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Chapter 4

Finite Element Method

for Ordinary Differential

Equations

In this chapter we consider some simple examples of the finite element method for
the approximate solution of ordinary differential equations. Although the principal
use of finite element methods is for approximating solutions to partial differential
equations, it is instructive to look at one-dimensional problems for their simplicity
and ease of understanding. In addition, when we approximate PDEs using rectan-
gular elements, then we take tensor products of one-dimensional elements.

In the first three examples we consider a two-point boundary value problem
for a second-order linear ordinary differential equation. Each of these examples
is constructed so that the approach for handling different boundary data is made
evident. The fourth example is a higher order differential equation.

In each example we define an appropriate weak formulation, either prove or
indicate how the hypotheses of the Lax-Milgram theorem can be established, discuss
the finite element approximation of the weak problem, and present error estimates.
In addition, we provide computational results for some examples.

4.1 A two-point BVP with homogeneous Dirichlet
boundary data

We begin by considering the following two-point boundary value problem on [0, 1]
where we seek a function u(x) satisfying

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) for 0 < x < 1

u(0) = 0
u(1) = 0 ,

(4.1)

where p(x), q(x), and f(x) are given functions defined on [0, 1]. In the sequel we
assume that 0 < pmin ≤ p(x) ≤ pmax and qmin = 0 ≤ q(x) ≤ qmax where pmin, pmax,
and qmax are positive constants and f ∈ L2(0, 1). This problem is often referred to
as a Sturm-Liouville problem.
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54 Chapter 4. Finite Element Method for Ordinary Differential Equations

It is well-known that whenever f, q ∈ C[0, 1] and p ∈ C1[0, 1] the boundary
value problem (4.1) possesses a unique classical solution u(x) ∈ C2(0, 1) which
satisfies (4.1) for every x ∈ [0, 1]. We are interested in a weak or generalized solution
of (4.1); i.e., in a function u(x) that satisfies (4.1) in some sense even when f, p, q
are not continuous; if f, p, q are sufficiently smooth then we want the weak solution
to coincide with the classical solution.

4.1.1 Weak formulation

In choosing the underlying Hilbert space for our weak formulation of (4.1), we know
that multiplication of the differential equation by an appropriate test function,
integrating over the domain and then integrating by parts to balance the order of
the derivatives results in both the test and trial functions having one derivative.
Consequently we require our solution to be in L2(0, 1) and to possess at least one
weak L2-derivative. In addition, we constrain our space so that we only consider
functions which satisfy the homogeneous Dirichlet boundary conditions. Thus we
choose H1

0 (0, 1) to be the underlying Hilbert space in which we seek a solution u(x)
and for our test space. On H1

0 (0, 1) we define the bilinear form A(·, ·) by

A(v, w) =

∫ 1

0

p(x)v′(x)w′(x) dx+

∫ 1

0

q(x)v(x)w(x) dx = (pv′, w′)+ (qv, w) , (4.2)

where (·, ·) denotes the standard L2(Ω)-inner product. The weak problem is stated
as: {

seek u ∈ H1
0 (0, 1) satisfying

A(u, v) = (f, v) ∀ v ∈ H1
0 (0, 1) .

(4.3)

Note that if u is the classical solution of (4.1) then u(x) also satisfies the weak
problem because for v ∈ H1

0 (0, 1)

(f, v) =

∫ 1

0

fv dx =

∫ 1

0

(
−(pu′)′ + qu

)
v dx

=

∫ 1

0

pu′v′ dx+

∫ 1

0

quv dx−
[
pu′v

] ∣∣1
0

=

∫ 1

0

pu′v′ dx+

∫ 1

0

quv dx = A(u, v) .

Conversely, if u ∈ H1
0 (0, 1) satisfies (4.3) and is u is sufficiently smooth, i.e., u ∈

C2(0, 1), a situation which can be guaranteed if p, q and f are themselves sufficiently
smooth, then u coincides with the classical solution of (4.1). The homogeneous
Dirichlet boundary conditions are satisfied because u ∈ H1

0 (0, 1) and the differential
equation holds because

A(u, v) − (f, v) =

∫ 1

0

pu′v′ dx +

∫ 1

0

quv dx−
∫ 1

0

fv dx

=

∫ 1

0

[
(−pu′)′ + qu− f

]
v dx = 0 ∀ v ∈ H1

0 (0, 1)
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and v ∈ H1
0 (0, 1) is arbritary. Recall that if we can find a function u ∈ H1

0 (0, 1)
which is the unique solution of (4.3), then we call u the weak solution of (4.1) in
H1

0 (0, 1).
To prove the existence and uniqueness of u ∈ H1

0 (0, 1) satisfying (4.3) we use
the Lax-Milgram theorem (Theorem ??) and verify that A(·, ·) and F (v) satisfy the
hypotheses of this theorem. Clearly, A(·, ·) is a bilinear form on H1

0 (0, 1)×H1
0(0, 1).

We first show that it is bounded on the spaceH1
0 (0, 1), i.e., |A(v, w)| ≤M ‖v‖

1
‖u‖

1
.

To do this we use properties of integrals, the given bounds on p, q and the Cauchy-
Schwartz inequality to obtain

|A(v, w)| ≤
∣∣∣
∫ 1

0

p(x)v′w′ dx
∣∣∣ +

∣∣∣
∫ 1

0

q(x)vw dx
∣∣∣

≤ pmax

∣∣∣
∫ 1

0

v′w′ dx
∣∣∣ + qmax

∣∣∣
∫ 1

0

vw dx
∣∣∣

= pmax

∣∣∣(v′, w′)
∣∣∣ + qmax

∣∣∣(v, w)
∣∣∣

≤ pmax‖v′‖0‖w′‖0 + qmax‖v‖0‖w‖0 .

To complete the result, we note that by the definition of the L2-norm and the
H1-norm and seminorm, ‖w′‖0 = |w|1, ‖·‖0 ≤ ‖·‖

1
, | · |1 ≤ ‖·‖

1
. Thus

|A(v, w)| ≤ pmax ‖v‖1
‖w‖

1
+ qmax ‖v‖1

‖w‖
1
≤ C ‖v‖

1
‖w‖

1
,

where C = pmax + qmax. Therefore, condition (??) of the Lax-Milgram theorem is
satisfied.

In general, demonstrating coercivity of the bilinear form usually requires more
finesse than proving continuity. We must prove that A(v, v) ≥ m ‖v‖2

1
. In our case

we have

A(v, v) =

∫ 1

0

p(v′)2 dx+

∫ 1

0

qv2 dx ≥ pmin‖v′‖2
0 + qmin‖v‖2

0 .

But we have assumed qmin = 0 so

A(v, v) ≥ pmin‖v′‖2
0 .

We must now bound ‖v′‖0 = |v|1 below by a constant times ‖v‖
1

for all v ∈ H1
0 (0, 1).

The fact that v ∈ H1
0 (0, 1) allows us to use the Poincaré inequality (??) to bound

|v|1 ≥ 1

Cp
‖v‖0. Using this bound for the entire term ‖v′‖2

0 = |v′|21 does not give us

the desired result so we use the approach of breaking this term into two parts; we
have

pmin‖v′‖2
0 = pmin|v|21 = pmin

(1

2
|v|21 +

1

2
|v|21

)
≥ 1

2
pmin

(
|v|21 +

1

C2
p

‖v‖2
0

)
.

Then

A(v, v) ≥ 1

2
pmin

[
min

(
1,

1

C2
p

) ](
|v|21 + ‖v‖2

0

)
= m ‖v‖2

1
,
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where we have used the definition of the H1-norm, ‖·‖2

1
= ‖·‖2

0 + | · |21; thus the
coercivity condition (??) is satisfied. Clearly F (v) = (f, v) is a bounded linear
functional on H1

0 (0, 1). Thus the Lax-Milgram theorem guarantees the existence of
a unique u ∈ H1

0 (0, 1) which satisfies (4.3).
In this problem we constrained our Hilbert space to consist of functions which

satisfy the homogenous Dirichlet boundary conditions. We recall that boundary
conditions which are satisfied by constraining the admissible or trial space are called
essential.

4.1.2 Approximation using piecewise linear polynomials

We now turn to approximating u, the solution of the weak problem (4.3), by its
Galerkin approximation uh in a finite dimensional subspace Sh

0 of H1
0 (0, 1). The

approximate solution is required to satisfy (4.3) but only for all vh ∈ Sh
0 ; the discrete

weak problem is { seek uh ∈ Sh
0 satisfying

A(uh, vh) =
(
f, vh

)
∀ vh ∈ Sh

0 .
(4.4)

Because Sh
0 ⊂ H1

0 (0, 1) the conditions of the Lax Milgram theorem are automatically
satisfied on Sh

0 and so we are guaranteed that there exists a unique uh ∈ Sh
0 which

satisfies (4.4). Moreover, Galerkin/Cea’s Lemma gives us the error estimate

∥∥u− uh
∥∥

1
≤ C inf

χh∈Sh
0

∥∥u− χh
∥∥

1
. (4.5)

First we choose Sh
0 to be the space of continuous linear piecewise polynomials

defined on a partition of [0, 1] which satisify the homogeneous Dirichlet boundary
conditions. In particular, we consider the following partition of [0, 1]:

0 = x0 < x1 < · · · < xN+1 = 1 where xi = xi−1 + hi, 1 ≤ i ≤ N + 1 , (4.6)

and where hi, 1 ≤ i ≤ N + 1 are given numbers such that 0 < hi < 1 and∑N+1

i=1
hi = 1. We define h = max

1≤i≤N+1
hi; if hi = h for all i then we call the

subdivision uniform. A continuous piecewise linear function with respect to the
given subdivision on [0, 1] is a function φ(x) defined on [0, 1] which is linear on each
subinterval; i.e., φ(x) = αix + βi on [xi, xi+1], 0 ≤ i ≤ N . To impose continuity
we require that the constants satisfy αi, βi where αi−1xi + βi−1 = αixi + βi, i =
1, . . . , N ; We define

Sh
0 = {φ(x) : φ ∈ C[0, 1],

φ(x) linear on [xi, xi+1] for 0 ≤ i ≤ N,φ(0) = φ(1) = 0} . (4.7)

As we discussed in Chapter ?? we want to choose a basis whose functions have
as small support as possible so that the resulting coefficient matrix is sparse. For
1 ≤ i ≤ N we consider again the “hat” functions (see Figure ??)

φi(x) =






x− xi−1

hi
for xi−1 ≤ x ≤ xi

xi+1 − x

hi+1

for xi ≤ x ≤ xi+1

0 elsewhere.

(4.8)
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Clearly φi(x) ∈ Sh
0 for 1 ≤ i ≤ N . Moreover, we easily see that

φi(xj) = δij =

{
1 if i = j
0 otherwise

(4.9)

for 1 ≤ i ≤ N and 0 ≤ j ≤ N + 1. Here δij denotes the Kronecker delta function.
The following proposition justifies our intuition that the functions defined in (4.8)
form a basis for Sh

0 .

Proposition 4.1. Sh
0 defined by (4.7) is an N -dimensional subspace of H1

0 (0, 1).
The functions {φi(x)}N

i=1 defined in (4.8) form a basis for Sh
0 .

Proof. Every function φ(x) ∈ Sh
0 also belongs to L2(0, 1) and each function is

piecewise linear, so analogous to the function |x|, each has a weak derivative (which
is piecewise constant) in L2(0, 1). Also φ(0) = φ(1) = 0 for all φ ∈ Sh

0 so that
Sh

0 ⊂ H1
0 (0, 1). We now show that {φi(x)}, i = 1, . . . , N are linearly independent

and span the space Sh
0 . To see that we have a linearly independent set, let ψ(x) =∑N

i=1
ciφi(x); we want to show that the only way ψ(x) = 0 for all x is if ci = 0

for i = 1, . . . , N . Using (4.9), we see that ψ(xi) = ci for 1 ≤ i ≤ N . Thus if
ψ(x) = 0 for all x we have that ci = 0 for i = 1, . . . , N ; in addition if ci = 0 for all
1 ≤ i ≤ N then the nodal values of ψ are zero and since it is piecewise linear, it
is zero everywhere. Hence we conclude that the functions are linearly independent.
To show that the set spans Sh

0 we let ψ(x) be an arbitrary element of Sh
0 and show

that we can write ψ(x) as a linear combination of the φi(x), i = 1, . . . , N ; i.e.,

ψ(x) =
∑N

i=1
ciφi(x). But this can be done by letting ci = ψ(xi), i.e., setting ci

to be the nodal values of ψ.

Once we have chosen a basis for Sh
0 , the problem (4.4) reduces to solving a

system of N algebraic equations in N unknowns. Since uh ∈ Sh
0 , we let uh(x) =∑N

j=1
ξjφj(x) and write (4.4) as

N∑

j=1

ξjA(φj , φi) = (f, φi) for 1 ≤ i ≤ N .

Then ~c = (ξ1, ξ2, . . . , ξN )T satisfies the matrix system

A~c = ~b , (4.10)

where~b =
(
(f, φ1) , (f, φ2) , . . . , (f, φN )

)T
and A is the N×N matrix whose elements

are given by
Aij = A(φj , φi) =

(
pφ′j , φ

′
i

)
+ (qφj , φi)

or
Aij = Sij + Mij

with Sij =
(
pφ′j , φ

′
i

)
and Mij = (qφj , φi). The matrix A is symmetric, positive

definite (see the exercises) and tridiagonal. If p(x) = q(x) = 1 on [0, 1] and we use
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a uniform mesh, then the matrices S and M are explicitly given by

S =
1

h





2 −1 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 0 0
. . .

. . .
. . .

0 · · · 0 −1 2 −1
0 · · · 0 −1 2





(4.11)

and

M =
h

6





4 1 0 · · · 0
1 4 1 0 · · · 0
0 1 4 1 0 0

. . .
. . .

. . .

0 · · · 0 1 4 1
0 · · · 0 1 4





. (4.12)

In the case p = 1 the matrix S is called the stiffness matrix of the basis {φi}N
i=1

while in the case q = 1, the matrix M is called the Gram matrix or the mass matrix
associated with the basis {φi}N

i=1.

Solution of the linear system

Our coefficient matrix is a symmetric, positive-definite, tridiagonal matrix. If we
choose a direct solver, then a Cholesky tridiagonal solver should be used because
it takes advantage of these properties of the matrix. Recall that in a Cholesky
factorization we write A = LLT where L is a lower triangular matrix with positive
elements on the diagonal. If A is the tridiagonal matrix

A =





a1 b2
b2 a2 b3

. . .
. . .

. . .

bN aN




=





α1

β2 α2

. . .
. . .

βN αN









α1 β2

α2 β3

. . .
. . .

αN





then

α1 =
√
a1

for i = 2, . . . , N βi = bi/ai−1 and αi =
√
ai − β2

i .
(4.13)

Note that we can not determine all the βi first and then determine the αi but rather
for each i we must determine βi and then αi before incrementing i. To solve the
system A~c = ~f we write LLT~c = ~f and solve L~y = ~f and LT~c = ~y. Doing this we
have the equations

y1 = f1/α1

for i = 2, . . . , N yi =
fi − βiyi−1

αi

(4.14)
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and
cN = yN/αN

for i = N − 1, . . . , 1 ci =
yi − βi+1yi+1

αi
.

(4.15)

For simplicity of exposition we have defined new variables, αi, βi, yi, and ci while in
practice the entries of A and ~f are overwritten and no new arrays need be defined.

Error estimates and interpolation results

The bound for the error (4.5) in terms of the error in u and its best approximation
in the subspace is not particularly useful in computations; what we would like is
to measure the error in terms of powers of h. In order to have a quantitative
estimate in terms of powers of h we need to estimate the H1-error in u and its best
approximation in Sh

0 but this is difficult to do. However, we note that

inf
χh∈Sh

0

∥∥u− χh
∥∥

1
≤

∥∥u− wh
∥∥

1
for any wh ∈ Sh

0

is always true by the definition of the best approximation. So we immediately have

∥∥u− uh
∥∥

1
≤ C

∥∥u− wh
∥∥

1
for any wh ∈ Sh

0 . (4.16)

Thus we need to find an element of Sh
0 for which an approximation result is available.

Recall from elementary numerical analysis that one way to approximate a
function is to use a polynomial interpolant; i.e., to find a polynomial which agrees
with the given function or its derivatives at a set of points. One such example is
a Lagrange interpolant which interpolates given data or function values. Due to
the fact that one cannot guarantee that the norm of the difference in the function
and the Lagrange interpolating polynomial approaches zero as the degree of the
polynomial increases, one often considers piecewise polynomial interpolation. In
piecewise Lagrange interpolation we put together Lagrange polynomials of a fixed
degree to force them to interpolate the given function values or data. For example,
a piecewise linear Lagrange polynomial is a continuous function which is a linear
polynomial over each subinterval. Clearly, a piecewise linear Lagrange polynomial
over the subdivision of [0, 1] given in (4.6) which is zero at x = 0 and x = 1 is an
element of Sh

0 .
We state the estimates for the error in a function in H1(0, 1) and its Sh-

interpolant where Sh is the space of piecewise linear functions defined over the
given partition with no boundary conditions imposed; i.e.,

Sh = {φ(x) ∈ C[0, 1] : φ(x) linear on [xi, xi+1] for 0 ≤ i ≤ N} . (4.17)

Then these results also hold for Sh
0 ⊂ H1

0 (0, 1). If v(x) is a continuous function on
[0, 1] then we can find a unique element which agrees with v(x) at each of the points
xi, i = 0, . . . , N+1; we call this element of Sh the Sh-interpolant of v and denote it
by Ihv. Once we have the standard estimate for the approximation of a function by
its piecewise linear Lagrange interpolant measured in the H1-norm, then, we can
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use it in (4.16) to obtain an estimate in terms of powers of h. The following lemma
gives standard results for approximating a function by its piecewise linear Lagrange
interpolant in the L2 and H1 norms; see [Prenter] for details.

Lemma 4.2. Let f ∈ H1(0, 1) and Sh ⊂ H1(0, 1) be defined by (4.17); let Ihf
denote the Sh-interpolant of f . Then there exists positive constants C1, C2, and
C3, independent of h and f , such that

∥∥f − Ihf
∥∥

0
≤ C1h ‖f‖1

. (4.18)

In addition, if f ∈ H2(0, 1) then
∥∥f − Ihf

∥∥
0
≤ C2h

2 ‖f‖
2

(4.19)

and ∥∥f − Ihf
∥∥

1
≤ C3h ‖f‖2

. (4.20)

It is important to note that if the solution u to our problem is not smooth
enough, i.e., u ∈ H1(0, 1) and u 6∈ H2(0, 1), then (4.19) and (4.20) do not hold.
In this situation we only have (4.18) and

∥∥u− Ihu
∥∥

1
≤ C ‖u‖

1
; the latter implying

that there is no convergence in h; i.e., as h → 0,
∥∥u− Ihu

∥∥
1

does not approach
zero. We say that the rate of convergence in (4.19) is order h squared, which is
quadratic convergence, and denote it O(h2); similarly the rate of convergence in
(4.20) is O(h) which is linear convergence. From (4.19) and (4.20) we see a pattern
arising that the error in the interpolant measured in the L2 norm is one order higher
than the error measured in the H1 norm; this is due to the fact that the H1 norm
measures errors in the derivatives as well as the function values.

We can now use Lemma 4.2 to state an estimate for the error in u and uh

measured in the H1-norm in terms of powers of h. We require u ∈ H2(0, 1) ∩
H1

0 (0, 1); note that this can be guaranteed if f, q, p ∈ L2(0, 1). In this case we get
the optimal rate; this means that we get the same rate of convergence as h→ 0 as
the interpolant.

Theorem 4.3. Let u ∈ H2(0, 1)∩H1
0 (0, 1) and let uh be the Galerkin approximation

of u in the space Sh
0 defined by (4.7); i.e., uh satisfies (4.4). Then there exists a

positive constant C, independent of u, h, or uh such that
∥∥u− uh

∥∥
1
≤ Ch ‖u‖

2
. (4.21)

Proof. The proof is an obvious consequence of (4.20) and (4.16).

It is often the case that we are interested in estimating the error in just the
function itself and not its derivatives; in this case we want an estimate for the error
in the L2-norm. From the definition of the L2- and H1-norms we immediately have
that ∥∥u− uh

∥∥
0
≤

∥∥u− uh
∥∥

1
≤ Ch ‖u‖

2
,
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the latter inequality holding if u ∈ H2(0, 1)∩H1
0 (0, 1). However, Lemma 4.2 suggests

that we should be able to improve the error to O(h2); in addition, computations
indicate that O(h2) is attainable. In order to obtain an optimal L2-estimate, we
must assume sufficient smoothness on u and use a technique known as “Nitsche’s
trick”.

Theorem 4.4. Let u ∈ H2(0, 1) ∩H1
0 (0, 1) be the solution of (4.3) and let uh be

the Galerkin approximation of u in the space Sh
0 defined by (4.7) satisfying (4.4).

Then there exists a positive constant C, independent of u, h, or uh such that

∥∥u− uh
∥∥

0
≤ Ch2 ‖u‖

2
. (4.22)

Proof. Let e = u−uh and let ψ be the unique function in H1
0 (0, 1) (whose existence

and uniqueness is guaranteed by the Lax-Milgram theorem) satisfying

A(ψ, φ) = (e, φ) ∀ φ ∈ H1
0 (0, 1) . (4.23)

Since e ∈ H1
0 (0, 1) we can set φ = e in the above expression to obtain

‖e‖2

0
= (e, e) = A(ψ, e) .

Now Galerkin orthogonality for this problem guarantees that A(u− uh, vh) = 0 for
all vh ∈ Sh

0 and thus A(e, vh) = 0 for all vh ∈ Sh
0 and we can add this term without

impunity. We know that A(·, ·) is linear and symmetric so we have

‖e‖2

0
= A(ψ, e) −A(e, vh) = A(e, ψ − vh) ∀ vh ∈ Sh

0 .

Using the boundedness of the bilinear form gives us

‖e‖2

0
≤ C ‖e‖

1

∥∥ψ − vh
∥∥

1
∀ vh ∈ Sh

0 .

We can use Theorem 4.3 to bound ‖e‖
1

by Ch ‖u‖
2
. If we set vh to be the Sh

0 -
interpolant of ψ then if ψ ∈ H1

0 (0, 1) ∩ H2(0, 1) the estimate (4.20), along with
Theorem 4.3 implies

‖e‖2

0
≤ Ch2 ‖ψ‖

2
‖u‖

2
.

From the theory of elliptic partial differential equations one can show that if ψ is
the solution to (4.23) and ψ ∈ H2(0, 1) ∩ H1

0 (0, 1) then we can bound ψ by the
L2-norm of the data; i.e., ‖ψ‖

2
≤ C ‖e‖

0
. Substituting this bound for ψ into the

above expression gives the desired result from

‖e‖2

0
≤ Ch2 ‖e‖

0
‖u‖

2
.

It is important to realize that in order to get the optimal estimates in the
L2- and H1-norms, we must have additional smoothness on our solution. This is a
consequence of approximation theory, not an artifact of our finite element analysis.
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When we present some numerical simulations, we see that a loss in accuracy occurs
if our solution is not smooth enough.

We have now completed our analysis of a finite element solution of (4.1) using
continuous, piecewise linear polynomials. Before turning our attention to imple-
menting the method to obtain some numerical results we consider approximating
using higher degree polynomials and then remind ourselves how the entries in the
matrix and right-hand side of (4.10) are obtained.

4.1.3 Approximation using higher degree polynomials

From the error estimate (4.21) we see that the rate of convergence is linear in the H1

norm. If we want our calculations to converge at a higher rate, such as quadratically,
then we have to choose a higher degree polynomial for our approximating space
Sh

0 . In this section we give some general results for the error in the interpolating
polynomial for a kth degree polynomial and then use these to get optimal error
estimates for our problem. We also consider a basis for quadratic polynomials and
the structure of the resulting linear system which is no longer tridiagonal as it was
when we used linear polynomials. The case of continuous, cubic polynomials is left
to the exercises.

We now define Sh to be the space of continuous, piecewise polynomials of
degree k or less over the partition of [0, 1] defined in (4.6), i.e.,

Sh = {φ(x) : φ ∈ C[0, 1], φ(x) polynomial of
degree ≤ k on [xi, xi+1] for 0 ≤ i ≤ N} . (4.24)

Sh
0 is defined in the same way except we require φ(x) to be zero at the endpoints;

Sh
0 = {φ(x) : φ ∈ C[0, 1], φ(x) polynomial of

degree ≤ k on [xi, xi+1] for 0 ≤ i ≤ N,φ(0) = φ(1) = 0} . (4.25)

A theorem for the Sh-interpolant of functions in H1 is provided in the following
lemma.

Lemma 4.5. Let f ∈ Hk+1(0, 1) and Sh ⊂ H1(0, 1) where Sh is defined by (4.24);
let Ihf denote the Sh-interpolant of f . Then there exists positive constants C1, C2,
independent of h and f , such that

∥∥f − Ihf
∥∥

0
≤ C1h

k+1 ‖f‖k+1
(4.26)

and ∥∥f − Ihf
∥∥

1
≤ C2h

k ‖f‖k+1
. (4.27)

Note that (4.26) reduces to (4.19) and (4.27) reduces to (4.20) when k = 1.
These are the best rates of convergence possible with a kth degree polynomial. If
f is not in Hk+1(0, 1) then there is a loss in the rates of convergence. For example,
if f ∈ Hk(0, 1) and not in Hk+1(0, 1), then a power of h is lost in each estimate. If
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our finite element solution is in Hk+1(0, 1) then optimal rate of convergence in the
H1 norm are given in the following theorem.

Theorem 4.6. Let u ∈ Hk+1(0, 1)∩H1
0 (0, 1) be the solution of (4.3) and let uh be

the Galerkin approximation of u in the space Sh
0 defined by (4.25) satisfying (4.4).

Then there exists a positive constant C, independent of u, h, or uh such that
∥∥u− uh

∥∥
1
≤ Chk ‖u‖k+1

. (4.28)

We note that this estimate says that if the solution is sufficiently smooth, then
increasing the degree of the polynomial by one increases the rate of convergence by
one.

As before, we are often interested in the L2 norm of the error. We can mimic
the proof of Theorem 4.4 to get the following result when Sh

0 is defined by (4.25).
See the exercises for details.

Theorem 4.7. Let u ∈ Hk+1(0, 1)∩H1
0 (0, 1) be the solution of (4.3) and let uh be

the Galerkin approximation of u in the space Sh
0 defined by (4.25) satisfying (4.4).

Then there exists a positive constant C, independent of u, h, or uh such that
∥∥u− uh

∥∥
0
≤ Chk+1 ‖u‖k+1

. (4.29)

We note that the optimal rate of convergence in the L2 norm is one power of h
higher than in the H1 norm which measures the error in the derivatives of the
solution as well as the solution itself.

We now turn to the concrete problem of finding a basis for Sh or Sh
0 when we

choose quadratic polynomials, i.e., k = 2. In this case we know that the rates of
convergence are O(h2) in the H1 norm and O(h3) in the L2 norm, if the solution is
sufficiently smooth. We use the same partition of [0, 1] as before, i.e., that given in
(4.6). The problem now is that over each element [xi−1, xi] the basis function must
be a quadratic; however, it takes three points to uniquely determine a quadratic.
To this end, we add a node in each subinterval; the easiest thing to do is add a
node at the midpoint of each subinterval, xi− 1

2

= (xi−1 +xi)/2. We still have N+1
elements, but now have the N + 2 points from the endpoints of the intervals plus
the N + 1 midpoints giving a total of 2N + 3 points. Analogous to the continuous,
piecewise linear case, we expect that a basis for Sh for k = 2 consists of 2N + 3
elements and for Sh

0 we don’t need the endpoints so we have 2N + 1 elements in
basis.

For simplicity of exposition, we renumber our 2N + 3 nodes as xi, i =
0, . . . , 2N + 2. However, we must remember that the elements are [x2j−2, x2j ] for
j = 1, . . . , N + 1. To determine a nodal basis for Sh we require each φi in the basis
to have the property that it is one at node xi and zero at all other nodes. In the
basis for piecewise linear polynomials we were able to make the support of the basis
functions to be two adjacent elements; the same is true in this case. However, now
we have two different formulas for the basis functions determined by whether the
function is centered at an endpoint of an interval or the midpoint.
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To easily get an idea what these quadratic functions look like, we first write the
polynomials on [−1, 1] with nodes x = −1, 0, 1; we can then translate them to the
desired interval. From these we can determine the shape of our basis functions. For
the quadratic function which is one at the midpoint, i.e., x = 0, and zero at x = ±1
we have φ(x) = 1− x2. For the quadratic function which is one at x = −1 and zero
at x = 0, 1 we have φ(x) = 1

2
(x2 − x). Similarly for a quadratic function which is

one at x = 1 and zero at x = −1, 0 we have φ(x) = 1

2
(x2 + x). These functions are

illustrated in Figure 4.1 and have the same shape as the ones on [x2j−2, x2j ]. We
can splice together the two functions centered at the endpoints of the interval to get
a complete picture of the basis function centered at an endpoint which has support
over two intervals; this is demonstrated in the right plot in Figure 4.1. Note that
analogous to the case of continuous piecewise linear polynomials the quadratic basis
functions will be in C0 but not C1.

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Figure 4.1. Plot on left shows nodal quadratic functions on [−1, 1] and
plot on right shows shape of quadratic basis function centered at endpoint of an
interval having support over two intervals.

To find the analogous polynomials on [x2j−2, x2j ] we need to translate our
functions on [−1, 1] to the desired interval or equivalently solve linear systems. For
example, a straightforward way to find the quadratic which is one at x2j−1 and zero
at the endpoints is to solve

0 = a+ b
(
x2j−2

)
+ c

(
x2j−2

)2

1 = a+ b
(
x2j−1

)
+ c

(
x2j−2

)2

0 = a+ b
(
x2j

)
+ c

(
x2j

)2
.

In later chapters we discuss more efficient approaches to finding basis functions.
The support of the quadratic basis functions for Sh

0 on a uniform partition of [0, 2]
with h = 0.5 are illustrated in Figure 4.2.

We have seen that once a basis for the finite dimensional space is chosen, the
discrete problem can be converted to solving a linear system of equations. The (i, j)
entry of the coefficient matrix A is given by the same expression as in the case of
piecewise linear functions except we are using a different basis; specifically, we have

Aij = (pφ′j , φ
′
i) + (qφj , φi)

where φi is now a quadratic polynomial. We recall that when the standard “hat”
functions were used as a basis for Sh

0 the resulting matrix was N ×N , symmetric,
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Figure 4.2. Support of quadratic basis functions on the uniform partition
of [0, 2] with h = .5 assuming homogeneous Dirichlet boundary conditions.

positive definite and tridiagonal. In the case of our quadratic basis functions in Sh
0 ,

the matrix is still symmetric and positive definite but we note that the size of our
matrix has increased to 2N + 1. Also, it is no longer tridiagonal. To determine the
bandwidth of the matrix, we need to ascertain where the zero entries begin in each
row. We return to Figure 4.2 and note that for a basis function φi centered at a

midpoint node xi, the integral
∫ 1

0
φiφj dx is zero when j > i+ 1 or j < i − 1, i.e.,

outside of the interval; the same is true for the term
∫ 1

0
φ′iφ

′
j dx. However, for a

basis function φi centered at the right endpoint node xi, the integral
∫ 1

0
φiφj dx is

potentially nonzero in that interval and the next which includes a total of five basis
functions, counting itself. Thus the integral is zero when j > i+ 2 or j < i− 2 and
the maximum bandwidth of the matrix is five. This system can be efficiently solved
by a direct method such as a banded Cholesky algorithm or an iterative method
such as conjugate gradient or one of its variants.

If we desire to have a method which converges cubically in the H1 norm, then
we can choose continuous, piecewise cubic polynomials for Sh. Because we need
four points to uniquely determine a cubic, we add two points to each interval in
our original partition given in (4.6). For Sh

0 we now have N + 2(N + 1) = 3N + 2
points and we expect that this is the dimension of the space and thus the dimension
of the resulting matrix. The shape of the basis functions and the structure of the
resulting matrix is explored in the exercises.

4.1.4 Numerical quadrature

If we are implementing our example given in (4.1) in the case p = q = 1 with
continuous, piecewise linear polynomials for Sh

0 and where we are using a uniform
grid, then (4.11) and (4.12) explicitly give the coefficient matrices. However, entries
in the right-hand side of (4.10) must be computed and also entries for the coefficient
matrix for general p, q. For some choices of f we could evaluate the integrals exactly.
However, if we want to write a general finite element program then we should be
able to do problems where the integrals can not be evaluated exactly. In this
case, we must use quadrature rules to approximate the integrals. Recall that in
our error analysis, we have assumed that the integrals are computed exactly; the
effects of numerical integration are discussed in a later chapter. For now, we present
some widely used quadrature formulas in one-dimension and give general rules for
choosing a formula.
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In numerical integration we approximate the integral by the sum of the inte-
grand evaluated at a prescribed set of points multiplied by weights; i.e.,

∫ b

a

f(x) dx ≈
∑

k

f(qk)wk , (4.30)

where qk represent the quadrature points and wk the quadrature weights. Of par-
ticular interest in one dimension are the Gauss quadrature rules; in these rules the
quadrature points and weights are chosen so that the rule integrates exactly as
high a degree polynomial as possible. Specifically, if we use n Gaussian quadrature
points then the rule integrates polynomials of degree 2n − 1 exactly. The Gaus-
sian quadrature rule for one point is the well known midpoint rule. The following
table gives the Gaussian quadrature points and weights on the interval [−1, 1]. If

Table 4.1. Gauss quadrature formulas on [−1, 1]

n nodes weights
1 0.0000000000 2.0000000000
2 ±0.5773502692 1.0000000000
3 ±0.7745966692 0.5555555556

0.0000000000 0.8888888889
4 ±0.8611363116 0.3478548451

±0.3399810436 0.6521451549
5 ±0.9061798459 0.2369268850

±0.5384693101 0.4786286701
0.0000000000 0.5688888889

the domain of integration is different from (−1, 1), then a change of variables is

needed. For example, to compute the integral
∫ b

a
f(x̂) dx̂ we use the linear mapping

x̂ = a+ b−a
2

(x+ 1) to map to the integral over (−1, 1). In this case we have

∫ b

a

f(x̂) dx̂ =
b− a

2

∫ 1

−1

f(a+
b− a

2
(x+ 1) dx .

Then we apply the quadrature rule to the integral over (−1, 1). Note that we
have just modified the quadrature weight by multiplying by b−a

2
and mapping the

quadrature point to the interval (a, b).
When choosing a quadrature rule, we want to use as low a degree rule as

possible for efficiency but as high a degree rule as necessary for accuracy. It is not
necessary to evaluate the integrals exactly, even if this is possible; however, we must
assure that the error in the numerical quadrature does not contaminate the power
of h accuracy in our estimate. When using piecewise linear polynomials for the
finite element space in one-dimension for the problem (4.1), it is adequate to use a
one-point Gauss quadrature rules; for piecewise quadratic polynomials a two-point
rule is adequate.
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4.1.5 Computational examples

In this section we implement two specific examples of the boundary value problem
given in (4.1) where we know the exact solution so that errors and rates of con-
vergence can be calculated. These problems differ in the choice of p, q and f . The
choice of f is especially important because a lack of smoothness in f results in the
solution not being smooth enough to guarantee the optimal rates of convergence.
In all computations we use continuous, piecewise polynomials on a uniform grid,
an appropriate Gauss quadrature rule to evaluate the integrals in the coefficient
matrix and the right-hand side, and a direct solver for the linear system. For the
error computation we use a higher order quadrature rule to evaluate the integrals.
The reason for the higher order rule in the error computation is to make absolutely
sure that no error from the numerical integration contaminates the calculation of
the error. The computations are performed using h = 1/4, 1/8, 1/16, and 1/32 with
linear, quadratic and cubic elements; the H1- and L2-errors are computed for each
grid.

For each example we are interested in calculating the numerical rate of con-
vergence and comparing it with the theoretical results presented in Theorems 4.3,
4.4,?? and ??. The errors for each grid can be used to compute an approximate
rate of convergence. For example, we have

∥∥u− uh
∥∥ ≈ Chr where we expect r to

approach some value as the grid size decreases. If we have the error, Ei, on two
separate meshes then we have that E1 ≈ Chr

1 and E2 ≈ Chr
2 where E1 and E2

represent
∥∥u− uh

∥∥ on the grid with mesh spacing h1 and h2, respectively. If we
solve for C and set the two relationships equal, we have E1/h

r
1 ≈ E2/h

r
2 ; solving

for r we obtain

r ≈ lnE1/E2

lnh1/h2

. (4.31)

We note that if the grid spacing is halved, i.e., h2 = h1/2 then the error should be

approximately decreased by
(

1

2

)r
since E2 ≈

(
h2

h1

)r
E1. This implies that if r = 1

the error is approximately halved when the grid spacing is halved; if the rate is two,
then the error is reduced by a factor of one-fourth when the grid spacing is halved,
etc.

Example 4.8 We first consider the problem

−u′′ + π2u = 2xπ2 sinπx− 2π cosπx for 0 < x < 1
u(0) = u(1) = 0 ,

(4.32)

whose exact solution is given by u = x sinπx. Since our solution u(x) = x sinπx
is actually in C∞

0 (0, 1) we expect the optimal rates of convergence; in particular
if we use continuous, piecewise linear polynomials then the rate r, calculated from
(4.31), should approach two as h → 0 for the L2-norm and approach one for the
H1-norm. These values for r are calculated in Table 4.2 along with the errors and
rates using continuous, piecewise quadratic and cubic polynomials; in the table we
computed the rate using the errors at h = 1/4 and 1/8, at h = 1/8 and 1/16, and
at h = 1/16 and h = 1/32. Note that, in fact, r → 1 in the H1 error and r → 2
in the L2-error as Theorems 4.3 and 4.4 predict when piecewise linear polynomials
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are used; the optimal rates for quadratic and cubic polynomials are also obtained.
In these calculations we used a one-point Gauss rule for linear polynomials, a two-
point Gauss rule for quadratic polynomials, and a three-point Gauss rule for cubic
polynomials. In Table 4.3 we illustrate what happens if we use continuous quadratic
polynomials using a one-point, a two-point and a three-point Gauss quadrature
rule. Note that the rates of convergence using a two-point and a three-point rule are
essentially the same, but when we use the one-point rule the results are meaningless.

Table 4.2. Numerical results for Example 4.8 using continuous, piecewise
linear polynomials.

pk h
∥∥u− uh

∥∥
1

rate
∥∥u− uh

∥∥
0

rate

linear 1/4 0.47700 0.28823× 10−1

linear 1/8 0.23783 1.0041 0.69831× 10−2 2.0459
linear 1/16 0.11885 1.0007 0.17313× 10−2 2.0120
linear 1/32 0.059416 1.0002 0.43199× 10−3 2.0028

quadratic 1/4 0.49755×10−1 0.15707× 10−2

quadratic 1/8 0.12649×10−1 1.9758 0.20227× 10−3 2.9570
quadratic 1/16 0.31747×10−2 1.9940 0.25553× 10−4 2.9847
quadratic 1/32 0.79445×10−3 1.9986 0.32031× 10−5 2.9960

cubic 1/4 0.51665×10−2 0.10722× 10−3

cubic 1/8 0.64425×10−3 3.003 0.67724× 10−5 3.985
cubic 1/16 0.80496×10−4 3.001 0.42465× 10−6 3.9953
cubic 1/32 0.10061×10−4 3.000 0.26564× 10−7 3.9987

Example 4.9 The next problem we want to consider is

−u′′ = −α(α− 1)xα−2 for 0 < x < 1
u(0) = u(1) = 0 ,

(4.33)

where α > 0; the exact solution u is given by u(x) = xα − x. The results for
various values of α are presented in Table 4.4 using continuous, piecewise linear
polynomials and a one-point Gauss quadrature rule. Recall that the optimal rates
in this case are O(h) in the H1 norm and O(h2) in the L2 norm. Note that for
α = 7/3 we get the optimal rates of convergence. However, for α = 4/3 we have
less than optimal rates and for α = 1/3 the H1-error is almost constant and the
rate in the L2-norm is less than one. Of course, the reason for this is that when
α = 3/2 the exact solution u = x4/3 − x 6∈ H2(0, 1) and when α = 1/3 the exact
solution u = x1/3 − x 6∈ H1(0, 1). Thus the interpolation results (4.19) and (4.20)
do not hold and hence Theorems 4.3 and 4.4 do not apply.
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Table 4.3. Numerical results for Example 4.8 using continuous, piecewise
quadratic polynomials with three different quadrature rules.

Gauss h
∥∥u− uh

∥∥
1

rate
∥∥u− uh

∥∥
0

rate
Quadrature Rule

one-point 1/4 8.885 0.3904
one-point 1/8 18.073 0.3665
one-point 1/16 36.391 0.3603
one-point 1/32 72.775 0.3587

two-point 1/4 0.49755×10−3 0.15707× 10−4

two-point 1/8 0.12649×10−3 1.9758 0.20227× 10−5 2.9570
two-point 1/16 0.31747×10−4 1.9940 0.25553× 10−6 2.9847
two-point 1/32 0.79445×10−5 1.9986 0.32031× 10−7 2.9960

three-point 1/4 0.49132×10−3 0.18665× 10−4

three-point 1/8 0.12109×10−3 1.9620 0.24228× 10−5 2.9456
three-point 1/16 0.31724×10−4 1.9911 0.30564× 10−6 2.9868
three-point 1/32 0.79430×10−5 1.9978 0.38292× 10−7 2.9967

Table 4.4. Numerical results for Example 4.9.

α h
∥∥u− uh

∥∥
1

rate
∥∥u− uh

∥∥
0

rate

7/3 1/4 0.1747 0.17130× 10−1

7/3 1/8 0.08707 1.0046 0.33455× 10−2 1.9726
7/3 1/16 0.04350 1.0012 0.84947× 10−3 1.9776
7/3 1/32 0.02174 1.0007 0.21495× 10−3 1.9826

4/3 1/4 0.47700 0.28823× 10−1

4/3 1/8 0.23783 0.7690 0.69831× 10−2 1.8705
4/3 1/16 0.11885 0.7845 0.17313× 10−2 1.8834
4/3 1/32 0.059416 0.7965 0.43199× 10−3 1.8005

1/3 1/4 0.43332 0.14594
1/3 1/8 0.43938 0.10599 0.4615
1/3 1/16 0.46661 0.07922 0.4200
1/3 1/32 0.50890 0.06064 0.3857

4.2 A two-point BVP with Neumann boundary data

In this section we consider the same differential equation as in the first section but
now we impose Neumann boundary data instead of homogeneous Dirichlet data. In
particular we seek a function u(x) satisfying

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) for 0 < x < 1

u′(0) = 0
u′(1) = α .

(4.34)
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As before, p and q are bounded functions on [0, 1] satisfying 0 < pmin ≤ p(x) ≤ pmax

but now we impose 0 < qmin ≤ q(x) ≤ qmax for all x ∈ [0, 1]. Again if f, q ∈ C[0, 1]
and p ∈ C1[0, 1] the boundary value problem (4.34) possesses a unique classical
solution u(x) ∈ C2(0, 1) which satisfies (4.34) for every x ∈ [0, 1]. Note that here
we require that qmin > 0 to guarantee a unique solution; this is because if q = 0
and u satisfies (4.34) then so does u+ C for any constant C.

In this case our underlying finite element space is H1(0, 1) because we have
no boundary conditions to impose on the space. The weak formulation is

{ seek u ∈ H1(0, 1) satisfying
A(u, v) = (f, v) + αp(1)v(1) ∀ v ∈ H1(0, 1) ,

(4.35)

where

A(v, w) =

∫ 1

0

p(x)v′(x)w′(x) dx+

∫ 1

0

q(x)v(x)w(x) dx ∀ v, w ∈ H1(0, 1) .

Clearly, if u(x) satisfies the classical problem (4.34), then u(x) satisfies (4.35) be-
cause

∫ 1

0

f(x)v dx =

∫ 1

0

(
−(p(x)u′(x))′ + q(x)u(x)

)
v(x) dx

= −pu′v
∣∣1
0
+

∫ 1

0

p(x)u′(x)v′(x) dx+

∫ 1

0

q(x)u(x)v(x) dx

= −p(1)u′(1)v(1) + p(0)u′(0)v(0) +A(u, v)

= A(u, v) − αp(1)v(1) ,

where we have imposed the homogenous Neumann boundary condition u′(0) = 0
and the inhomogeneous condition u′(1) = α. Note that these boundary conditions
are not imposed on the space, but rather on the weak formulation; these are called
natural boundary conditions.

In a manner similar to the example in Section 4.1, we can show that the hy-
potheses of the Lax-Milgram theorem are satisfied. Recall that in proving coercivity
for the previous example, we used the Poincaré inequality to relate the L2 norm
with the H1 seminorm. We can not longer do this because our function is not zero
on any portion of the boundary. However, coercivity can be proved in a straight-
forward manner; the details are left to the exercises. Thus we are guaranteed the
existence and uniqueness of a solution to (4.35).

If we want to seek an approximation to u(x) in the space of continuous, piece-
wise linear functions defined over the subdivision (4.6) then we cannot use the
space Sh

0 defined in (4.7) since this space was designed to approximate functions in
H1

0 (0, 1). Instead we consider Sh where

Sh = {φ(x) ∈ C[0, 1], φ(x) linear on (xi, xi+1) for 0 ≤ i ≤ N} . (4.36)

Similar to the homogeneous Dirichlet case, it can be shown that Sh is an N + 2
dimensional subspace of H1(0, 1); a basis for Sh is given by the standard “hat”
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functions that we used for Sh
0 along with one defined at each endpoint. Specifically,

we have the functions ψi, i = 1, . . . , N + 2 defined by

ψi(x) =






φ0(x) for j = 1
φi−1(x) for 2 ≤ i ≤ N + 1
φN+1(x) for j = N + 2

(4.37)

where φi(x), i = 1, . . .N are given by (4.8) and

φ0(x) =

{ x1 − x

h1

for 0 ≤ x ≤ x1

0 elsewhere
(4.38)

and

φN+1(x) =






x− xN

hN+1

for xN ≤ x ≤ 1

0 elsewhere .
(4.39)

Galerkin’s theorem guarantees that there is a unique uh ∈ Sh ⊂ H1(0, 1)
satisfying

A(uh, vh) = (f, vh) + αp(1)vh(1) ∀ vh ∈ Sh . (4.40)

The problem of finding a uh ∈ Sh which satisfies (4.40) reduces to solving a linear
system of equations; in this case the coefficient matrix has dimension N + 2. In
addition, we can use the interpolation results given in Lemma 4.2 to obtain the
following optimal error estimates. See the exercises for a proof.

Theorem 4.10. Let u ∈ H2(0, 1) be the solution of (4.34) and let uh be the
Galerkin approximation in Sh defined by (4.36) given by (4.40). Then for some
constant C, independent of h, u, and uh we have

∥∥u− uh
∥∥

k
≤ Ch2−k ‖u‖

2

for k = 0, 1.

One purpose of the following computations is to demonstrate the difference in
satisfying a boundary condition by imposing it on the space (an essential bound-
ary condition) and imposing it weakly through the weak formulation (a natural
boundary condition).

Example 4.11 We consider the problem

−u′′ + π2u = 2xπ2 sinπx− 2π cosπx for 0 < x < 1
u′(0) = 0
u′(1) = −π ,

(4.41)

whose exact solution is given by u = x sinπx. Note that this is the same differential
equation as in Example 4.8 but now we are imposing Neumann boundary conditions.
Since our solution u(x) = x sinπx is actually in C∞(0, 1) we expect the optimal rates
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of convergence which we can see are obtained from Table 4.5. The approximate
solutions using uniform grids of h = 1

4
, 1

8
and 1

16
along with the exact solution are

plotted in Figure 4.3. Note that although our exact solution is zero at the endpoints,
our approximate solution is not because we imposed Neumann boundary conditions.
However, the approximate solution does not satisfy the exact derivative boundary
condition because we have satisfied it weakly. In the last plot in Figure 4.3 we have
blown up the approximate solutions at the right end point which should have a
slope of −π. The approximate derivative at the right boundary is -1.994, -2.645,
-2.917 and -3.036 for h = 1/4, 1/8, 1/16, and 1/32 respectively. These correspond
to errors of 1.147, 0.4968, 0.2244 and 0.1055. As h → 0 the derivative of the
approximate solution at x = 1 approaches the exact value of −π linearly; this is
expected because the rate of convergence in the H1 norm is one. Note that this
is in contrast to Example 4.8 where our approximate solution exactly satisfied the
homogeneous Dirichlet boundary condition because we imposed it on our space.

Table 4.5. Numerical results for Example 4.11 using continuous, piecewise
linear polynomials.

h
∥∥u− uh

∥∥
1

rate
∥∥u− uh

∥∥
0

rate

1/4 0.48183 0.22942× 10−1

1/8 0.23838 1.0153 0.56235× 10−2 2.0281
1/16 0.11892 1.0033 0.13988× 10−2 2.0073
1/32 0.059425 1.0009 0.34924× 10−3 2.0019

4.3 A two-point BVP with inhomogeneous boundary
data

In the previous two sections we considered two-point boundary values problems
with homogeneous Dirichlet boundary data and homogeneous and inhomogeneous
Neumann data. Consequently, the only type of boundary conditions that are left to
see how to handle are inhomogeneous Dirichlet data and mixed, or Robin, boundary
conditions. In this section we demonstrate how an inhomogeneous Dirichlet bound-
ary condition can be handled; the mixed boundary condition is handled similarly to
the inhomogeneous Neumann boundary condition. In particular we seek a function
u(x) satisfying

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) for 0 < x < 1

u(0) = α u′(1) + σu(1) = β ,
(4.42)

where α, β, and σ are constants. Note that if we choose σ = 0 then we just have
an inhomogeneous Neumann boundary condition at the right endpoint as we did in
(4.34).
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Figure 4.3. Plots of the exact solution and three piecewise linear approxi-
mations. The last plot gives a blow-up of the right endpoint demonstrating that the
natural boundary condition is only satisfied weakly.

We know that the underlying Hilbert space for the weak formulation should
be H1(0, 1) or some subspace.. For the Dirichlet boundary condition in Section 4.1
we imposed the boundary condition on the space; i.e., we sought our solution in
the subspace of H1(0, 1) consisting of all functions that were zero on the boundary.
However, we can not constrain our space to be all functions φ ∈ H1(0, 1) which
satisfy φ(0) = α. The reason is that this is not a subspace of H1(0, 1) since, for
example, if v(0) = α and w(0) = α then (v + w)(0) = 2α.

Inhomogeneous Dirichlet boundary conditions can be handled in several ways.
One of the easiest ways to handle them theoretically is to transform the problem
into one which has homogeneous Dirichlet boundary data. In our problem we
choose a function g(x) ∈ H1(0, 1) such that g(0) = α and such that g(x) is nonzero
only on [0, ξ] where ξ < 1; the reason for the latter requirement is so that the
boundary condition at x = 1 is unaffected. We then define w(x) = u(x) − g(x) so
that w(0) = u(0) − g(0) = 0. Because we have converted the problem to one for
w = u− g with g(x) zero outside [0, ξ], ξ < 1 we have the same boundary condition
for w′(1) as for u′(1). The differential equation is now modified as

− d

dx

(
p(x)

d(w + g)

dx

)
+ q(x)(w + g) = f(x) .

Because g(x) is a known function, the two-point boundary value problem for w(x)
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becomes

− d

dx

(
p(x)

dw

dx

)
+ q(x)w = f(x) + (p(x)g′(x))′ − q(x)g(x) for 0 < x < 1

w(0) = 0
w′(1) + σw(1) = β ,

(4.43)
The mixed boundary condition at the right boundary is handled in a similar

manner to the inhomogeneous Neumann. In this case, instead of w′(1) being set to
a constant, we have w′(1) = β − σw(1). When we substitute this value in the weak
form, the constant β goes to the right hand side of the equation because it is known
whereas the term σw(1) is unknown and is incorporated in the bilinear form.

We now define a weak problem for the function w(x) = u(x) − g(x). Let
Ĥ1(0, 1) be the subspace of H1(0, 1) consisting of all functions in H1(0, 1) which
are zero at x = 0. Then we seek a w ∈ Ĥ1(0, 1) satisfying

{ seek u ∈ Ĥ1(0, 1) satisfying

A(w, v) = (f, v) −A(g, v) + βp(1)v(1) ∀ v ∈ Ĥ1(0, 1) ,
(4.44)

where

A(w, v) = (pw′, v′) + (qw, v) + σp(1)w(1)v(1) . (4.45)

To demonstrate that a solution to (4.43) is also a solution to (4.44) we first note
that

∫ 1

0

[
− (pw′)′ + qw

]
v dx =

∫ 1

0

pw′v′ dx+

∫ 1

0

qwv dx− p(1)w′(1)v(1) + p(0)w′(0)v(0)

=

∫ 1

0

pw′v′ dx+

∫ 1

0

qwv dx− p(1)
(
β − σw(1)

)
v(1)

= A(w, v) − βp(1)v(1) .

Now the right-hand side of (4.43) can be written as

∫ 1

0

(
f(x) + (p(x)g′(x))′

)
v(x) dx−

∫ 1

0

q(x)g(x)v(x) dx

= (f, v) −
∫ 1

0

p(x)g′(x)v′(x) dx+ p(1)g′(1)v(1) − p(0)g′(0)v(0)

−
∫ 1

0

q(x)g(x)v(x) dx

= (f, v) −
(∫ 1

0

p(x)g′(x)v′(x) dx+

∫ 1

0

q(x)g(x)v(x) dx
)

= (f, v) −A(g, v)

where we have used the fact that v ∈ Ĥ1(0, 1) implies v(0) = 0 and g(1) = g′(1) = 0
because g = 0 in (ξ, 1]. Combining these two results demonstrates that if w satisfies
the classical two-point boundary value problem (4.43) then w satisfies the weak
problem (4.44).
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Using similar techniques as before, we can demonstrate that A(·, ·) defined by
(4.45) satisfies the conditions of the Lax-Milgram theorem and that the right-hand
side of (4.44) denotes a bounded linear functional on the Hilbert space Ĥ1(0, 1).
Then we have that there exists a unique solution w ∈ Ĥ1(0, 1) to (4.44). The
generalized or weak solution u to (4.42) is given by u = w + g.

To find an approximate solution to (4.44) in the space of piecewise linear
functions which are zero at x = 0 we define the (N + 1)-dimensional subspace of
Ĥ1(0, 1)

Ŝh = {φ ∈ Ĥ1(0, 1) : φ is piecwise linear on each subinterval and φ(0) = 0} ,

where we are using the mesh defined by

0 = x0 < x1 < · · · < xN+1 = 1 where xi = xi−1 + hi, 1 ≤ i ≤ N + 1 ,

A basis for Ŝh is given by φi, i = 1, . . . , N +1 where φ1, . . . , φN are defined by (4.8)
and φN+1 is defined by (4.39). We choose g(x) = aφ0(x) where φ0(x) is the basis

function defined by (4.38). Then the resulting linear system is given by A~c = ~b where

Aij = A(φj , φi) for 1 ≤ i, j ≤ N + 1 and ~bi = −A(aφ0, φi) + (f, φi) + bp(1)φi(1) for
1 ≤ i ≤ N+1. We note that the coefficient matrix in the resulting algebraic system
has the same formulas for the entries as in our previous examples, the dimension is
just N + 1. However, the right-hand side has an additional contribution in the first
entry due to the boundary condition at x = 0 and in the last position due to the
inhomogeneous mixed boundary condition.

We should note that in more complicated problems in higher dimensions, it
may not be so easy to construct the function g. To handle the problem theoretically,
we can always assume such a function but implementing in a computer program
may be more difficult. In later chapters we see different ways to implement inho-
mogeneous Dirichlet boundary data.

Summarizing, we see that the mixed boundary condition at x = 1 required no
adjustment of the underlying Hilbert space but rather was “automatically” satisfied
by our choice of the weak formulation. As before, such a boundary condition is called
natural. On the other hand, the Dirichlet boundary condition required that we
constrain our underlying Hilbert space so that the boundary condition is satisfied.
This is another example of an essential boundary condition.

4.4 A fourth order example

In this section we consider approximating the solution of a fourth order boundary
value problem. In particular, we consider

d2

dx2

(
r(x)

d2u

dx2

)
− d

dx

(
p(x)

du

dx

)
+ q(x)u(x) = f(x) 0 < x < 1

u(0) = u(1) = 0 u′′(0) = u′′(1) = 0 ,
(4.46)

where rmax ≥ r(x) ≥ rmin > 0 and pmax ≥ p(x) ≥ 0, qmax ≥ q(x) ≥ 0 for all
x ∈ [0, 1]. Other boundary conditions which can be applied are explored in the
exercises.
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This problem differs from the previous second order problem because when
we perform a a single integration by parts we have three derivatives on the trial
function and two on the test function. To balance the derivatives we need to perform
a second integration by parts. An obvious choice for the bilinear form A(·, ·) is

A(v, w) =

∫ 1

0

(
rv′′w′′ + pv′w′ + qvw

)
dx . (4.47)

In this situation we immediately realize that due to the appearance of second deriva-
tives we can no longer use H1(0, 1) as our underlying Hilbert space; we must now
use H2(0, 1) which is the space of all functions in L2(0, 1) which possess weak L2

derivatives up to order two. The notation H2
0 (0, 1) is used for the space

H2
0 (0, 1) = {v ∈ H2(0, 1) : v(0) = v(1) = v′(0) = v′(1) = 0} . (4.48)

Because we have boundary conditions on u′′ we don’t need H2
0 (0, 1) so we

consider the space H2(0, 1)∩H1
0 (0, 1) which is the set of all functions v in H2(0, 1)

which satisfy v(0) = 0 and v(1) = 0. Then our weak formulation is to

{ seek u ∈ H2(0, 1) ∩H1
0 (0, 1) satisfying

A(u, v) = (f, v) ∀ v ∈ H2(0, 1) ∩H1
0 (0, 1) .

(4.49)

If u is the classical solution of (4.46) then

(f, v) =

∫ 1

0

(
(ru′′)′′ − (pu′)′ + qu

)
v dx

=

∫ 1

0

(
−(ru′′)′v′ + (pu′)v′ + quv

)
dx+ ru′′v′|10 − pu′v|10

=

∫ 1

0

(
ru′′v′′ + pu′v′ + quv

)
dx

= A(u, v) ,

where we have imposed the boundary conditions u′′(0) = u′′(1) = 0 on the weak
form and used the fact that v ∈ H2(0, 1)∩H1

0 (0, 1) implies v(0) = v(1) = 0. In this
case the boundary conditions u′′(0) = u′′(1) = 0 are natural boundary conditions
and u(0) = u(1) = 0 are essential boundary conditions.

The proof that the bilinear form defined by (4.47) satisfies the hypotheses of
the Lax-Milgram theorem is left to the exercises. In the sequel we assume that a
unique solution to the weak problem can be guaranteed.

We now consider the approximate problem. An immediate consequence of
having H2(0, 1) as the underlying Hilbert space is that we can no longer approx-
imate using continuous piecewise linear polynomials or even continuous piecewise
polynomials of degree k. A space Sh consisting of piecewise polynomials satisfies
Sh ⊂ H1(0, 1) if and only if the functions in Sh are continuous; for Sh ⊂ H2(0, 1)
we require the functions and the first derivatives to be continuous. These results are
formally proved in a general setting in a later chapter. As a consequence of using
H2(0, 1) as the underlying space we must now investigate piecewise polynomials
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which are in C1(0, 1) so that we can guarantee them to be subspaces of H2(0, 1).
We consider two spaces: piecewise cubic Hermite polynomials and piecewise cubic
splines.

4.4.1 Piecewise cubic Hermite polynomials

In this section we consider a space of piecewise polynomials which are C1(0, 1)
and which are cubic on each subinterval of a partition of [0, 1]; for simplicity of
exposition we take a uniform partition. We define the space of piecewise cubic
Hermite polynomials over the subdivision

0 = x0 < x1 < · · · < xN+1 = 1 where xi = xi−1 + h, h =
1

N + 1

to be all polynomials φ(x) ∈ C1(0, 1) which are cubic on each subinterval [xi, xi+1].
The dimension of this space is easily determined by considering the number of
degrees of freedom and number of constraints we have. On each of the N + 1
subintervals there are four degrees of freedom to determine a cubic yielding a total
of 4N+4 degrees of freedom; for the piecewise polynomial to be C1(0, 1) we require
continuity of the polynomial and its derivative at each of the N interior nodes
yielding a total of 2N constraints. Combining these results, we see that this space
is a (2N + 4)-dimensional subspace of H2(0, 1). We define the space Hh to be the
space of piecewise cubic Hermite polynomials over the given partition; i.e.,

Hh = {φ(x) : φ ∈ C1(0, 1),

φ(x) is a cubic polynomial on [xi, xi+1], 0 ≤ i ≤ N} . (4.50)

Of course for our particular example we have to constrain this space to satisfy the
homogeneous Dirichlet boundary conditions. However, we first consider a basis for
Hh.

A convenient way to establish a basis for Hh is to consider translations of func-
tions defined on [−1, 1]. In particular, we consider the piecewise cubic polynomials
ξ(x) and η(x) defined by

ξ(x) =

{
(x+ 1)2(−2x+ 1) −1 ≤ x ≤ 0
(x− 1)2(2x+ 1) 0 ≤ x ≤ 1

and

η(x) =

{
x(x + 1)2 −1 ≤ x ≤ 0
x(x − 1)2 0 ≤ x ≤ 1

on [−1, 1] These polynomials are illustrated in Figure 4.4. Note that ξ(x) ∈
C1[−1, 1], ξ(±1) = 0, ξ′(0) = 0, and ξ′(±1) = 0; also η(x) ∈ C1[−1, 1], η(0) =
η(±1) = 0, η′(±1) = 0, and η′(0) = 1.

We now translate these cubic polynomials to the interval [xi−1, xi+1] for i =
1, . . . , N to obtain our basis elements ξi(x) and ηi(x). Specifically, we define

ξi(x) =

{
ξ(x

h − i) xi−1 ≤ x ≤ xi+1

0 elsewhere
(4.51)
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Figure 4.4. Basis functions for cubic Hermite polynomials on [−1, 1]

and

ηi(x) =

{
η(x

h − i) xi−1 ≤ x ≤ xi+1

0 elsewhere
(4.52)

for i = 1, . . . , N . So far we have 2N functions and we know that the dimension of
Hh is 2N + 4 so we must define four additional functions. To this end, we define
ξ0(x), ξN+1(x) and η0(x), ηN+1(x) by

ξ0(x) =

{
ξ(x

h ) 0 ≤ x ≤ x1

0 elsewhere
η0(x) =

{
η(x

h ) 0 ≤ x ≤ x1

0 elsewhere
(4.53)

ηN+1(x) =

{
η(x

h − (N + 1)) xN ≤ x ≤ xN+1

0 elsewhere.
(4.54)

and

ξN+1(x) =

{
ξ(x

h − (N + 1)) xN ≤ x ≤ xN+1

0 elsewhere
(4.55)

Summarizing, we have that

ξi(xj) = δij and ξ′i(xj) = 0 for 0 ≤ i, j ≤ N + 1 (4.56)

and
ηi(xj) = 0 and hη′i(xj) = δij for 0 ≤ i, j ≤ N + 1 . (4.57)

These polynomials are illustrated in Figure 4.5.
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Figure 4.5. Basis functions for cubic Hermite polynomials

Clearly these 2N + 4 functions {ξi}N+1

0 , {ηi}N+1

0 belong to Hh; moreover,
they form a basis for Hh. To see this, let p(x) ∈ Hh so that p ∈ C1(0, 1), p(x) is a
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cubic on each subinterval [xi, xi+1], 0 ≤ i ≤ N . Clearly p(x) is uniquely determined
by its value and that of its derivative at the N+2 nodes x0, . . . , xN+1. Using (4.56)
and (4.57) we have

p(x) =

N+1∑

i=0

p(xi)ξi(x) + h

N+1∑

i=0

p′(xi)ηi(x) .

Thus the vectors span Hh and are also clearly linearly independent.
Of course, for our example, we must constrain the space to satisfy the homoge-

neous Dirichlet boundary conditions. To this end, we define Ĥh to be all functions
φ(x) ∈ Hh which satisfy φ(0) = φ(1) = 0. In this case we choose the 2n+ 2 func-
tions {ξi}N

1 , {ηi}N+1

0 ; we do not include ξ0, ξN+1 since from (4.56) we know that

ξ0(0) = 1, ξN+1(1) = 1 so that ξ0, ξN+1 6∈ Ĥh.

We can now pose our weak problem over Ĥh ⊂ H2(0, 1) ∩H1
0 (0, 1). We seek

uh ∈ Ĥh satisfying

A(uh, vh) =

∫ 1

0

(
ruh′′

vh′′
+ puh′

vh′
+ quhvh

)
dx =

(
f, vh

)
∀ vh ∈ Ĥh . (4.58)

Once we have chosen a basis for our approximating space, we know that our
discrete weak problem reduces to solving a linear system of algebraic equations
Ac = F . We let {φi}2N+2

i=1 be the basis functions {ξi(x), ηi(x)} defined by (4.51)–
(4.54) and ordered in the sequence {η0,ξ1, η1, ξ2, η2, . . . , ξN , ηN , ηN+1}. If we write

uh =
∑2N+2

i=1
cjφj(x) then the cj ’s represent either the nodal values of uh or of

h(uh)′. The matrix A whose entries are given by

Aij =

∫ 1

0

(
r(x)φ′′i (x)φ′′j (x) + p(x)φ′i(x)φ

′
j(x) + q(x)φi(x)φj(x)

)
dx

is a symmetric matrix. However, the matrix is no longer tridiagonal as in the case
of piecewise linear elements but rather has the block tridiagonal form





A0 B0 0 · · · 0
B0 A1 B1 0 · · · 0

0 B1 A2 B2 0 0
. . .

. . .
. . .

0 · · · 0 BN−2 AN−1 BN−1

0 · · · 0 BN−1 AN





where the Ai’s and Bi’s are 2 × 2 matrices. To see this, consider the interval
[xi−1, xi+1]. The basis functions which are nonzero on this interval are ξi−1, ηi−1,
ξi, ηi, ξi+1, and ηi+1 so that the maximum number of nonzero entries in a single
row is six. It can be shown that the coefficient matrix is also positive definite so
that the linear system can be efficiently solved using a block Cholesky factorization.

In order to obtain an error estimate we turn to Galerkin’s theorem which
provides us with the H2-estimate

∥∥u− uh
∥∥

2
≤ inf

χh∈ bHh

∥∥u− χh
∥∥

2
, (4.59)
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where u and uh satisfy (4.49) and (4.58), repectively. To bound the term for the
error in the best approximation, we consider the Hh interpolant. The Hermite cubic
interpolant of a function g(x) on the uniform partition of [0, 1]

0 = x0 < x1 < · · · < xN+1 = 1 where xi = xi−1 + hi, 1 ≤ i ≤ N + 1 ,

where g(0) = g(1) = 0 is given by

Ihg =

N∑

i=1

g(xi)ξi(x) + h

N+1∑

i=0

g′(xi)ηi(x) . (4.60)

From approximation theory we have the following result which tells us how well
a function can be approximated by its cubic Hermite interpolant. As in the case
of the piecewise linear interpolant, additional smoothness on the function must be
assumed in order to get the optimal rates of approximation.

Lemma 4.12. Let f ∈ Hs(0, 1) where 2 ≤ s ≤ 4 and let Ihf denote its piecewise
cubic Hermite interpolant defined by (4.60). Then for 0 ≤ k ≤ 2 and for some
constant C, we have that

∥∥f − Ihf
∥∥

k
≤ Chs−k ‖f‖s . (4.61)

Note that in order to get the optimal accuracy, e.g., O(h4) in the L2-norm, we
must have that f ∈ H4(0, 1).

We can now use Lemma 4.12 to bound the right-hand side of (4.59). We have
the following error estimates; the proof is similar to that of Theorems 4.3 and 4.4.

Theorem 4.13. Let u ∈ Hk(0, 1), 2 ≤ k ≤ 4, be the solution of (4.49) and let

uh ∈ Ĥh be the solution of (4.58). Then

∥∥u− uh
∥∥

j
≤ Chk−j ‖u‖k (4.62)

where j = 0 or j = 2.

In practice, cubic Hermite functions are not often used. The reason for this
is twofold. First, there are, in general, 2N + 4 parameters to compute in one
dimension; as we will see in the next section there is an approximating space which
maintains the same accuracy as cubic Hermites with only N +4 parameters. Hence
for cubic Hermite polynomials we would be solving a (2N + 4)-dimensional system
in R

1 versus a (N+4)-dimensional system; this difference in size of the linear system
magnifies as we move to higher dimensions. Secondly, the Hermite cubic interpolant
matches the function and its derivative at the nodes. In many situations, especially
in more than one-dimension, it is not possible to accurately specify the derivatives
at the nodes. The space considered in the next section requires interpolation of the
function values only.
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4.4.2 Piecewise cubic spline functions

In this section we consider a finite dimensional subspace of H2(0, 1) which has two
desirable properties. We will require that only function values (and not derivatives)
will be used to interpolate smooth functions and that our space has as small a
dimension as possible. To do this, we constrain the space of Hermite cubics to
obtain the space

Ch = {φ(x) : φ(x) ∈ C2[0, 1], φ(x)is a cubic in each [xi, xi+1]} , (4.63)

where we are using the same uniform partition defined by h = 1/(N + 1) as before.
In an analogous manner to the case of Hh of cubic Hermite polynomials, we can
determine that Ch is a (N + 4)-dimensional subspace of H2(0, 1).

We must now specify a basis for Ch. In our space Hh of cubic Hermite polyno-
mials, there was a clear criterion for determining its elements. In fact, to determine
φ ∈ Hh we just specified φ(xi) and φ′i(xi) at the nodes xi, 0 ≤ i ≤ N + 1, thus
defining a unique cubic polynomial on each interval and at the same time assuring
that it be in C1[0, 1]. For the cubic spline space Ch, the obvious thing to try in or-
der to assure C2-continuity at the nodes would be to specify φ(x), φ′(x), and φ′′(x)
there. However, this cannot be done using cubic polynomials because we would be
overspecifying them.

Instead of specifying basis functions which interpolate a function and its first
and second derivatives at the nodes, we take the approach of constructing a basis
for Ch. To find the ith basis function we first note that its support cannot be in
the interval [xi−1, xi+1] as was the case with piecewise linear functions and Hermite
cubic functions. To see this, we note that there are eight degrees of freedom to
determine the cubic polynomials on [xi−1, xi+1] and a total of nine conditions to
specify over the three nodes, i.e., φ(xi±1) = φ′(xi±1) = φ′′(xi±1) = 0 and the
continuity of φ(x), φ′(x), and φ′′(x) at x = xi. Consequently, we must extend our
interval to [xi−2, xi+2] and attempt to construct a C2 function which is cubic on
each of the four subintervals [xi−s, xi−s+1], for s = −1, 0, 1, 2 and which is zero
outside the interval [xi−2, xi+2]. In this case we have 16 degrees of freedom and
15 conditions to impose so that it is clearly possible; the extra degree of freedom
will be used to specify that the function is one at node xi. A straightforward, but
tedious, computation gives such a function on the interval [−2, 2]; this function is
illustrated in Figure 4.6. Translating this function to the interval [xi−2, xi+2] for
2 ≤ i ≤ N − 1 we have

φi(x) =

{
φ(x

h − i) xi−2 ≤ x ≤ xi+2

0 elsewhere
(4.64)
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where

φ(x) =






1

4
(x+ 2)3 −2 ≤ x ≤ −1 ,

1

4

(
1 + 3(1 + x) + 3(1 + x)2 − 3(1 + x)3

)
−1 ≤ x ≤ 0 ,

1

4

(
1 + 3(1 − x) + 3(1 − x)2 − 3(1 − x)3

)
0 ≤ x ≤ 1 ,

1

4
(2 − x)3 1 ≤ x ≤ 2 .

(4.65)

Clearly each φi(x) ∈ Ch for 2 ≤ i ≤ N − 1; we have a total of N − 2 functions so

-2 -1 1 2

1

φ(x)

Figure 4.6. Basis function on [−2, 2] for cubic splines

that an additional six basis functions are needed to reach the dimension N +4. We
add the functions defined below where we have introduced extra nodes x−1 = −h
and xN+2 = 1 + h:

φ−1(x) =

{
φ(x

h + 1) 0 ≤ x ≤ x1

0 otherwise
φ0(x) =

{
φ(x

h + 1) 0 ≤ x ≤ x2

0 otherwise

φ1(x) =

{
φ(x

h − 1) 0 ≤ x ≤ x3

0 otherwise
φN (x) =

{
φ(x

h −N) xN−2 ≤ x ≤ 1
0 otherwise

φN+1(x) =

{
φ(x

h −N − 1) xN−1 ≤ x ≤ 1
0 otherwise

(4.66)

φN+2(x) =

{
φ(x

h −N − 2) xN ≤ x ≤ 1
0 otherwise .
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Figure 4.7. Basis functions for cubic splines

The set {φi(x)}N+2

i=−1 form a basis for Ch. These basis functions are illustrated in
Figure 4.7.
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An important difference in the basis functions for cubic splines and those we
studied for piecewise linear functions and cubic Hermites is that the unknowns we
solve for are no longer the nodal values of uh. This is because the cubic spline basis
functions are no longer zero at all nodes except one.

Since for our problem the underlying Hilbert space is H2(0, 1)∩H1
0 (0, 1), i.e.,

all functions in H2(0, 1) which are zero at x = 0 and at x = 1, we need only N + 2

basis functions. We define Ĉh as

Ĉh = {φ ∈ Ch : φ(0) = φ(1) = 0} .

For cubic splines we can not simply omit the specific basis functions which are
nonzero at x = 0 and x = 1 as we did for the piecewise linear basis. We can equip
Ĉh with a basis consisting of {φi}N−1

i=2 and the four functions φ̃0 , φ̃1, φ̃N , and φ̃N+1

which are obtained as linear combinations of the remaining φi(x)’s so that they
vanish at x = 0 and at x = 1. For example, φ̃0 = φ0 − 4φ−1, φ̃1 = φ1 − φ−1. (See
exercises.)

As before, in order to obtain error estimates using cubic splines as our ap-
proximating space, we need to obtain estimates for the error in the cubic spline
interpolant. We note that we have N + 2 nodes and the space Ch has dimension
N + 4; thus if the interpolant matches the function value at the N + 2 nodes, then
we have two additional conditions to impose. There are numerous choices; here we
consider one type of cubic spline interpolant of a function f ∈ H2(0, 1). We require
the interpolant, denoted Ihf , to satisfy the N + 4 conditions

Ihf(xi) = f(xi) for 0 ≤ i ≤ N + 1

Ihf
′
(x0) = f ′(x0) , Ihf

′
(xN+1) = f ′(xN+1) .

(4.67)

Lemma 4.14. Let f ∈ Hs(0, 1), 2 ≤ s ≤ 4. Then for 0 ≤ r ≤ 2 we have that

∥∥Dr(f − Ihf)
∥∥

0
≤ Chs−r ‖Dsf‖ . (4.68)

We now state a result analogous to Theorem 4.13 .

Theorem 4.15. Let u ∈ Hk(0, 1), 2 ≤ k ≤ 4 be the solution of (4.49) and let

uh ∈ Ĉh be the solution of (4.58). Then

∥∥u− uh
∥∥

j
≤ Chk−j ‖u‖k (4.69)

where j = 0 or j = 2.


