover, using a reference element and the linear map is a simple way to describe
a family of finite elements.

Consider the case where we are given a family (K,PK,ΘK) of triangles of
type(2) and our goal is to describe this family as simply as possible. Let K̂ be a
reference triangle with vertices ẑi and edge midpoints ẑij = (ẑi + ẑj)/2, 1 ≤ i < j ≤
3, and let

ΘbK = {p̂(ẑi), 1 ≤ i ≤ 3; p̂(ẑij), 1 ≤ i < j ≤ 3}
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so that the element (K̂, PbK,ΘbK) with PbK = P2(K̂) is also a triangle of type(2).
Given any finite element K in the family, there exists a unique invertible affine
mapping

FK : x̂ ∈ R2 → FK(x̂) = BKx̂ + bK

such that
FK(ẑi) = zi, 1 ≤ i ≤ 3 ;

that is, BK is an invertible 2 × 2 matrix and bK a vector in R2. In the previous
example we constructed a specific FK of this form. Then it automatically follows
that

FK(ẑij) = zij 1 ≤ i < j ≤ 3

since the property of a point being the midpoint of a line segment is preserved under
an affine mapping. Likewise the points such as zijk = 1

3 (zi+zj+zk), ziij = 2
3zi+ 1

3zj ,
etc. keep their geometrical definitions through affine transformations. Once we have
established the relation x̂ ∈ K̂ → x = FK(x̂) ∈ K, between the points of the sets K
and K̂, it is natural to associate the spaces

P∗K = {p : K → R1; p = p̂[F−1
K (x)], p̂ ∈ PbK}

with the space PK. Then it follows that

P∗K = PK = P2(K)

since the mapping FK is affine.
In other words, rather than prescribing the family by the data K,PK,ΘK, one

cas prescribe one reference finite element (K̂,PbK,ΘbK) and the affine mappings FK.
Then for our example of a 2-simplex of type(2), a typical element in the family
(K,PK,ΘK) is such that

K = FK(K̂)
PK = {p : K → R1 : p = p̂[F−1

K (x)], p̂ ∈ PbK}
ΘK = {p[FK(ẑi)], 1 ≤ i ≤ 3; p[FK(ẑij)], 1 ≤ i < j ≤ 3} .

With this example in mind, we can now give the general definition that two
finite elements (K̂,PbK,ΘbK) and (K,PK,ΘK), with degrees of freedom of the form
(??), are said to be affine-equivalent if there exists an invertile affine mapping

F : x̂ ∈ Rn → F (x̂) = Bx̂ + b ∈ Rn

such that the following relations hold:

K = F (K̂) (6.14)
PK = {p : K → R1; p = p̂[F−1(x)], p̂ ∈ PbK} (6.15)

(6.16)

whenever the nodes zi (ẑi occur in the definitions of the set ΘK (ΘbK). It is clear that
two n-simplices of type(`) for a given ` ≥ 1 are affine-equivalent. Likewise, two n-
rectangles of type(`) are affine-equivalent through diagonal affine transformations.
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Indeed, any two identical Lagrange finite elements that we have considered are
affine-equivalent. The situation for Hermite elements is less simple. For example,
consider two Hermite n-simplices of type(3) with sets of degrees of freedom involving
D[z,zj ]p(zi). Then it is clear that they are affine-equivalent because the relations

zj − zi = F (ẑj)− F (ẑi) = B(ẑj − ẑi), 1 ≤ i, j ≤ n, i 6= j .

On the other hand,the Argyris 21-degee of freedom triangle, is not, in general,
affine-equivalent unless they are equilateral triangles since the normal derivative
degrees of freedom are not preserved through an affine transformation, i.e.,the prop-
erty of a vector that it be perpendicular to a hyperplane is not, in general, preserved
through an affine mapping.

A family of finite elements is called an affine family if all its finite elements are
affine-equivalent to a single finite element, which is called the reference finite element
of the family. Note that the reference element, which we denote by (K̂,PbKΘbK) need
not belong to the family. In the case of an affine family consisting of n-simplices, it
is customary to choose the set K̂ to be the unit n-simplex with vertices

ẑ1 = (1, 0, . . . , 0), ẑ2 = (0, 1, 0, . . .) · · · ẑn = (0, 0, . . . , 0, 1), ẑn+1 = (0, 0, . . . , 0)

for which the barycentric coordinates take the simple form

λi = xi1 ≤ i ≤ n, and λn+1 = 1−
n∑

i=1

xi .

In the case of an affine family of rectangular elements, the usual choice for the
refence set K̂ is either the unit hypercube [0, 1]n or the hypercube [−1, 1]n.

The concept of affine family of finite elements is important because (i) in
practical computations the calculations for the matrix entries are performed on
the reference element; and (ii) for such families an elegant interpolation theory
can be developed, which in turn is the basis for most of the convergence theorems
concerning finite element approximations.


