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Chapter 1

Introduction

{chapter_intro}
Many mathematical models of phenomena occurring in the universe involve differ-
ential equations for which analytical solutions are not available. For this reason,
we must consider numerical methods for approximating the solution of differen-
tial equations. The finite element method is one such technique which has gained
widespread use in a diverse range of areas such as fluid mechanics, structural me-
chanics, biological science, chemistry, electromagnetism, financial modeling, and
superconductivity, to name a few. One can find articles where finite element meth-
ods have been employed to study everything from stress analysis of a human tooth
to design of an airplane wing.

Although the foundations for the finite element method were laid in the first
half of the twentieth century, it did not become widely used until much later. Struc-
tural engineers were the first to use the technique in the 1940’s and 1950’s; math-
ematicians became interested in analyzing and implementing the method in the
late 1960’s. The first symposium on the mathematical foundations of the finite
element method was held in June of 1972 with over 250 participants and resulted
in a now famous book by I. Babuska and A. Aziz. Prior to this symposium there
had already been numerous national and international conferences held on the finite
element method but mainly with an emphasis on engineering applications. In the
following decades the finite element method has grown in popularity as a useful tool
in design and application as well as a fertile area for mathematical analysis.

This first chapter is motivational in intent. We define, in the simplest possible
setting, a finite element method. We then make an attempt to analyze the method;
this attempt fails to be rigorous because we do not have in hand the necessary
mathematical tools. However, in making the attempt, we learn something about
the nature of the tools that we need to acquire. We then compare and contrast
finite element methods to the finite difference approach and discuss some of the
attractive features of finite element methods.
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2 Chapter 1. Introduction

1.1 What are finite element methods?
{intro_sec_whatfem}

Finite element methods are a class of methods for obtaining approximate solutions
of differential equations, especially partial differential equations.1 As such, they can
be compared to other methods that are used for this purpose, e.g., finite difference
methods, finite volume methods or spectral methods. There are seemingly countless
finite element methods in use, so that one cannot refer to any method as the finite
element method any more that one can refer to any particular method as being the
finite difference method. In fact, there are numerous subclasses of finite element
methods, each saddled with a modifier, e.g., Galerkin, mixed, or collocation finite
element methods. We draw distinctions between these different subclasses of finite
element methods in later chapters.

The finite element method is distinguished from other approaches to approxi-
mating differential equations by the combination of variational methods and piece-
wise polynomial approximation. Piecewise polynomial approximation is very at-
tractive due to the ease of use, its approximation properties, and the availability
of bases which are locally supported; that is, bases that are nonzero over a small
portion of the domain. Variational methods have their roots in the combination
of partial differential equations and the calculus of variations. The Rayleigh-Ritz
Method, conceived individually by Lord Rayleigh and Walther Ritz, is a variational
technique to find the minimum of a functional defined on an appropriate space of
functions as a linear combination of elements of that space. The variational aspect
of the finite element method usually takes the form of a weak or variational prob-
lem. In this and later chapters we see that some of the problems we consider are
equivalent to an unconstrained minimization problem such as Rayleigh-Ritz. On
the other hand, the variational principles that the finite element method encom-
passes can handle problems which are related to constrained minimization and even
those not related to optimization problems.

1.2 A Simple Example
{intro_sec_example}

In order to begin to understand the basic idea of the finite element method and
the steps involved, we define a finite element method for the very simple two-point
boundary value problem{intro_simpex}

−u′′(x) = f(x) 0 < x < 1 , (1.1a){intro_simpde}

u(0) = 0 , (1.1b){intro_simpbc0}

and
u′(1) = 0 . (1.1c){intro_simpbc1}

Here, f(x) is a given function defined for x ∈ (0, 1) and u(x) is the unknown function
to be determined by solving (1.1). This boundary value problem can represent

1Finite element methods were not always thought of in this manner, at least in the structural
mechanics community. In an alternate definition, structural systems are directly discretized into
approximate submembers such as beams, plates, shells, etc., without any recourse to differential
equations. These submembers are then called “finite elements.”
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a number of different physical situations; e.g., the temperature distribution in a
uniform rod. It is important to note that this differential equation arises from a
steady-state problem, that is, one that does not result from the time evolution of
some initial condition.

The finite element approximation uh(x) to the solution u(x) of (1.1) is defined
to be the solution of the following problem:

find uh(x) ∈ V h such that

∫ 1

0

duh

dx

dvh

dx
dx =

∫ 1

0

fvh dx ∀ vh ∈ V h , (1.2) {intro_simpdweak}

where V h is a finite dimensional set (more precisely, a linear space2) of functions
that vanish at x = 0 and are sufficiently smooth. Actually, Problem 1.2 defines
a finite element method only if the approximating set V h is chosen to consist of
piecewise polynomial functions. This choice of approximating functions, along with
a judicious choice of basis for V h, is primarily responsible for the success of the
finite element method as a computational method.

We now ask ourselves what (1.2) has to do with the original problem (1.1).
An obvious connection is that since functions belonging to V h vanish at x = 0 by
definition, we have that uh(x) satisfies the boundary condition (1.1b). To see further
connections, consider the following problem which is analogous to (1.2) except it is
posed over an infinite dimensional vector space V instead of the finite dimensional
space V h:

find u(x) such that u(0) = 0 and∫ 1

0

u′v′ dx =

∫ 1

0

fv dx ∀ v ∈ V ,
(1.3) {intro_simpweak}

where for each v ∈ V , v(0) = 0 and v is “sufficiently smooth”. One can view
Problem 1.2 as an approximation of Problem 1.3. Integrating the left-hand side of
(1.3) by parts and using the fact that v(0) = 0 allows us to write

v(1)u′(1)−
∫ 1

0

(
u′′(x) + f(x)

)
v(x) dx = 0 . (1.4) {intro_simpweak1}

Now the arbitrariness of v(x) implies that u(x) also satisfies (1.1a) and (1.1c). To
see this, we first choose an arbitrary v(x) that vanishes at x = 1 as well as at x = 0.
For all such v(x), we have that∫ 1

0

(
u′′(x) + f(x)

)
v(x) dx = 0 ,

so that u(x) satisfies (1.1a). However, if u(x) satisfies (1.1a), then (1.4) simplifies
to

v(1)u′(1) = 0 ,

where now again v(1) is arbitrary. Thus, we obtain (1.1c) as well. Hence we have
demonstrated that if u(x) is a sufficiently smooth solution of (1.3) then it also
satisfies (1.1).

2Linear or vector spaces will be discussed in Chapter 2.
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Now, let us reverse the above steps that took us from (1.3) to (1.1). Specif-
ically, we require that u(0) = 0 and we multiply (1.1a) by a sufficiently smooth
function v(x) that vanishes at x = 0 but is otherwise arbitrary. Then, we integrate
the term involving the second derivative of u by parts and use the boundary con-
dition (1.1c) to obtain (1.3). In this manner, one can show3 that any solution u(x)
of (1.1) is also a solution of the problem (1.3). Is the converse true? We have seen
that the answer is yes only if the solution of (1.3) is sufficiently differentiable so
that substitution into (1.1a) makes sense. For this substitution to make sense, u(x)
should be (at least) twice continuously differentiable which, of course, requires that
the given function f(x) be continuous on (0, 1). On the other hand, (1.3) may have
solutions that cannot be substituted into (1.1a) because they are not sufficiently
differentiable. For example, we will see in later chapters that (1.3) has a solution
for some functions f that are not continuous; these solutions cannot be solutions of
(1.1).

1.2.1 Some Terminology
{intro_sec_terminology}

Let us now introduce some terminology that will be used throughout this book.
We call u(x) a classical solution of (1.1) if, upon substitution into these relations,
equality holds at every point x ∈ (0, 1). We call solutions of (1.3) that are not
classical solutions of (1.1) weak solutions of the latter problem and (1.3) itself is
referred to as a weak formulation of (1.1).4 Analogously, problem (1.2) is termed a
discrete weak problem.

The functions vh and uh in (1.2) are called test and trial functions, respec-
tively. The same terminology is used for the corresponding functions v and u ap-
pearing in (1.3). Where do these names come from? Suppose someone gave us
a function uh(x) and claimed that it was a solution of the discrete weak problem
(1.2). To verify the claim, we would put the function uh(x) on “trial,” i.e., we
would determine if substituting it into (1.2) results in the left-hand side equal to
the right-hand side for all possible test functions vh(x) ∈ V h.

The Dirichlet boundary condition (1.1b) and the Neumann boundary condi-
tion (1.1c) are treated differently within the framework of the weak formulation
(1.3) or its approximation (1.2). First, we note that the Neumann boundary condi-
tion (1.1c) is not imposed on the test or trial functions; however, we saw that if u(x)
satisfies the weak problem (1.3), then this Neumann boundary condition is indeed
satisfied. Such boundary conditions, i.e., boundary conditions that are not required
of the trial functions but are satisfied “naturally” by the weak formulation, are
called natural boundary conditions. On the other hand, nothing in the process we
used to go from the weak problem (1.3) to the classical problem (1.1) implied that
the Dirichlet boundary condition (1.1b) was satisfied. For this reason, we imposed
the boundary condition as a constraint on the possible trial functions. Such bound-

3All the necessary steps can be made rigorous.
4The terminology about solutions is actually richer than we have indicated. There are also

solutions called strong solutions intermediate between weak and classical solutions. We postpone
further discussions of the different types of solutions until we have developed some additional
mathematical background.



1.2. A Simple Example 5

ary conditions are called essential boundary conditions. Note that for the discrete
problem, the approximate solution uh(x) satisfies (by construction) the essential
boundary condition (1.1b) exactly, but that the natural boundary condition (1.1c)
is only satisfied in a weak sense.

1.2.2 Polynomial Approximation
{intro_sec_polyapprox}

The two main components of the finite element method are its variational principles
which take the form of weak problems and the use of piecewise polynomial approx-
imation. In our example we use the discrete weak or variational formulation (1.2)
to define a finite element method but we have not used piecewise polynomials yet.
In this example we choose the simple case of approximating with piecewise linear
polynomials; that is, a polynomial which is linear when restricted to each subdivi-
sion of the domain. To define these piecewise polynomials, we first discretize the
domain [0, 1] by letting N be a positive integer and setting the grid points or nodes
{xj}Nj=0 so that 0 = x0 < x1 < x2 < · · · < xN−1 < xN = 1. Consequently we
have N + 1 nodes and N elements. These nodes serve to define a partition of the
interval [0, 1] into the subintervals Ti = [xi−1, xi], i = 1, . . . , N ; note that we do not
require the partition to be uniform. The subintervals Ti are the simplest examples
of finite elements. We choose the finite dimensional space V h in (1.2) to be the
space of continuous piecewise linear polynomials over this partition of the given
interval so that each vh is a continuous piecewise linear polynomial. In particular,
we denote vhi (x) = vh(x)|Ti

for i = 1, . . . , N ; i.e., vhi (x) is the restriction of vh(x)
to element Ti. For continuous piecewise linear polynomials, we formally define the
set of functions V h as follows: vh(x) ∈ V h if

(i) vhi (x) is a linear polynomial for i = 1, . . . , N ;

(i) vhi (xi) = vhi+1(xi) for i = 1, . . . , N − 1, and

(iii) vh(x0) = 0 .

(1.5) {intro_simpfespace}

Condition (i) of (1.5) guarantees that the function vh(x) is a piecewise linear poly-
nomial, Condition (ii) guarantees continuity and Condition (iii) guarantees that vh

vanishes at x = 0. With this choice for V h, (1.2) is called a piecewise linear finite
element method for (1.1).

1.2.3 Connection with Optimization Problem
{intro_sec_optimization}

We note that the weak problems (1.2) and (1.3) can be associated with an opti-
mization problem. For example, for a given f(x) consider the functional

J (v; f) =
1

2

∫ 1

0

(v′)2 dx−
∫ 1

0

fv dx (1.6) {intro_simpmin}

and the unconstrained minimization problem:

find u(x) ∈ V such that J (u; f) ≤ J (v; f) ∀ v ∈ V ,
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where the space V is defined as before. Using standard techniques of the calculus
of variations, one can show that a necessary requirement for any minimizer of (1.6)
is satisfying the weak problem (1.3). The converse is also true so that the two
problems (1.6) and (1.3) are equivalent. In fact, in engineering applications this
minimization approach is often used since it has the interpretation of minimizing an
energy. However, not all weak problems have an equivalent minimization problem.
We discuss this and its implications in later chapters.

1.3 How do you implement finite element methods?
{intro_sec_implement}

We now translate the finite element method defined by (1.2) into something closer to
what a computer can understand. To do this, we first show that (1.2) is equivalent
to a linear algebraic system once a basis for V h is chosen. Next we indicate how
the entries in the matrix equation can be evaluated.

Let {φi(x)}Ni=1 be a basis for V h, i.e., a set of linearly independent functions
such that any function belonging to V h can be expressed as a linear combination
of these basis functions. Note that we have assumed that the dimension of V h is
N which is the case if we define V h by (1.5). Thus, the set {φi(x)}|Ni=1 has the
property that it is linearly independent, i.e.,

N∑
i=1

αiφi(x) = 0 implies αi = 0 for i = 1, . . . , N

and it spans the space. That is, for each wh ∈ V h there exists real numbers wi,
i = 1, . . . , N , such that

wh(x) =

N∑
i=1

ωiφi(x) .

In the weak problem (1.2), the solution uh(x) belongs to V h and the test function

vh(x) is arbitrary in V h. Since the set spans V h we can set uh =
∑N
j=1 µjφj and

then express (1.2) in the following equivalent form: find µj ∈ R1, j = 1, . . . , N ,
such that

∫ 1

0

d

dx

 N∑
j=1

µjφj(x)

 d

dx

(
vh
)
dx =

∫ 1

0

f(x)vh dx ∀ vh ∈ V h .

Since this equation must hold for each function vh ∈ V h then it is enough to test
the equation for each element in the basis; that is, for each φi, i = 1, . . . , N . Using
this fact, the discrete problem is rewritten as

find µj, j = 1, . . . , N , such that
N∑
j=1

(∫ 1

0

φ′i(x)φ′j(x) dx

)
µj =

∫ 1

0

fφi(x) dx for i = 1, . . . , N .
(1.7){intro_simpdweak2}
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Clearly (1.7) is a linear algebraic system of N equations in N unknowns. Indeed, if

the entries of the matrix K and the vectors ~U and ~b are defined by

Kij =

∫ 1

0

φ′i(x)φ′j(x) dx , Uj = µj , and bj =

∫ 1

0

f(x)φi dx for i, j = 1, . . . , N ,

then, in matrix notation, (1.7) is given by

K~U = ~b . (1.8) {intro_simpmatrix}

However, we have not yet completely formulated our problem so that it can
be implemented on a computer. We first need to choose a particular basis set
and then the integrals appearing in the definition of K and ~b must be evaluated or
approximated. Clearly there are many choices for a basis for the space of continuous
piecewise linear functions defined by (1.5). We will see in Section 1.6 that a judicious
choice of the basis set will result in (1.8) being a tridiagonal system of equations
and thus one which can be solved efficiently in O(N) operations.

For now, let’s assume that we have chosen a specific basis and turn to the
problem of evaluating or approximating the integrals appearing in K and ~b. For a
simple problem like ours we can often determine the integrals exactly; however, for
a problem with variable coefficients or one defined on a general polygonal domain
in R2 or R3 this would not be practical. Even if we have software available that can
perform the integrations, this would not lead to an efficient implementation of the
finite element method. Thus to obtain a general procedure which would be viable
for a wide range of problems, we approximate the integrals by a quadrature rule.
For example, for the particular implementation we are developing here, we use the
midpoint rule in each element to define the composite rule∫ 1

0

g(x) dx =

N∑
k=1

∫ xk

xk−1

g(x) dx ≈
N∑
k=1

g

(
xk−1 + xk

2

)
(xk − xk−1) .

Using this rule for the integrals that appear in (1.8), we are led to the problem

Kh ~Uh = ~bh , (1.9) {intro_simpdmatrix}

where the superscript h on the matrix K and the vector ~b denotes the fact that we
have approximated the entries of K and ~b by using a quadrature rule to evaluate
the integrals. Using the midpoint rule, the entries of Kh and ~bh are given explicitly
by

Kh
ij =

N∑
k=1

(xk − xk−1)φ′i

(
xk−1 + xk

2

)
φ′j

(
xk−1 + xk

2

)
, for i, j = 1, . . . , N

and

bhi =

N∑
k=1

(xk − xk−1)f

(
xk−1 + xk

2

)
φi

(
xk−1 + xk

2

)
, for i = 1, . . . , N .
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In our example, Kh = K. To see this, recall that we have chosen V h as the
space of continuous piecewise linear functions on our partition of [0, 1] and thus
the integrands in K are constant on each element Ti. The midpoint rule integrates
constant functions exactly so even though we are implementing a quadrature rule,
we have performed the integrations exactly. However, in general, ~bh 6= ~b so that
~Uh 6= ~U .

Once the specific choice of a basis set for V h is made, the matrix problem
(1.9) can be directly implemented on a computer. A standard linear systems solver

can be used to obtain ~Uh. To efficiently solve (1.9) the structure and properties of
Kh should be taken into consideration.

There are an infinite number of possible basis sets for a finite element space.
If the basis functions have global support, e.g., if they are nonzero over the whole
interval (0, 1), then, in general, the resulting discrete systems such as (1.8) or (1.9)
will involve full matrices, i.e., matrices having possibly all nonzero entries.

In order to achieve maximum sparsity in the discrete systems such as (1.8) or
(1.9), the basis functions should be chosen to have local support, i.e., to be nonzero
on as small a portion of the domain as possible. Typically the basis functions are
required to have compact support , that is, they are zero outside of a compact set; in
finite elements the compact set consists of adjacent elements. In the one dimensional
case we have considered here, the basis functions should be nonzero over as small
a number of subintervals as possible. Such a basis set is provided by the “hat”
functions defined by

for i = 1, . . . , N − 1, φi(x) =



x− xi−1

xi − xi−1
for xi−1 ≤ x ≤ xi

xi+1 − x
xi+1 − xi

for xi ≤ x ≤ xi+1

0 otherwise

(1.10){intro_simphat}

and

φN (x) =


x− xN−1

xN − xN−1
for xN−1 ≤ x ≤ xN

0 otherwise.

(1.11){intro_simphatn}

A sketch of these functions for the case N = 4 on a nonuniform partition of [0, 1] is
given in Figure 1.3. Note that for all i = 1, . . . , N , φi(0) = 0, φi(x) is continuous on
[0, 1], is a linear polynomial on each subinterval [xj−1, xj ], j = 1, . . . , N , and φi(x)
is nonzero only in [xi−1, xi+1]. It can be shown that the set {φi(x)}Ni=1 given by
(1.10) and (1.11) is linearly independent and forms a basis for the space V h defined
by (1.5).

Now let’s examine the entries of the matrices K and Kh appearing in the
linear systems (1.8) or (1.9), respectively, for the basis functions defined in (1.10)
and (1.11). It is easy to see that both Kij = 0 and Kh

ij = 0 unless |i − j| ≤ 1.
Thus, for any number of elements N , these matrices have nonzero entries only
along the main diagonal and the first upper and lower subdiagonals, i.e., they are
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{intro_fig_hat}

Figure 1.1. Example of the hat basis functions for four intervals.

tridiagonal matrices. This is the optimal sparsity achievable with piecewise linear
finite elements. As a result, one can apply very inexpensive methods to solve the
linear systems (1.8) or (1.9).5

1.4 What is needed to analyze finite element
methods?

{intro_sec_analyze}
In the previous section we saw how to implement the finite element method for a
simple two point boundary value problem. In this section we turn to the question of
determining how accurate the approximate solution is in our example. Specifically,
we want to derive an error estimate, i.e., a bound for the difference between the
finite element approximation uh satisfying (1.2) and the weak solution u satisfying
(1.3). In deriving this estimate we ignore the fact that in the implementation stage
of solving our problem we introduced another error via the use of a quadrature
rule to evaluate the integrals. This is reasonable because, in general, one chooses a
quadrature rule whose error is small enough that it will be dominated by the finite
element error. We discuss this more in later chapters.

To derive the estimate we first note that since the test function v in (1.3)
satisifes v(0) = 0 and is sufficiently smooth but otherwise“arbitrary”, we may choose
v = vh ∈ V h ⊂ V in that equation since the same smoothness is required of vh and
vh(0) = 0. We have∫ 1

0

du

dx

dvh

dx
dx =

∫ 1

0

f(x)vh(x) dx ∀ vh ∈ V h .

Then, we subtract (1.2) from this equation to obtain∫ 1

0

(
du

dx
− duh

dx

)
dvh

dx
dx = 0 ∀ vh ∈ V h . (1.12) {intro_simportho}

5For example, if one uses a direct, elimination algorithm, tridiagonal systems can be solved
using O(N) multiplications; this should be constrasted with the O(N3) work needed to solve a
full linear system by Gaussian elimination.
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This equation is called an orthogonality condition. We now use this orthogonality
condition with uh ∈ V h to write∫ 1

0

(
du

dx
− duh

dx

)2

dx =

∫ 1

0

(
du

dx
− duh

dx

)
du

dx
dx−

∫ 1

0

(
du

dx
− duh

dx

)
duh

dx
dx

=

∫ 1

0

(
du

dx
− duh

dx

)
du

dx
dx

=

∫ 1

0

(
du

dx
− duh

dx

)(
du

dx
− dwh

dx

)
dx ,

where wh is an arbitrary element of V h. Using a standard inequality, we are lead
to the expression∫ 1

0

(
du

dx
− duh

dx

)(
du

dx
− dwh

dx

)
dx

≤

√∫ 1

0

(
du

dx
− duh

dx

)2

dx

√∫ 1

0

(
du

dx
− dwh

dx

)2

dx

so that √∫ 1

0

(
du

dx
− duh

dx

)2

dx ≤

√∫ 1

0

(
du

dx
− dwh

dx

)2

dx (1.13){intro_simperror}

for arbitrary wh ∈ V h. The relationship (1.13) says the following: the root mean
square error in the derivative of the finite element solution is less than or equal
to the root mean square difference between the derivatives of the exact solution
and any function in the approximating space V h. In this sense, finite element
approximations are “ best approximations.”

It would be nice if we could estimate the right-hand side of (1.13) in terms of
parameters of the problem such as the grid spacing. In fact, this is possible. If we let
h = maxNi=1 |xi−xi−1|, it can be shown that the right-hand side of (1.13) is bounded
by the product of a constant times h by using standard results from approximation
theory when we approximate using continuous piecewise linear polynomials. Thus,
we have the error estimate√∫ 1

0

(
du

dx
− duh

dx

)2

dx ≤ Ch (1.14){intro_simperrest}

in the case where V h is defined by (1.5). Among other things, (1.14) implies that as
h→ 0, i.e., as we increase the number of intervals N while reducing the maximum
length, h, of the intervals, the error in the finite element solution as measured by the
left-hand side of (1.14) tends to zero as well. Thus, we say that the finite element
method is convergent.

The structure of the derivation of many finite element error estimates is similar
to that outlined above. One first obtains an orthogonality result as typified by
(1.12). Then, one derives a best approximation result such as (1.13). Finally, one
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uses approximation theoretic results about the best approximation to obtain an
error estimate such as (1.14).

In our derivation of (1.14) we have omitted several details and have not been
precise in the definition of the function space where we seek the solution to the
weak problem. What is needed to make it precise? First of all, we have to go
back to the beginning and make precise what we mean by “sufficiently smooth” in
(1.3) and what are the functions f for which the weak problem possesses a unique
solution. Next, we have to make precise all the steps that led to (1.13) and to
the estimate of the right-hand side of (1.13) to arrive at (1.14). To obtain this
estimate, we need to investigate approximation theory in finite element spaces, i.e.,
how well can piecewise polynomials approximate given functions. This theory, as
well as estimates of the constant C in (1.14), which actually depends on the exact
solution u, will need regularity results for solutions of (1.3), i.e., results relating
the differentiability of the solution u to, among other things, the differentiability of
the data function f . All of this will require some background knowledge of linear
functional analysis and partial differential equations. In addition, when proving
existence and uniqueness of a weak problem or deriving an error estimate, we don’t
want to consider each individual problem but rather obtain the results for a general
weak problem. To do this, we must formulate a general weak problem which requires
the introduction of appropriate function spaces and bilinear forms. In Chapter 2
we give a brief overview of selected topics from functional analysis and in Chapter 3
we introduce the appropriate function spaces, provide the machinery for defining
an abstract weak problem, proving its existence and uniqueness and providing error
estimates. Regularity results concerning differential equations will be quoted and
referenced as needed.

1.5 A comparison with finite difference methods
{intro_sec_femfdm}

Like finite difference methods, particular finite element methods are ultimately de-
fined based on a grid, i.e., a partition of a given domain in Euclidian space into
subdomains. More often than not, the grid itself is defined by selecting a finite
number of points in the given domain. Thus, both classes of methods may be
thought of as grid-based methods so that, with some justice, one may view any
finite element method as merely being a realization of a particular finite difference
method. Conversely, with a little bit of work and ingenuity, finite difference methods
may be given a finite element derivation.

What separates the two classes of methods? There are many good and valid
answers that can and have been given to this question. A fundamental difference
between the two methods is this: unlike finite difference methods, a finite element
method can easily be “lifted” from the grid into a function space consisting of
functions defined, for all practical purposes, everywhere in the given domain. This
is exactly what we did in the example from Sections 1.1-1.4 by working with the set
V h so that details about the grid, although needed for the implementation of the
finite element method, were incidental to its definition and analysis. On the other
hand, finite difference methods remain intimately tied to the grid and their analysis
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involves functions defined over a discrete set of points, i.e., the grid. In general, this
renders finite difference methods much more difficult to analyze.

To compare the two methods more fully, let us define a simple finite difference
method for (1.1). As before, we begin with a uniform partition of the interval [0, 1]
into N subintervals. Let h = 1/N and xi = ih for i = 0, . . . , N . We let Ui denote
an approximation to u(xi) which is the exact solution evaluated at xi. We apply
the boundary condition (1.1b) by setting U0 = 0. In order to determine Ui for
i = 1, . . . , N , we first approximate the differential equation (1.1a) by replacing, at
every interior grid point xi, the second derivative by a second central difference
quotient to obtain

−Ui+1 − 2Ui + Ui−1

h2
= f(xi) for i = 1, . . . , N − 1 . (1.15){intro_simpfd}

To approximate the remaining boundary condition (1.1c), we can use a one-sided
difference quotient to obtain

UN − UN−1

h
= 0 . (1.16){intro_simpfdbc}

Clearly, (1.15)-(1.16) form the linear algebraic tridiagonal system of N equations
for the N unknowns Ui, i = 1, . . . , N given by

1

h



2 −1 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0

0 −1 2 −1 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · · · · 0 −1 2 −1
0 · · · · · · · · · 0 −1 1




U1

U2
...

UN−1

UN

 = h


f(x1)
f(x2)
f(x3)

...
f(xN )

 . (1.17){intro_simpfdsystem}

We can immediately point out another difference, albeit a somewhat philo-
sophical one, between finite difference and finite element methods. The finite differ-
ence method (1.15)-(1.16) was derived primarily by approximating operators, i.e.,
derivatives. On the other hand, the primary approximation step in deriving the fi-
nite element method (1.2) was to replace the solution u in (1.3) by an approximation
uh, i.e., by approximating the solution.

To explore the relationship between the two types of methods, let’s return to
the finite element method of (1.9). If we assume that the partition Ti, i = 1, . . . , N ,
is uniform with h = xi−xi−1 for i = 1, . . . , N , that V h is defined by (1.5), and that

the midpoint rule is used, then the entries of Kh and ~bh in (1.9) can be evaluated
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to obtain (see exercises for details)

Kh
ii =

2

h
for i = 1, . . . , N − 1, Kh

N =
1

h

Kh
ij = − 1

h
for i = 1, . . . , N − 1, |j − i| = 1, Kh

N,N−1 = − 1

h

bhj =
h

2

[
f

(
xj−1 + xj

2

)
+ f

(
xj + xj+1

2

)]
for j = 1, . . . , N − 1

bhN =
h

2
f

(
xN−1 + xN

2

)
.

(1.18){intro_simpfe}

Note the similarities and differences between the finite difference method (1.15)-
(1.16) and our finite element method. In particular, notice that the coefficient
matrix is identical to (1.17) but the right-hand side has an averaging performed
on the right-hand side function f(x) in the finite element approach. This is a
typical feature of finite element methods that partially accounts for some of its
advantageous properties.

1.6 What are the advantages of the finite element
methods?

{intro_sec_advantages}
Finite element methods possess many desirable properties that account for their
popularity in a variety of settings. Some of these we have already encountered. For
example, within the finite element method framework, natural boundary conditions
such as (1.1c) are very easily enforced. We also saw that there is no difficulty in
treating problems with nonuniform grids. A third advantage that we have alluded
to is that, due to being able to introduce sophisticated function theoretic machinery,
finite element methods can be “easily” analyzed with complete rigor. All three of
these are thought of as posing difficulties within the finite difference framework.

There are other good features inherent in finite element methodologies. Per-
haps the most important one is the ability of finite element methods to “easily” treat
problems in complicated, e.g., non-rectangular, domains.6 Another good feature is
that finite element methods preserve certain symmetry and positivity properties
possessed by problems such as (1.1). In particular, in this case, the matrices K and
Kh appearing in (1.8) and (1.9), respectively, are symmetric and positive definite.

A final desirable feature of finite element methods is that, when they are
properly implemented, they lead to sparse discrete problems. This spasity property
is crucial to the efficiency of finite element methods and results from a judicious
choice for the basis set {φi(x)}Ni=1 for the finite element space V h.

1.7 Which method is best?
{intro_sec_whichisbest}

Unfortunately, there is no best method for all problems. Which method is best, be
it of the finite difference, finite element, finite volume, spectral, etc., type, depends

6Of course, since we have only looked at problems in one dimension, we have not yet been
exposed to such domains.
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on the class of problems under consideration or, often, on the specific problem itself.
It is not even possible to say that one finite element method is better than another
one in all settings. In order to determine which method is best (or even good) for
a given problem, one must understand its definition, implementation, and analysis.
The purpose of this book is to provide the tools, knowledge, and experience so that
such judgments can be made of finite element methods and, if a similar familiarity
with other classes of methods is obtained, one can then make rational comparisons
and decisions.

There are some areas of applications wherein finite element methods are pre-
ponderant and therefore, at least judging by the number of users, are best. Chief
among these is structural mechanics. In other areas, e.g., incompressible flows,
heat transfer, electromagnetism, etc., finite element methods, although not quite
so ubiquitous as in structural mechanics, have gained, if not dominance, at least
widespread popularity. There are areas of applications wherein finite element meth-
ods, although in use, have not achieved anything near dominance. One example is
inviscid, compressible flows containing shock waves and other discontinuities. Two
interesting observations are in order. The first is that finite element methods have
attained something close to dominance in those areas for which they can be fully
and rigorously analyzed. The second is that the lack of such analyses in other areas
is usually due to the lack of results about the partial differential equations them-
selves. These relationships between popularity and analyses may or may not be
purely coincidental.

Exercises
1.1. Consider the two-point boundary value problem (BVP)

−u′′ + u = x 0 < x < 1 ,
u′(0) = 2 ,
u(1) = 0 .

(1.19){intro_ex1.1}

Write down a weak formulation for the BVP given in (1.19); at this point you
do not have to be specific about the underlying spaces. Show that a solution
of your classical problem satisfies your weak formulation and that the converse
is also true provided your solution of the weak problem is sufficiently smooth.

1.2. In the BVP given in (1.19), which boundary condition is essential and which
is natural? Why?

1.3. Consider the piecewise linear function ψ(x) given by

ψ(x) =


8x 0 ≤ x ≤ 0.25
−2x+ 2.5 0.25 ≤ x ≤ 0.5
−4x+ 3.5 0.5 ≤ x ≤ 0.75
6x− 4 0.75 ≤ x ≤ 1.0

(1.20)

Write ψ(x) as a linear combination of the standard “hat” basis functions on
the given partition of [0, 1].
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1.4. Show that the entries of Kh and ~bh are given by (1.18) provided the basis
functions defined by (1.10) are used and the midpoint rule is employed to
evaluate the integrals.
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Chapter 2

Results from Linear
Analysis

{chap_linearanalysis}
In the last chapter we began to see the need for certain mathematical tools in
order to rigorously analyze the finite element method. In an effort to have this
book as self-contained as possible, we provide here a short summary of many of the
commonly used results from functional analysis.

The main goal of this chapter is to introduce the mathematical tools necessary
to precisely formulate and analyze a general weak problem and its discrete analogue.
The advantage to this abstraction is that we are able to treat a wide class of problems
within the same general framework. In later chapters when we investigate particular
differential equations, we see that many of the weak formulations fit into this general
framework. Thus, if we determine conditions which guarantee existence, uniqueness,
and continuous dependence on the data of our general weak problem and derive an
error estimate, then we can easily analyze a particular weak formulation by showing
that it satisfies the hypotheses for the general problem.

In formulating weak problems we need to determine appropriate classes of
function spaces to use for our test and trial spaces and to examine some of their
basic properties. The particular types of spaces that are needed are certain Hilbert
spaces which are named after the German mathematician David Hilbert (1862-
1943). These spaces offer a natural setting for weak problems and can be considered
as generalizations of Euclidean space. In general, these Hilbert spaces are infinite
dimensional. When attempting to understand various concepts and results on infi-
nite dimensional spaces, it is always helpful to ask oneself what this corresponds to
in a finite dimensional setting such as Rn. In many situations we attempt to point
out the analogous results in Rn.

We remark that this chapter is by no means a complete exposition of the
topic; rather, it is merely intended to prepare the reader for subsequent chapters.
For a more detailed exposition of the topics in Section 2.1-2.3, one may consult any
functional analysis text; e.g., see [Schechter], [Kreysig], [Yoshida].

17
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2.1 Linear spaces
{la_sec_linearspaces}

The goal of this section is to recall some basic definitions for linear or vector spaces,7

inner products, and norms and specify some of the notation we use throughout the
book. For simplicity of exposition, we only consider real linear spaces.

Definition 2.1. A linear space (or vector space) V is a set of objects on which{la_defn_vectorspace}
two operations are defined;8 the first determines the sum of two elements belonging
to V and the second determines the product of any scalar (a real number) α and
any element of V . These sum and product operations must satisfy the following
properties:

(i) u+ v ∈ V for all u, v ∈ V ;

(ii) u+ v = v + u for all u, v ∈ V ;

(iii) u+ (v + w) = (u+ v) + w for all u, v, w ∈ V ;

(iv) there is an element 0 ∈ V such that u+ 0 = u for all u ∈ V ;

(v) for each u ∈ V there exists an element (−u) ∈ V such that u+ (−u) = 0;

(vi) αu ∈ V for each scalar α and all u ∈ V ;

(vii) 1u = u for all u ∈ V ;

(viii) α(u+ v) = αu+ αv for all scalars α, and for all u, v ∈ V ;

(ix) (α+ β)u = αu+ βu for all scalars α, β and for all u ∈ V ;

(x) α(βu) = (αβ)u for all scalars α, β and for all u ∈ V .

These axioms are simply the well-known properties satisfied by the set of all
vectors in Rn with the usual definitions for the sum and scalar product operations.
However, more general collections of objects such as the set of all continuous func-
tions defined on the interval [a, b] with the usual definitions of sum and product are
also linear spaces.

The elements of a linear space V are called vectors. An expression of the form

α1u1 + α2u2 + · · ·+ αnun ,

where αi ∈ R and ui ∈ V , i = 1, . . . , n, is called a linear combination of the vectors
ui. In the simple example of the previous chapter, we saw that our approximate
solution was chosen to be a linear combination of functions which formed a basis
for the approximating space. The two underlying properties of a basis are linear
independence and spanning. Clearly we can always take a linear combination of
m vectors and get the zero vector by choosing all the coefficients to be zero. The

7The terms are used interchangeably.
8There is also an associated field which we always choose to be the real numbers.
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concept of linear independence/dependence characterizes whether this is the only
way to get the zero vector. Recall that for m vectors in Rn, this reduces to the
question of whether the linear system A~x = ~0 has only the trivial solution; here the
m columns of A are the vectors. The question of whether a set of m vectors in Rn
span Rn reduces to the question of whether A~x = ~b has a unique solution for any
~b ∈ Rn.

Definition 2.2. The set of vectors {ui}ni=1 is called linearly dependent if there {la_defn_lindep}
exist real numbers αi, i = 1, . . . , n, not all of which are zero, such that

α1u1 + α2u2 + · · ·+ αnun = 0 . (2.1) {la_linin}

Otherwise, the set is called linearly independent; i.e., the set is linearly indepen-
dent if the only solution to (2.1) is αi = 0, i = 1, . . . , n.

Definition 2.3. A subset of vectors of a finite dimensional vector space V is called {la_defn_spanningset}
a spanning set if every vector belonging to V can be written as a linear combination
of the elements of the subset.

To define a basis for a linear space, we need enough vectors to span the space but
not too many so that they are linearly dependent.

Definition 2.4. If V is a linear space and S = {v1, v2, . . . , vr} is a finite set of {la_defn_basis}
vectors in V , then S is called a basis for V if it is a linearly independent spanning
set of V .

To clarify the difference between a finite dimensional and an infinite dimensional
linear space, we make the following definition.

Definition 2.5. A linear space V is called finite dimensional of dimension n if V {la_defn_fd}
contains n linearly independent elements and if any set of (n+ 1) vectors belonging
to V is linearly dependent.

When posing a discrete weak problem, we use a finite dimensional space so
we can generate a basis and hence write our approximating solution as a linear
combination of the basis elements. In fact, we usually choose our approximating
spaces as finite dimensional subspaces of the underlying infinite dimensional space
on which the weak problem is posed.

Definition 2.6. A subset S of a vector space V is called a subspace of V if u ∈ S {la_defn_subspace}
and v ∈ S implies that αu+ βv ∈ S for every α, β ∈ R.

Example 2.7 Consider the infinite dimensional linear space of all continuous func-
tions defined on Ω = [0, 1] with the usual definition of addition and scalar multipli-
cation; we denote this space as C0(Ω). Define the following two subsets of C0(Ω)

S1 = {v ∈ C0(Ω) : v(0) = 0}
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and

S2 = {v ∈ C0(Ω) : v(0) = 1} .

The set S1 is a subspace of C0(Ω) since if we take a linear combination of any two
continuous functions that are zero at x = 0 then the result is a continuous function
that is zero at x = 0. However, the set S2 is not a subspace because if we add
two functions which are one at x = 0 then the resulting function has the value
two at x = 0. This will be important to us when we are satisfying inhomogeneous
boundary conditions.

Mappings or operators on linear spaces play an important role, especially
linear mappings.

Definition 2.8. A mapping f of a linear space V onto a linear space W , denoted{la_defn_linearmap}
f : V →W , is called a linear mapping or equivalently a linear operator provided

f(αu+ βv) = αf(u) + βf(v) ∀ u, v ∈ V, α, β ∈ R . (2.2){la_linear}

The kernel of a mapping f : V → W is defined to be the set {v ∈ V : f(v) = 0}
and the range is defined to be the set of all w ∈ W such that there exists a u ∈ V
where f(u) = w.

For example, matrix multiplication using an m × n matrix is a linear map from
Rn → Rm. The kernel of the mapping is just the null space of the matrix and the
range is just the span of the columns of the matrix.

The structure of a general linear space is not rich enough to be of use in
analyzing the finite element method. In this section the goal is to build a particular
class of linear spaces which have the properties that we need to state and analyze
our problems. In particular, we need a distance function or metric to measure the
“size” of a vector, such as an error vector. However, to be useful the metric must be
defined in such a way that there is a relationship between the algebraic structure of
the vector space and the metric. To guarantee this relationship we first introduce
the concept of a norm which uses the algebraic properties of the space and then we
use the norm to define a metric.

2.1.1 Norms
{la_sec_norms}

One familiar distance or metric function is the Euclidean distance formula for mea-
suring the length of a given vector in Rn or equivalently the distance between two
points in Rn. This concept of length of a vector in Rn can be generalized to in-
clude other measures such as the maximum component of a vector in Rn. This
generalization is accomplished by introducing the notion of a norm on Rn which
is a real-valued function from Rn to R satisfying important properties that the
Euclidean distance possesses. This concept of a norm can be extended to general
linear spaces. A norm on a linear space V can be used to measure the “size” of an
element of V , such as the size of an error.
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Definition 2.9. A norm on a linear space V is a real-valued function from V to{la_defn_norm}
R, denoted by ‖·‖, such that

(i) ‖u‖ ≥ 0 for all u ∈ V and ‖u‖ = 0 if and only if u = 0;

(ii) ‖αu‖ = |α| ‖u‖ for all u ∈ V and all α ∈ R;

(iii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V .

The last property is known as the triangle inequality due to its interpretation in
Rn using the standard Euclidean norm. In the exercises we consider the three most
common norms on Rn.

If we relax the first property of a norm to allow ‖u‖ = 0 for u 6= 0, but still
require properties (ii) and (iii), then we call the resulting function a semi-norm.
A linear space V equipped with a norm as defined above is called a normed linear
space so that we think of a normed linear space as a pair (V, ‖ · ‖).

Example 2.10 If we return to our linear space C0(Ω) where Ω = [0, 1] we can
define a norm as

‖f‖ ≡ max
x∈[0,1]

|f(x)| .

Clearly, all three properties of the norm are satisfied. To measure the difference
between two vectors, f, g ∈ C0(Ω) we determine

‖f − g‖ = max
x∈[0,1]

|f(x)− g(x)| .

Since there is always a choice of norms to use on a given vector space, we
would like to know if these different measures are somehow comparable.

Definition 2.11. Two norms, ‖ · ‖a, ‖ · ‖b defined on a linear space V are said to {la_defn_normequivalence}
be equivalent if there are constants C1, C2 such that

C1‖u‖a ≤ ‖u‖b ≤ C2‖u‖a . (2.3) {la_normequivalence}

Of course, if (2.3) holds then we also have

1

C2
‖u‖b ≤ ‖u‖a ≤

1

C1
‖u‖b .

In a course in linear algebra, it is usually proved that all norms on Rn are equiv-
alent. In the exercises, the actual constants in the equivalence relations for the
three standard norms on Rn are investigated; of course, these constants can depend
upon n. In functional analysis, one can show a more general, i.e., that in a finite
dimensional vector space all norms are equivalent. For the proof of the result, see
[Schechter].

Lemma 2.12. If V is a finite dimensional normed linear space, then all norms are {la_thm_normequivalence}
equivalent.
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2.1.2 Inner products
{la_sec_innerproducts}

Recall that in dealing with vectors in Rn, one defines a scalar product of two vectors
~a = (a1, a2, · · · , an) and ~b = (b1, b2, · · · , bn) ∈ Rn as

(~a,~b) = ~aT~b =

n∑
i=1

aibi .

The result of the scalar product is just a number so it can be viewed as a function
from Rn → R. The scalar product is useful in many applications such as determining
if two vectors are perpendicular or equivalently, orthogonal. This concept can be
generalized to elements of a linear space in the following manner.

Definition 2.13. An inner product or scalar product on a (real) linear space{la_defn_innerproduct}
V is a real-valued function from V to R, denoted by (·, ·), satisfying

(i) (u, u) ≥ 0 for all u ∈ V and (u, u) = 0 if and only if u = 0;

(ii) (u, v) = (v, u) for all u, v ∈ V ;

(iii) (αu+ βv,w) = α (u,w) + β (v, w) for all u, v, w ∈ V and all α, β ∈ R.

A vector space V equipped with an inner product is aptly called an inner product
space.

Example 2.14 Returning to our example C0(Ω) of a linear space we can define an
inner product as

(f, g) =

∫ 1

0

f(x)g(x) dx .

The three properties of the inner product are easily shown to be satisfied by using
the properties of integrals. See exercises.

Analogous to the case of Rn, we say that two vectors in an inner product space
are orthogonal if their scalar product is zero.

Definition 2.15. Let V be an inner product space. Then u, v ∈ V are orthogonal
if and only if

(u, v) = 0 . (2.4){la_orthogonality}

One can use the inner product to define a norm for a vector space. Indeed, if
we let ‖v‖ = (v, v)1/2 for all v ∈ V , one can readily show that this defines a norm
on V ; see the exercises for details. We refer to a norm defined in this manner on an
inner product space as the induced norm.

To complete this section we present an inequality for inner product spaces
which is extremely useful. Recall that the scalar product of two vectors in Rn can
also be written as (~a,~b) = ‖~a‖ ‖~b‖ cos θ where ‖ · ‖ denotes the standard Euclidean
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norm and θ is the angle between the two vectors. Obviously this says that (~a,~b) ≤
‖~a‖ ‖~b‖. The Cauchy-Schwarz inequality generalizes this result to an inner product
space.

Lemma 2.16. Let V be an inner product space. The Cauchy-Schwarz inequality is{la_cs}
given by

(u, v) ≤ (u, u)
1
2 (v, v)

1
2 ∀ u, v,∈ V . (2.5) {la_cauchys1}

If ‖ · ‖ denotes the induced norm on V then this inequality can also be written as

(u, v) ≤ ‖u‖ ‖v‖ ∀ u, v,∈ V . (2.6) {la_cauchys2}

Proof. To verify (2.5), we first note that it is trivially satisfied if u = 0 or v = 0
so we consider the case where u, v 6= 0. By the first property of inner products, we
know that (u− αv, u− αv) ≥ 0 for any α ∈ R. Using the linearity property of the
inner product we rewrite this as

0 ≤ (u− αv, u− αv) = (u, u)− 2α(u, v) + α2(v, v)

= (u, u)− α(u, v)− α
[
(u, v)− α(v, v)

]
.

Now the term in brackets is zero if we choose α = (u, v)/(v, v). Note that this is
possible since we are considering the case v 6= 0. Thus

(u, u)− (u, v)2

(v, v)
≥ 0

and simplification yields the Cauchy-Schwarz inequality (2.5). The second form of
the inequality given in (2.6) follows directly from the definition of the norm on V
induced by the scalar product.

2.1.3 Topological concepts
{la_sec_top}

One of our goals in analyzing the finite element method is to determine the error
between the solution of the discrete weak problem and the solution of the continuous
weak problem. We can use the concept of norm introduced in the last section to
measure the distance between these two solutions. For a normed vector space V ,
we define the distance ρ between two vectors u and v as ρ(u, v) = ‖u− v‖.

In discretizing a problem, we expect to have a sequence of solutions which
are generated by using successively finer meshes. We expect that these solutions
converge, in some sense, to the solution of the continuous problem. We now make
precise what this means.

Definition 2.17. A sequence of vectors u1, u2, u3, . . . belonging to a normed linear {la_defn_convergent}
space V is called convergent if there exists a vector u ∈ V such that given any
ε > 0, there exists a postive integer N = N(ε) such that

‖un − u‖ < ε ∀n ≥ N .
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We call u the limit of the sequence {ui}i≥1 and write

lim
n→∞

un = u or un → u in V as n→∞ .

It can be shown that a convergent sequence has only one limit and un → u in V if
and only if ‖un − u‖ → 0 as n→∞.

An important tool in analysis is the Cauchy sequence. If we use Definition 2.17
to show that a sequence is convergent, then we need to know its limit. However,
sometimes we don’t know the actual limit or it may not even be in our linear space.
Oftentimes the important issue is that a sequence converges rather than what its
limit is. A Cauchy sequence is one in which its terms ultimately become arbitrarily
close. In fact, we can discount a finite number of terms at the beginning of the
sequence and then guarantee that any two of the remaining terms are closer than
some prescribed value.

Definition 2.18. A sequence of vectors {ui}i≥1, {ui} ∈ V , is called a Cauchy{la_defn_cauchyseq}
sequence if, given any ε > 0, there exists an integer N = N(ε) such that

‖un − um‖ ≤ ε ∀ m,n ≥ N .

Here ‖ · ‖ defines a norm on a normed linear space V .

Every convergent sequence is clearly a Cauchy sequence since

‖um − un‖ = ‖(um − u) + (u− un)‖ ≤ ‖u− um‖+ ‖u− un‖

and we can make the right-hand side arbitrarily small as m,n→∞. However, the
converse is not always true as the following example illustrates.

Example 2.19 The Weierstrass Approximation Theorem states that a continuous
function defined on [a, b] can be uniformly approximated as closely as desired by a
polynomial defined on [a, b]. More precisely, suppose f is an arbitrary continuous
function defined on [a, b]. For every ε > 0, there exists a polynomial function
p(x) such that maxx∈[a,b] |f(x) − p(x)| < ε. Thus we can construct a sequence of
polynomials in the linear space of polynomials defined on [a, b] which form a Cauchy
sequence using the max-norm but its limit is not a polynomial.

We would like to avoid this situation by imposing on our space of functions
the property that every Cauchy sequence in V has a limit in V . In addition to
properties (i)–(x) which characterize linear spaces, we would like to add the property
of completeness, i.e.,

(xi) if {vn} is a sequence of elements in V such that ‖vn − vm‖ → 0 as m,n→∞,
then there exists an element v ∈ V such that ‖v − vn‖ → 0 as n→∞.

Another way to state property (xi) is to require that every Cauchy sequence in V
is convergent.
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A complete normed vector space, i.e., a collection of objects satisfying prop-
erties (i)–(xi) with a norm defined on the space, is of such importance that it is
given a special name: a Banach space. Euclidean n-dimensional space is the most
familiar example of a Banach space. Given any (noncomplete) normed space S
it can be proved that by adding new elements, S can be extended to a complete
normed space (a Banach space), V . This process is referred to as the completion of
S or the closure of S in V .

Since we work with finite dimensional subspaces when we discretize, we often
have sequences on these subspaces and need to know if their limit is in the subspace.

Definition 2.20. A subset S of a Banach space V is said to be a closed subspace {la_defn_closedsubspace}
of V if it is a subspace of V with the property that whenever {ui}i≥1 is a convergent
sequence in V such that ui ∈ S, i = 1, 2, . . . , then u = limn→∞ un belongs to S also.

It can be shown that every finite dimensional subspace is closed; this is important
for us since our approximating spaces are finite dimensional.

Our search for the appropriate function spaces to use in analyzing the finite
element method is almost at an end. In the next section we add a final property to
our complete, normed linear space, that of an inner product.

2.1.4 Hilbert spaces
{la_sec_hilbert}

A complete inner product space is called a Hilbert space; these spaces extend the
ideas of the Euclidean space Rn to infinite dimensional spaces. For example, the
parallelogram law in R2 states that the the sum of the squares of the lengths of the
two diagonals in a parallelogram equals the sum of the squares of the lengths of the
four sides. This law can be shown to hold in all Hilbert spaces and is written as

‖f + g‖2 + ‖f − g‖2 = 2
(
‖f‖2 + ‖g‖2

)
, (2.7) {la_parallelogram}

where ‖·‖ denotes the induced norm and f, g are any elements of the Hilbert space.
See the exercises for a proof of this result.

Clearly, every Hilbert space is a Banach space; one simply uses the norm
induced by the inner product, i.e., ‖v‖ = (v, v)1/2 . However, the converse is not true.
A standard counterexample is to consider the Banach space of all bounded linear
functions with the uniform or max norm. In this example, one can demonstrate
that the parallelogram law fails to hold so it can not also be a Hilbert space; see the
exercises for details. The most commonly used spaces of admissible test and trial
functions for weak formulations of boundary value problems for partial differential
equations are Hilbert spaces.

Example 2.21 An example of a Hilbert space that is central to our discussions is
L2(Ω) where Ω denotes an open, connected subset of Rn. To construct this space,
we consider the set of real-valued, continuous functions u(x) = u(x1, x2, . . . , xn)
defined on Ω where (x1, x2, . . . , xn) denotes a point in Rn. Addition and scalar
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multiplication are defined in the usual manner. We define an inner product as

(u, v) =

∫
Ω

u(x)v(x) dΩ , (2.8) {la_l2prod}

where dΩ is the volume element in Ω. Clearly this satisifes all the properties of
an inner product given in Definition 2.13. In order to guarantee that the integral
defining this inner product exists, we restrict our attention to functions u(x) on Ω
such that ∫

Ω

|u(x)|2 dΩ <∞ .

We now define S to be the space described above; i.e.,

S = {u | u = u(x), u(x) is continuous for all x ∈ Ω and

∫
Ω

|u(x)|2 dΩ <∞} .

Then S is an inner product space with the inner product defined by (2.8). The
norm on S is given by

‖u‖ = (u, u)
1/2

=

(∫
Ω

|u(x)|2 dΩ

)1/2

.

In general, the space S is not complete. For example in R, let Ω = (−1, 1) and let
S be defined as above. Consider the sequence u1(x), u2(x), · · · where

uj(x) =

 −1 for −1 < x ≤ −1/j
jx for −1/j ≤ x ≤ 1/j
1 for 1/j < x < 1 .

It is straightforward to show that {uj(x)}, j = 1, 2, · · ·, is a Cauchy sequence in S.
Moreover, the sequence converges to the discontinuous function f(x) where

f(x) =

 −1 for −1 < x < 0
0 for x = 0
1 for 0 < x < 1 .

However, f(x) 6∈ S and so there is no continuous function u(x) on (−1, 1) for which
‖un − u‖ → 0 as n→∞. By adding new elements to S we can complete the space
to form a Hilbert space V . These additional functions may be piecewise continuous,
but, in general, are highly discontinuous. This extended complete space V is called
L2(Ω) which is a complete inner product space, i.e., a Hilbert space.

Remark The space L2(Ω) is really a special case of the Banach space of functions
on Ω which are p-integrable denoted Lp(Ω), p ≥ 1, The norm is given by

‖u‖Lp =

(∫
Ω

|u|p dΩ

)1/p
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for 1 ≤ p <∞ and for p =∞

‖u‖L∞ = sup
Ω
|u| .

Remark In a manner analogous to the construction of L2(Ω), we can construct
a weighted L2-space. Given a weight w(x), integrable on Ω, we define the inner
product as

(u, v) =

∫
Ω

u(x)v(x)w(x) dΩ .

We denote this space L2(Ω;w).

2.2 Best approximations
{la_sec_best}

In this section we want to investigate some geometric properties of Hilbert spaces.
A central idea in approximation theory is to determine an element of a subspace of a
given vector space which is closest (with respect to the given metric) to a particular
element of the vector space; that is, to find the best approximation of the given vector
in the subspace. (In fact, this is the basis for least squares methods.) We would like
to know when it is possible to assert in advance that a best approximating element
exists. Moreover, we want to know whether this best approximating element is
unique.

{la_example_ba}
Example 2.22 Consider the situation illustrated in Figure 2.1. Here we assume
that we have a given plane S in R3, a vector u 6∈ S, and we want to find a vector
s in S that is nearest u; i.e., ‖u− s‖ ≤ ‖u− φ‖ for all φ ∈ S where we are using
the standard Euclidean norm. Clearly in this case, there is a a unique s and it is
found by drawing a perpendicular from u to S; that is, projecting the vector u onto
S. Also, we can uniquely write the vector u as the sum of the vector s ∈ S and a
vector not in S.

S

u

s

u-s

ϕ

u-ϕ

Figure 2.1. {la_fig_projection}

There are analogous results for general Hilbert spaces. However, they do not
hold for a general subspace but only a closed subspace (see Definition 2.20). In the
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finite element setting, we are guaranteed that the subspace is closed since it is finite
dimensional.

The following result is known as the Projection Theorem and it states that
given an element in a Hilbert space, its orthogonal projection onto a closed subspace
is the element of the subspace that is “nearest” the given vector where the distance
is measured using the induced norm. Of course one must keep in mind that this
depends upon the choice of the inner product (and thus the norm) on the given
Hilbert space.

Theorem 2.23. (The Projection Theorem) Let S be a closed subspace of a{la_thm_projection}
Hilbert space V which is not the whole of V . Then given u ∈ V there exists a unique
element Pu ∈ S such that

‖u− Pu‖ = inf
φ∈S
‖u− φ‖ (2.9){la_proj1}

where Pu satisfies
(u− Pu, φ) = 0 for every φ ∈ S . (2.10){la_proj2}

Proof. Let u ∈ V such that u 6∈ S. We know that for all φ ∈ S, ‖u− φ‖ > 0 so
that if we define the distance from u to S as the lower bound

δ = inf
φ∈S
‖u− φ‖ ,

then there exists a sequence φn ∈ S such that ‖u− φn‖ → δ as n → ∞. Our goal
is so show that {φn} is a Cauchy sequence in S and thus conclude that the limit of
the sequence is also in S because S is a closed subspace of the Hilbert space V ; we
call Pu this limit.

To demonstrate that {φn} is a Cauchy sequence we apply the parallelogram
law (2.7)

with f = u− φm and g = u− φn. We have

‖(u− φm) + (u− φn)‖2 + ‖(u− φm)− (u− φn)‖2 = 2 ‖u− φm‖2 + 2 ‖u− φn‖2

and simplifying the left-hand side gives

4

∥∥∥∥(u− φm + φn
2

)∥∥∥∥2

+ ‖φn − φm‖2 = 2 ‖u− φm‖2 + 2 ‖u− φn‖2 (2.11){la_proj3}

because

‖(u− φm) + (u− φn)‖2 = ‖2u− φm − φn‖2 = 4

∥∥∥∥u− 1

2
(φm + φn)

∥∥∥∥2

.

Now φn, φm ∈ S and S is a subspace of V , so we have that (φm + φn)/2 ∈ S and
thus by the definition of δ, the first term on the left of (2.11) is nonnegative and at
least as large as 4δ2. Thus

‖φn − φm‖2 ≤ 2 ‖u− φm‖2 + 2 ‖u− φn‖2 − 4δ2 .
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We conclude that because ‖φm − u‖ → δ, ‖φn − u‖ → δ as m,n → ∞, the right-
hand side goes to zero as m,n → ∞, and hence {φn} is a Cauchy sequence in a
closed subspace and therefore convergent.

Uniqueness of the limit s ∈ S is proved in the standard way by assuming there
are two elements in S which satisfy (2.9). Let s1 and s2 have the property that

δ = inf
φ∈S
‖u− φ‖ = ‖u− s1‖ = ‖u− s2‖ .

Then because (s1 + s2)/2 ∈ S, we have that

δ ≤
∥∥∥∥u− 1

2
(s1 + s2)

∥∥∥∥ ≤ 1

2
‖u− s1‖+

1

2
‖u− s2‖ = δ

where we have used the triangle inequality for the last inequality. This implies that
for u − s1 and u − s2 the triangle inequality must hold as an equality. However,
this can only be true if u − s1 = α(u − s2) for some α. If we choose α = 1 then
this leads to a contradiction because it would imply s1 = s2; if α 6= 1 then we have
(α−1)u = αs2− s1 and this contradicts the fact that u 6∈ S. Consequently we have
uniqueness.

To prove (2.10) we assume that there is some φ̂ ∈ S such that (u− Pu, φ̂) 6=
0 and show that this assumption leads to the existence of an s ∈ S such that
‖u− s‖ < inf

φ∈S
‖u− φ‖; thus we obtain a contradiction. Let s ∈ S be given by

s = Pu+

(
u− Pu, φ̂

)
(
φ̂, φ̂

) φ̂ .

Then

‖u− s‖2 =

u− Pu−
(
u− Pu, φ̂

)
‖φ̂‖2

φ̂, u− Pu−

(
u− Pu, φ̂

)
‖φ̂‖2

φ̂


= ‖u− Pu‖2 − 2

‖φ̂‖2
(
u− Pu, φ̂

)(
u− Pu, φ̂

)
+

1

‖φ̂‖4
(
u− Pu, φ̂

)2

‖φ̂‖2

= ‖u− Pu‖2 − 1

‖φ̂‖2
(
u− Pu, φ̂

)2

.

Because our assumption was that (u− Pu, φ̂) 6= 0, we have

‖u− s‖ < ‖u− Pu‖ = inf
φ∈S
‖u− φ‖

which is the contradiction we sought.

In Example 2.22, we wrote the vector which we projected into the subspace
as the sum of a vector in the subspace and one orthogonal to the subspace. Theo-
rem 2.23 guarantees that we can do this in a Hilbert space when we are projecting
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onto a closed subspace. Given u in a Hilbert space V then the unique Pu in a
closed subspace S guaranteed by Theorem 2.23 is called the orthogonal projection
of u onto the closed subspace S. In this case, if we let r = u − Pu, then we can
write

u = Pu+ r where Pu ∈ S and (r, φ) = 0 for all φ ∈ S . (2.12)

Hence the vector r = u − Pu is orthogonal to all vectors in S; we call the set of
all vectors orthogonal to S the orthogonal complement of S and denote it by S⊥.
Thus we have written u as the sum of an element in S and one orthogonal to S,
i.e., in S⊥. In the exercises, we explore the fact that the analogous result holds for
the entire Hilbert space; that is, the Hilbert space V can be written as the direct
sum of S and S⊥.

Another interpretation of the vector s guaranteed by Theorem 2.23 is given
by (2.9). From this equation we call Pu the best approximation of u in S. In
the case when S is a finite dimensional subspace of a Hilbert space V (and thus
automatically closed) then we can explicitly construct the best approximation to a
given vector in V by using (2.10). To see this, we let φi, i = 1, . . . ,m be a basis for
S and from (2.10), (u− Pu, φi) = 0 for i = 1, . . . ,m. Also Pu can be written as a
linear combination of the basis elements; i.e., Pu =

∑m
j=1 cjφj . Thus

m∑
j=1

cj (φj , φi) = (u, φi) , i = 1, . . . ,m , (2.13){la_bestapprox}

which is just a linear system for the unknowns cj , j = 1, . . . ,m. The matrix G whose
entries are given by Gij = (φj , φi) is known as the Gram matrix associated with the
basis functions {φi} of S and is guaranteed to be nonsingular. This can be easily seen
by assuming that if G is singular, then we could find a vector d = (d1, d2, . . . , dm)

such that Gd = 0. This would imply
(∑m

j=1 djφj , φi

)
= 0 for all i = 1, . . . ,m and

thus the vector u =
∑m
j=1 djφj would be orthogonal to S which is a contraction.

In the following example we investigate the effect that the choice of the ap-
proximating subspace for the best approximation has on the properties of the Gram
matrix.

Example 2.24 Consider the problem of determining the best approximation to a
function f(x) in two different subspaces of L2(0, 1). We first consider the subspace
consisting of all polynomials of degree three or less. In this case an obvious choice
of a basis is {1, x, x2, x3}. The specific system we must solve is

∫ 1

0
dx

∫ 1

0
x dx

∫ 1

0
x2 dx

∫ 1

0
x3 dx∫ 1

0
x dx

∫ 1

0
x2 dx

∫ 1

0
x3 dx

∫ 1

0
x4 dx∫ 1

0
x2 dx

∫ 1

0
x3 dx

∫ 1

0
x4 dx

∫ 1

0
x5 dx∫ 1

0
x3 dx

∫ 1

0
x4 dx

∫ 1

0
x5 dx

∫ 1

0
x6 dx





c1

c2

c3

c4


=



∫ 1

0
f(x) dx∫ 1

0
xf(x) dx∫ 1

0
x2f(x) dx∫ 1

0
x3f(x) dx


.
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Upon performing the integration the system becomes

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7





c1

c2

c3

c4


=



∫ 1

0
f(x) dx∫ 1

0
xf(x) dx∫ 1

0
x2f(x) dx∫ 1

0
x3f(x) dx


.

It is important to note that in this case the Gram matrix is not sparse and is the
well-known Hilbert matrix which is notoriously ill-conditioned. Consequently, if we
look for the best approximation to a function f(x) out of the space of polynomials
of degree n or less, then for even modest values of n our solution is not reliable
using standard matrix solvers.

On the other hand, if we choose as a subspace of L2(0, 1) the space of continu-
ous piecewise linear functions over the uniform partition of [0, 1] into N subintervals
and choose as a basis the piecewise linear “hat” functions described in the previous
chapter, then the resulting matrix is well-conditioned and is tridiagonal. To see the
structure of the matrix consider the uniform partition of [0, 1] into 3 subintervals
with four grid points x1 = 0, x2 = 1

3 , x3 = 2
3 , x4 = 1. Let φi(x), i = 1, . . . , 4 denote

the basis functions

φ1 =

(
1− 3x 0 ≤ x ≤ 1

3
0 elsewhere

)
, φ2 =

 3x 0 ≤ x ≤ 1
3

2− 3x 1
3 ≤ x ≤

2
3

0 elsewhere

 ,

φ3 =

 3x− 1 1
3 ≤ x ≤

2
3

3− 3x 2
3 ≤ x ≤ 1

0 elsewhere

 , φ4 =

(
3x− 2 2/3 ≤ x ≤ 1

0 elsewhere

)
.

The Gram matrix has the (i, j) entry given by
∫ 1

0
φi(x)φj(x) dx. Due to the fact

that the basis function φi(x) has local support, we deduce that the Gram matrix is

∫ 1

0
φ2

1 dx
∫ 1

0
φ2φ1 dx 0 0∫ 1

0
φ1φ2 dx

∫ 1

0
φ2φ2 dx

∫ 1

0
φ3φ2 dx 0

0
∫ 1

0
φ2φ3 dx

∫ 1

0
φ3φ3 dx

∫ 1

0
φ4φ3 dx

0 0
∫ 1

0
φ3φ4 dx

∫ 1

0
φ4φ4 dx


,

which is a symmetric tridiagonal matrix.

Being able to find the best approximation to a given function using piecewise
polynomials does not directly help us to find our finite element approximation. This
is because in order to use (2.13) to find the best approximation to u, we need to
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know u, which in our case is the unknown solution to the weak problem. However,
what we see in the next chapter is that when we measure the error in our finite
element approximation, it will be bounded by a constant times the error in the best
approximation in the approximating space.

2.3 Bounded linear functionals
{la_sec_blf}

Functional is just the name given to a special type of function which assigns a
number to each element of a linear space. For example, for functions in L2((0, 1))
the integral over the domain is a functional. If V is a given Hilbert space with inner
product (·, ·) and induced norm ‖·‖ then ‖v‖ assigns a number to each element v in
V and is thus a functional. If we fix an element u in V , then (v, u) assigns a value
(i.e., a scalar) to each element. Such mappings are called functionals. Functionals
which are linear and bounded are of particular interest.

Definition 2.25. F is a functional on a Hilbert space V if it assigns to every{la_def_blf}
v ∈ V a unique number F (v) and we write F : V → R. A functional is called linear
if for every u, v ∈ V and scalars α, β we have

F (αu+ βv) = αF (u) + βF (v) . (2.14)

In addition, we say that a functional is bounded if

sup
v∈V

|F (v)|
‖v‖

<∞, v 6= 0 , (2.15)

where ‖ · ‖ is the induced norm on V . We call this finite number ‖F‖.

We note that if F is a bounded linear functional on V then this is equivalent to
saying that F is a linear functional which is a continuous function of its arguments.

Example 2.26 Let V be a Hilbert space; for a fixed u ∈ V the inner product
F (v) = (v, u) denotes a bounded linear functional on V . Clearly it defines a func-
tional and is linear because of the linearity of the inner product. Specifically, we
have

F (αv+βw) = (αv+βw, u) = (αv, u)+(βw, u) = α(v, u)+β(w, u) = αF (v)+βF (w) .

Boundedness follows from using the Cauchy-Schwarz inequality

F (v) = (v, u) ≤ ‖v‖ ‖u‖ .

to obtain
|F (v)|
‖v‖

≤ ‖u‖ <∞ ∀ v ∈ V ,

for v 6= 0.
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In a similar manner, the linearity of the norm on a Hilbert space can be used to
demonstrate that the norm is a bounded linear functional. Clearly, we can think of
many other examples of bounded linear functionals, but what is surprising is that
the inner product is really the only one on a Hilbert space; i.e., every bounded linear
functional can be written as an inner product. This result is known as the Riesz
Representation Theorem and is named after the Hungarian mathematician Frigyes
Riesz (1880-1956).

Theorem 2.27. (Riesz Representation Theorem) For every bounded linear {la_thm_rrt}
functional F on a Hilbert space V there is a unique element f ∈ V such that

F (v) = (v, f) for all v ∈ V . (2.16)

Moreover, ‖F‖ = ‖f‖.

Proof. We first note that if F assigns to each v ∈ V the value zero, then the proof
is immediate by taking f = 0. In the sequel we assume that this is not the case.
However, we do know that for each v ∈ V which F assigns to zero we must have
that f is orthogonal to it; i.e., (v, f) = 0. We call the set of all vectors v such that
F (v) = 0 the kernel of F and denote it by K(F ). Hence we must construct an f
that is orthogonal to the kernel of F .

We first demonstrate that K(F ) is a closed subspace of V . To show that it is
a subspace we use the linearity of F ; i.e., if u, v ∈ K(F ) then

F (αu+ βv) = αF (u) + βF (v) = 0 .

To show that it is a closed subspace of V , we let {un} be a sequence in K(F ) such
that un → u ∈ V as n→∞ and show that u ∈ K(F ). We have

|F (u)| = |F (u)− F (un)| = |F (u− un)| ≤ ‖F‖ ‖u− un‖ ,

where we have used the fact that un ∈ K(F ), the linearity of F , and the definition
of the norm of a bounded linear functional. The right-hand side of this inequality
goes to zero as n→∞ so that F (u) = 0.

We now proceed to construct an f that is orthogonal to K(F ). From the
comments following the projection theorem we know that we can write V as the
direct sum of K(F ) and K(F )⊥ since K(F ) is a closed subspace of V . Our strategy

is to take an arbitrary f̂ ∈ K(F )⊥, f̂ 6= 0 and construct an f ∈ K(F ) using f̂ .

Consider the vector F (v)f̂ − F (f̂)v. This vector is in K(F ) since

F
(
F (v)f̂ − F (f̂)v

)
= F (v)F (f̂)− F (f̂)F (v) = 0

and thus
(
F (v)f̂ − F (f̂)v, f̂

)
= 0 for all f̂ ∈ K(F )⊥, v ∈ V . Therefore we have

F (v)‖f̂‖2 = F (f̂)(v, f̂) so that

F (v) =

(
v,
F (f̂)

‖f̂‖2
f̂

)
.



34 Chapter 2. Results from Linear Analysis

Hence if we set f = (F (f̂)/‖f̂‖2)f̂ , we see that for each v ∈ K(F ), this choice of f
is orthogonal to v and we have the desired result.

To show uniqueness of f we assume that there are two vectors f1 and f2 such
that

F (v) = (v, f1) = (v, f2) ∀ v ∈ V .

But this implies that (v, f1 − f2) = 0 for all v ∈ V ; specifically set v = f1− f2 from
which it follows that f1 − f2 = 0.

Lastly, we must demonstrate that ‖F‖ = ‖f‖. This follows immediately from
the definition of F and the Cauchy-Schwarz inequality. We have

|F (v)| = | (v, f) | ≤ ‖v‖ ‖f‖

so that if v 6= 0,
|F (v)|
‖v‖

≤ ‖f‖

and thus ‖F‖ ≤ ‖f‖. On the other hand, since f ∈ V , F (f) = (f, f) = ‖f‖2. Thus
the supremum is attained at v = f and we have equality.

The main goal of this chapter was to introduce the mathematical tools nec-
essary to formulate and analyze a general weak problem. The last tool we need is
a bilinear form. We define a bilinear form on a Hilbert space V to be a map from
V × V into R1, denoted by B(·, ·), such that

B(α1u1 + α2u2, v) = α1B(u1, v) + α2B(u2, v)

B(u, β1v1 + β2v2) = β1B(u, v1) + β2B(u, v2)

for all ui, vi ∈ V and αi, βi ∈ R1, i = 1, 2. That is, B(·, ·) is linear in each of its

components. An example of a bilinear form on L2(0, 1) is
∫ 1

0
u(x)v(x) dx. In fact,

any inner product on a Hilbert space defines a bilinear form; this can easily be seen
from the linearity of the inner product (see Definition 2.13). Another example of a
bilinear form on a Hilbert space V is (Bu, v)V where B is a linear operator from V
to V .

We say that a bilinear form B(·, ·) on V is bounded if there exists a positive
constant C such that

|B(u, v)| ≤ C ‖u‖V ‖v‖V .

If we fix an element u ∈ V then the bilinear form B(u, v) represents a linear func-
tional on V ; if B(·, ·) is bounded, then for a fixed u ∈ V , B(u, v) represents a
bounded linear functional F (v) on V . The Riesz Representation Theorem 2.27
then guarantees that there exists a unique element û ∈ V such that B(u, v) can be
written as the inner product (v, û). The ability to associate to each u ∈ V a unique
element û is central to our analysis of an abstract weak problem.
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Exercises
{la_exer_1}

2.1. The most common examples of norms on Rn are the Euclidean norm defined
by

‖x‖`2 =

(
n∑
i=1

|xi|2
)1/2

,

the sum norm defined by

‖x‖`1 =

(
n∑
i=1

|xi|

)
,

and the maximum norm defined by

‖x‖`∞ = max
1≤i≤n

|xi| .

Here x = (x1, x2, · · · , xn). For any norm, the set {x : ‖x‖ ≤ 1} is called the
unit ball.

a. Sketch the unit balls for each of the norms defined above.

b. Show that the norms are equivalent by explicitly determining the com-
parability constants.

2.2. Let V be a complete inner product space; define ‖u‖ to be the non-negative

number (u, u)
1/2

. Show that this defines a norm on V .

2.3. Let V be a Hilbert space and let f, g ∈ V . Verify the parallelogram law

‖f + g‖2 + ‖f − g‖2 = 2 ‖f‖2 + 2 ‖g‖2 .

Note that the name comes from the special case of R2 where we know that
the sum of the squares of the sides of a parallelogram is equal to the sum of
the squares of the diagonals.

2.4. In the previous exercise we saw that any two elements of a Hilbert space V
satisfies the parallelogram law; in fact, one can show that if B is a Banach
space which satisfies the parallelogram law then it is also a Hilbert space (see,
e.g., [Schechter]). Consider the Banach space of all bounded real functions
on the interval [0, 1] with the norm

‖u‖ = sup
0≤x≤1

|u(x)| .

Find functions f, g ∈ B which violate the parallelogram law and thus conclude
that B is a Banach space but not a Hilbert space. (Hint: for example, find
functions f, g such that ‖f‖ = ‖g‖ = ‖f − g‖ = ‖f + g‖. )

2.5. Let S be a closed subspace of a Hilbert space V . Let S⊥ be defined by

S⊥ = {u ∈ V : (u, φ) = 0 for all φ ∈ S} .
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Show that S⊥ is a closed subspace of V . Also show that S ∩ S⊥ = {0} and
thus V can be written as the direct sum of S and S⊥ so that every element
u ∈ V can be written as the sum of an element in S and in S⊥.

2.6. Let P be the projection operator from a Hilbert space V to a closed subspace
S ⊂ V ; i.e., P is an operator P : V → S such that

Pu =

{
u if u ∈ S
u0 otherwise,

where u = u0 + u1 uniquely with u0 ∈ S and u1 ∈ S⊥.

a. Show that P is linear.

b. Clearly, the range of P is S. What is the kernel of P? Why?

c. Show that P 2 = P .

d. Show that ‖P‖ = 1 where

‖P‖ = sup
φ∈V

‖Pφ‖
‖φ‖

for φ 6= 0 .

e. Show that I − P is the projection operator onto the orthogonal comple-
ment of S.

2.7. Prove that if {ui} is a convergence sequence in a normed linear space then
the limit is unique.

2.8. (Computational) Consider the function u(x) = x3 sinπx on [0, 1]. We want
to determine the best approximation in the L2-norm, ũ(x), to u(x) out of the
space of continuous piecewise linear functions which are zero at x = 0 and
x = 1.

a. Choose a uniform partition of [0, 1] with h = 0.25. Write a code to
determine the best approximation ũ to u(x) using the standard “hat”
basis functions for continuous piecewise linears. For the integration, use
a two-point Gauss quadrature rule. Write your code so that you have a
separate function or subroutine which evaluates a basis function at any
given point.

b. Repeat (a) with h = 0.125 and h = .0625. For each value of h deter-
mine the L2(0, 1) error in u(x) and ũ(x); calculate a numerical rate of
convergence (i.e., determine k such that the error is O(hk)) based upon
your two calculations. To calculate the error, apply the two-point Gauss
quadrature rule over each subinterval.



Chapter 3

Abstract Formulation

{chap_abstractformulation}
The first step in a finite element approach is to write an appropriate weak or vari-
ational problem. In lieu of deriving existence and uniqueness results for each weak
problem we encounter, our strategy is to formulate a general weak problem and
prove existence and uniqueness for it. Then, as we encounter specific weak prob-
lems, we only need to show that each problem fits into the framework of the general
problem and satisfies any conditions required by our analysis of the general problem.
We repeat the procedure with the discrete weak problem, but, in addition, derive a
general error estimate. The tools introduced in the last chapter easily allow us to
formulate a general weak problem; the existence and uniqueness of its solution is
established through the Lax-Milgram theorem which is proved with the aid of the
Projection and the Riesz Representation theorems from the previous chapter.

The abstract weak problem which we study is posed on a general Hilbert
space, but when we look at specific examples we need to completely specify the
particular space. It turns out that the class of Hilbert spaces that are appropriate
is Sobolev spaces. Before studying the general problem, we introduce these spaces
and the concept of weak derivatives.

Not all weak problems we encounter fit into the framework of the general prob-
lem introduced in this chapter. In later chapters we consider an obvious generaliza-
tion to this weak problem, introduce a so-called mixed weak problem. Consequently,
by the completion of this book, we plan to analyze several general weak problems
which can handle a wide variety of linear problems.

When we derived the weak formulation to our prototype example in Chapter 1,
we saw that it was equivalent to solving a corresponding minimization problem.
Not all variational problems have this corresponding Rayleigh-Ritz formulation. In
Section 3.4 we prove a result which gives conditions when the two formulations are
equivalent.

37
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3.1 Weak L2 derivatives and Sobolev spaces
{abs_sec_sobolev}

In this section we define the particular class of Hilbert spaces which we use as our
spaces of admissible functions; these spaces are called Sobolev spaces. We want to
generalize the concept of derivative to define what we refer to as a weak or general-
ized derivative and do it in such a way that if everything is “smooth enough” then
the classical and weak derivatives coincide. The concept of a weak derivative is an
extension of the classical derivative which maintains the validity of the integration
by parts formula or its analogue in higher dimensions. Our generalization allows
functions such as u(x) = |x| on [−1, 1] to have a derivative in the weak sense.

We use this weak derivative in our definition of Sobolev spaces, the particular
Hilbert spaces we need. We begin this section with some notation which simplifies
the exposition, follow with the definition of a weak derivative, and then introduce
Sobolev spaces with their associated norms and inner products.

As usual, let Ω be an open, connected subset of Rn and let x = (x1, x2, . . . , xn)
denote a general point in Ω. The set of all real-valued functions u(x) = u(x1, · · · , xn)
which are defined and continuous on Ω is denoted C(Ω) and the set of all continuous
functions having derivatives of order less than or equal to k continuous in Ω is
denoted Ck(Ω), k <∞. We also need the space C∞0 which is the space of infinitely
differentiable functions which have compact support. A function φ has compact
support if φ = 0 outside a closed and bounded subset of Ω; the support of a
function φ(x) generally refers to the closure of the set of all x for which φ(x) 6= 0.

To simplify the derivative notation we introduce the notation of a multi-index
α which is defined as an n-tuple of non-negative integers, i.e., α = (α1, α2, . . . , αn)
where αi, i = 1, . . . , n is a non-negative integer. We use the notation

|α| = α1 + α2 + · · ·+ αn .

In this way we can rewrite the partial differential operator as

Dα ≡ ∂α1+α2+···+αn

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n

=
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n

.

For example, in R1, α = α1 so that Dα denotes the ordinary differential operator;
for example, D2 = d2/dx2. For R2, α = (α1, α2) and so for |α| = 1 we have the first
order partial differential operators D(1,0) = ∂/∂x1 and D(0,1) = ∂/∂x2. For |α| = 2
we have

D(2,0) =
∂2

∂x2
1

, D(0,2) =
∂2

∂x2
2

, and D(1,1) =
∂2

∂x1x2
.

Using this notation we can define Ck(Ω) as

Ck(Ω) = {u : Dαu ∈ C(Ω), |α| ≤ k} .

3.1.1 Weak derivatives

We now define the concept of the weak (or generalized or distributional) L2(Ω)
derivative of a function. Let u ∈ L2(Ω); we say that u has a derivative of order α
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in the weak L2-sense if there exists a function v ∈ L2(Ω) such that∫
Ω

uDαφdΩ = (−1)|α|
∫

Ω

vφ dΩ (3.1){abs_weakder}

holds for all φ ∈ C∞0 (Ω).
To help us understand this definition we consider a specific case in R1 where

Ω = (0, 1). Suppose φ(x) is a continuously differentiable function on Ω which
vanishes on the boundary of Ω, i.e., φ(0) = φ(1) = 0. Let u ∈ C1([0, 1]). Then∫ 1

0

u
∂φ

∂x
dx = φu

∣∣1
0
−
∫ 1

0

φ
∂u

∂x
dx

and thus ∫ 1

0

u
∂φ

∂x
dx = −

∫ 1

0

φ
∂u

∂x
dx .

So the classical derivative ∂u/∂x can be viewed as a function v satisfying∫ 1

0

u
∂φ

∂x
dx = −

∫ 1

0

φv dx . (3.2) {abs_weakder1}

Conversely, if we find a function v satisfying (3.2) then it behaves like the derivative
when integrated against functions in C∞0 (Ω). Note that (3.2) is just (3.1) where
|α| = 1 since Ω is a subset of R1.

We conclude that the classical derivatives, if they exist and are continuous in
the usual sense, coincide with the weak derivatives. However, there are functions
which possess a weak L2-derivative but have no classical derivatives.

{abs_example_absx}
Example 3.1 We know that the function u(x) = |x| on Ω = (−1, 1) does not have
a classical derivative at x = 0; however it does have a generalized L2-derivative. To
see this, let

v(x) =

{
−1 for −1 < x ≤ 0

1 for 0 < x < 1 .

Clearly, v ∈ L2(Ω) and we claim that v(x) is the weak L2-derivative of u(x) = |x|.
To show this, we note that if φ ∈ C∞0 (−1, 1) we have

−
∫ 1

−1

vφ dx =

∫ 0

−1

φ dx−
∫ 1

0

φ dx = −
∫ 0

−1

φ
d

dx
(−x) dx−

∫ 1

0

φ
d

dx
(x) dx

= −
[
φ(−x)

]0
−1
−
[
φx
]1
0

+

∫ 0

−1

(−x)φ′ dx+

∫ 1

0

xφ′ dx

=

∫ 1

−1

|x|φ′ dx =

∫ 1

−1

uφ′ dx

and thus (3.1) is satisfied with |α| = 1.
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There are functions in L2(Ω) which do not possess weak or classical deriva-
tives. The reader is referred to [Adams] for a complete exposition of generalized
derivatives.

We note that it can be proved that weak L2-derivatives are unique almost
everywhere; that is, unique except on a set of measure zero. For example, in
Example 3.1 we could have chosen the generalized L2-derivative to be

w(x) =

{
−1 for −1 < x < 0

1 for 0 ≤ x < 1 .

Note that w(x) and v(x) defined in Example 3.1 differ only at the point x = 0, i.e.,
on a set of measure zero.

3.1.2 Sobolev spaces

We are now ready to define the class of Hilbert spaces that we use to pose our weak
problems. The Sobolev space Hm(Ω) is the set of functions u ∈ L2(Ω) which possess
generalized (weak) L2-derivatives Dαu which are also in L2(Ω) for 0 ≤ |α| ≤ m;
i.e.,

Hm(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for 0 ≤ |α| ≤ m } . (3.3){abs_definesobolev}

Clearly, Hm(Ω) is a subspace of L2(Ω) and H0(Ω) = L2(Ω). On Hm(Ω) we define
the inner product

(u, v)m =
∑
|α|≤m

∫
Ω

DαuDαv dΩ

=
∑
|α|≤m

(Dαu,Dαv) ∀ u, v ∈ Hm(Ω) ,
(3.4){abs_sobolevinner}

where (·, ·) denotes the standard inner product on L2(Ω). Using this definition of
inner product, we define the norm on Hm(Ω) as

‖u‖m = (u, u)
1/2
m =

 ∑
|α|≤m

‖Dαu‖2
1/2

∀ u ∈ Hm(Ω) , (3.5){abs_sobolevnorm}

where ‖·‖ denotes the standard norm on L2(Ω). Clearly, ‖·‖0 is the standard L2(Ω)
norm so in the sequel we denote the L2-norm by ‖·‖0.

The following result guarantees that Hm(Ω) is a complete inner product space;
for the proof, see [Adams].

Theorem 3.2. Hm(Ω), equipped with the inner product and norm defined in (3.4){abs_thm_sobolev}
and (3.5), respectively, is a Hilbert space and thus a Banach space.

We make extensive use of the space H1(Ω); if Ω ⊂ R1 then the norm on H1(Ω)
is explicitly given by

‖u‖1 =
(
‖u‖20 + ‖u′‖2

)1/2

(3.6){abs_honenorm1}
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and if Ω ⊂ R2 then the norm is explicitly given by

‖u‖1 =

(
‖u‖20 +

∥∥∥∥ ∂u∂x1

∥∥∥∥2

0

+

∥∥∥∥ ∂u∂x2

∥∥∥∥2

0

)1/2

. (3.7){abs_honenorm2}

Note that by construction, for a function u ∈ Hm(Ω) we have

‖u‖0 ≤ ‖u‖1 ≤ ‖u‖2 · · · ≤ ‖u‖m .

We also make use of the Sobolev semi-norm on Hm(Ω) which is denoted by
| · | and defined by

|u|m =

 ∑
|α|=m

‖Dαu‖20

1/2

∀ u ∈ Hm(Ω) . (3.8) {abs_hseminorm}

Thus for Ω ⊂ Rn the H1 semi-norm is explicitly given by

|u|1 =

(
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥2

0

)1/2

∀ u ∈ H1(Ω) . (3.9) {abs_honesemi}

Again by definition of the norms, we have that for u ∈ Hm(Ω)

|u|m ≤ ‖u‖m . (3.10) {abs_relatesn}

Note that we are using the standard notation for partial derivative and Dα inter-
changeably; the context should make it clear if we are referring to the classical or
weak derivative.

We also make use of the constrained space H1
0 (Ω) which denotes all functions

in H1(Ω) which are zero on the boundary; i.e.,

H1
0 (Ω) = {u ∈ H1(Ω) : u|

∂Ω
= 0} . (3.11) {abs_honezero}

Formally, H1
0 (Ω) is defined as the completion of C∞0 (Ω) with respect to the norm

‖·‖1 and it can be shown that it is a closed subspace of H1(Ω) consisting precisely of
those functions u ∈ H1(Ω) which almost everywhere satisfy u = 0 on the boundary
of Ω.

We comment that if Ω ⊂ Rn for n > 1, then Hm(Ω) can contain functions
which are not continuous. As an example, if n = 2 and Ω is the open unit disk
with center at the origin, consider the function u = (ln(1/r))k for k < 1/2 and
r = (x2

1 + x2
2)1/2. It can be shown that u ∈ H1(Ω) but u is not continuous at the

origin. A result known as Sobolev’s Theorem (see [Adams]) gives the connection
between Hm(Ω) and Cm(Ω) for arbitrary m.

We conclude this section with the following result, known as the Poincaré
inequality, which is extremely useful in relating the L2-norm of certain functions
in H1(Ω) with their corresponding semi-norm. Recall that by the definition of the
Sobolev norm, it is always true that ‖u‖0 ≤ ‖u‖1. However, it is not obvious if the
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result holds when we replace the one-norm with the one semi-norm. It turns out
that it is true for functions in H1

0 (Ω) and even for functions which are zero on some
portion of their boundary. It is important to realize that this result does not, in
general, hold for all functions in H1(Ω).

Lemma 3.3. (Poincaré Inequality) Let u ∈ H1(Ω) such that u = 0 on some {abs_lemma_poincare}
portion of the boundary of Ω. Then there exists a constant C depending on Ω such
that

‖u‖0 ≤ C

(
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥2

0

)1/2

= C|u|1 . (3.12){abs_poincare}

Note that the Poincaré inequality, along with (3.10) gives that on H1
0 (Ω) the H1-

norm and H1-seminorm are equivalent norms.

3.2 Formulation and analysis of a general weak
problem

{abs_sec_weakproblem}
In this section we use the tools developed in the last chapter to formulate a general
weak problem. We state and prove the Lax-Milgram theorem which is central to
the theory of the finite element method since it provides us with conditions which
guarantee the existence and uniqueness of the solution of our general weak problem.

Let V denote a Hilbert space, let A(·, ·) denote a bilinear form on V × V and
let F denote a linear functional on V . The general weak problem we consider is to{

seek u ∈ V satisfying
A(u, v) = F (v) ∀ v ∈ V . (3.13){abs_wp}

Many weak formulations that we encounter can easily be put into the general form
of (3.13) with appropriate choices for the Hilbert space, the bilinear form, and the
linear functional.

Example 3.4 Consider the simple two-point boundary value problem{abs_ex1}

−u′′(x) = sinπx 0 < x < 1 (3.14a){abs_ex1_de}

and the boundary conditions

u(0) = 0 (3.14b){abs_ex1_bcl}

and

u(1) = 0 . (3.14c){abs_ex1_bcr}

In choosing the underlying Hilbert space for our weak formulation of (3.14), we
must require our solution to be in L2(0, 1) and to possess at least one weak L2-
derivative. In addition, we want to constrain our space so that we only consider
functions which satisfy the homogeneous Dirichlet boundary conditions. Thus we
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choose H1
0 (0, 1) to be the underlying Hilbert space in which we seek a solution u(x).

In particular, we seek a u ∈ H1
0 (0, 1) satisfying∫ 1

0

u′v′ dx =

∫ 1

0

sinπxv dx ∀ v ∈ H1
0 (0, 1) . (3.15){abs_exwp}

Clearly any solution of this two-point boundary value problem is also a solution
of (3.15). Now we can easily cast (3.15) into the general form of (3.13) if we let
V = H1

0 (0, 1),

A(u, v) =

∫ 1

0

u′v′ dx

and

F (v) =

∫ 1

0

sinπx v(x) dx = (sinπx, v) ,

where (·, ·) denotes the L2(0, 1) inner product. Clearly A(u, v) defined in this way
is a bilinear form on H1(0, 1) and F (v) is a linear functional on H1(0, 1) and thus
on H1

0 (0, 1).

If F is a bounded linear functional on the given Hilbert space V and the
bilinear form A(·, ·) is bounded, or equivalently, continuous on the space V and, in
addition, satisfies a property referred to as coercivity or equivalently as V-ellipticity,
then the Lax-Milgram theorem guarantees existence and uniqueness of the solution
of (3.13). Moreover, the theorem also provides a bound of the solution of the weak
problem in terms of the data. This is analogous to bounds obtained in PDE theory.

Theorem 3.5. (Lax-Milgram Theorem) Let V be a Hilbert space and let {abs_thm_laxmilgram}
A(·, ·) : V × V → R1 be a bilinear form on V which satisfies

|A(u, v)| ≤M ‖u‖ ‖v‖ ∀ u, v ∈ V (3.16) {abs_lmbounded}

and
A(u, u) ≥ m ‖u‖2 ∀ u ∈ V , (3.17) {abs_lmcoercivity}

where M and m are positive constants independent of u, v ∈ V . Let F : V → R1

be a bounded linear functional on V . Then there exists a unique u ∈ V satisfying
(3.13). Moreover

‖u‖ ≤ 1

m
‖F‖ . (3.18) {abs_lmsolnbound}

Proof. In order to prove this result we begin by fixing a u ∈ V and demonstrating
that Q(v) = A(u, v) defines a bounded linear functional on V . We then apply the
Riesz representation theorem to obtain a unique element û ∈ V such that

Q(v) = A(u, v) = (v, û) ∀ v ∈ V .

This allows us to associate to each u ∈ V a unique û ∈ V . If we denote this
correspondence by û = Au we have

A(u, v) = (v,Au) ∀ u, v ∈ V . (3.19) {abs_defA}
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We then demonstrate that A is a linear operator and that the range of A, denoted
R(A), is a closed subspace of V and finally that R(A) = V .

Once we have established these facts then we can establish the existence and
uniqueness by the following argument. Since F is a bounded linear functional on V
then the Riesz representation theorem guarantees the existence of a unique element
φ ∈ V such that F (v) = (φ, v) for all v ∈ V . If the R(A) = V , then there exists a
u ∈ V such that Au = φ. Hence there exists a u ∈ V such that

F (v) = (Au, v) = A(u, v) ∀ v ∈ V .

Uniqueness is shown in the standard way of choosing u1 6= u2 such that

A(u1, v) = A(u2, v) = F (v) ∀ v ∈ V .

Then we have that A(u1 − u2, v) = 0 for all v ∈ V and choosing v = u1 − u2, we
conclude that A(u1 − u2, u1 − u2) = 0. Using (3.17) we know that A(u1 − u2, u1 −
u2) ≥ m ‖u1 − u2‖2 which implies the contradiction 0 ≥ m ‖u1 − u2‖2.

We now return to proving the claims necessary to complete the proof of exis-
tence. First, we see that Q(v) ≡ A(u, v) is a bounded linear functional on V . Lin-
earity immediately follows from the linearity of A(·, ·); the fact that it is bounded
follows from (3.16); i.e.,

|Q(v)| = |A(u, v)| ≤ C ‖u‖ ‖v‖

and thus ‖Q‖ ≤ C ‖u‖ < ∞. It is now required to show that the operator A is
linear. Given φ, ψ ∈ V

(v,A(αφ+ βψ)) = A(αφ+ βψ, v) = αA(φ, v) + βA(ψ, v)

= αΦ(v) + βΨ(v) ∀ v ∈ V .

Using the same argument as we did for Q(v), we see Φ(v) and Ψ(v) are bounded
linear functionals on V and so we can apply the Riesz representation theorem and
the definition of A to write

Φ(v) = (v, φ̂) = (v,Aφ)

and similarly for Ψ(v). Combining these results we obtain

(v,A(αφ+ βψ)) = α (v,Aφ) + β (v,Aψ) ∀ v ∈ V

and hence A(αφ + βψ) = αA(φ) + βA(ψ); i.e., linearity is proved. It remains to
show that R(A) is a closed subspace of V and, in fact, R(A) = V . The fact that
R(A) is a subspace is obvious from its definition; to show that it is closed we choose

a sequence {φ̂n} ∈ R(A) which converges to φ̂ ∈ V and demonstrate that φ̂ ∈ R(A).

Since φ̂n ∈ R(A) we can write φ̂n = Aφn for φn ∈ V ; we want to demonstrate that
{φn} is a Cauchy sequence in V . Now by the definition of A, (v,Aφn) = A(φn, v)
for all v ∈ V and thus A(φn − φm, v) = (v,A(φn − φm)) for all v ∈ V . Choosing
v = φn − φm and using (3.17) we have that

m ‖φn − φm‖2 ≤ a(φn − φm, φn − φm) = (φn − φm,A(φn − φm)) .
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Using the Cauchy-Schwartz inequality and the linearity of A we have ‖φn − φm‖ ≤
1
m ‖Aφn −Aφm)‖= 1

N ‖φ̂n − φ̂m‖; we thus conclude that {φn} is a Cauchy sequence
in V . Since V is complete, there exists a φ ∈ V such that φn → φ. If we now show
that φ̂ = Aφ we have demonstrated that the limit of the sequence {φ̂n} is in R(A)
and thus R(A) is closed. To see this we note that by using the linearity of A(·, ·)
and (3.16) we have

|A(φn, v)−A(φ, v)| ≤M ‖φn − φ‖ ‖v‖ ∀ v ∈ V .

Thus A(φn, v) → A(φ, v) as n → ∞ for all v ∈ V . In terms of an inner product,

this yields (v,Aφn) → (v,Aφ) as n → ∞. But (Aφn, v) = (φ̂n, v) → (φ̂, v). So

(Aφn, v) → (φ̂, v) and (Aφn, v) → (v,Aφ) ; thus φ̂ = Aφ and the R(A) is closed.
To show that R(A) = V we assume that R(A) ⊂ V ; i.e., there exists a z ∈ R(A)⊥.
This implies (z, v̂) = 0 for all v̂ ∈ R(A); or equivalently for all v ∈ V , (z,Av) = 0.
In particular, if we set v = z we have A(z, z) = (z,Az) = 0, but from (3.17))

A(z, z) ≥ N ‖z‖2 implying that z = 0, a contradiction.
To conclude the proof we must demonstrate (3.18)). Since A(u, u) = F (u) we

have that

m ‖u‖2 ≤ |A(u, u)| = |F (u)|

from which we have for u 6= 0

‖u‖ ≤ 1

m

|F (u)|
‖u‖

.

Therefore

‖u‖ ≤ sup
u6=0

1

m

|F (u)|
‖u‖

=
1

m
‖F‖ .

3.3 Galerkin approximations
{abs_sec_galerkin}

In the previous section we defined a general weak problem, (3.13), which is posed
on an infinite-dimensional Hilbert space V . We then stated and proved the Lax-
Milgram theorem which gave conditions guaranteeing existence and uniqueness of
its solution. Since in finite elements, our objective is to approximate the solution of
this weak problem, we want to state a general discrete weak problem, give conditions
which guarantee existence and uniqueness of its solution, and finally to bound the
error between the solution of (3.13) and the discrete solution.

We begin by letting {V h}, 0 < h < 1, be a family of finite dimensional
subspaces of the Hilbert space V . Then the discrete problem corresponding to
(3.13) for a fixed h is to{ seek uh ∈ V h satisfying

A(uh, vh) = F (vh) ∀ vh ∈ V h . (3.20) {abs_dwp}
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If the conditions of the Lax-Milgram theorem hold over the whole space V , then
clearly they hold over any subspace V h. Consequently, existence and uniqueness
of (3.20) is automatically guaranteed by the Lax-Milgram theorem. The following
result, known as Galerkin’s or Cea’s theorem, provides us with an error estimate for∥∥u− uh∥∥ where u ∈ V satisfies (3.13), uh ∈ V h ⊂ V satisfies 3.20, and ‖ · ‖ denotes
the norm on V . Simply stated, this result says that the error in the solution to the
weak problem and its Galerkin approximation is less than or equal to a constant
(which is ≥ 1) times the best approximation to the solution of (3.13) in Sh.

Lemma 3.6. (Galerkin’s or Cea’s Lemma) Let A(·, ·) be a bilinear form on V{la_thm_galerkin}
satisfying (3.16) and (3.17), and let F (·) be a bounded linear functional on V . Let
u be the unique solution of

A(u, v) = F (v) ∀ v ∈ V

guaranteed by the Lax-Milgram theorem. Let {V h}, 0 < h < 1, be a family of finite
dimensional subspaces of V . Then for every h there exists a unique uh ∈ V h such
that

A(uh, vh) = F (vh) ∀ vh ∈ V h

and moreover, ∥∥u− uh∥∥ ≤ M

m
inf

χh∈V h

∥∥u− χh∥∥ , (3.21){la_errorestimate}

where M,m are the constants appearing in the Lax-Milgram theorem and ‖·‖ denotes
the norm on V .

Proof. As indicated in the discussion preceding the theorem, the existence and
uniqueness of (3.20) is guaranteed by the Lax-Milgram theorem. In order to prove
our error estimate, we begin by establishing the so-called Galerkin orthogonality
condition. We note that (3.13) holds for all v ∈ V so, in particular, it holds for all
vh ∈ V h ⊂ V ; i.e.,

A(u, vh) = F (vh) ∀ vh ∈ V h .

Subtracting this expression from (3.20) we have that

A(u− uh, vh) = 0 ∀ vh ∈ V h (3.22){abs_galerkinorth}

which says that the error u−uh is orthogonal to V h. Using the coercivity property
of A(·, ·) given in (3.17) we have

m
∥∥u− uh∥∥2 ≤ A(u− uh, u− uh) ; (3.23){abs_gal1}

adding and subtracting an arbitrary element χh ∈ V h and using the linearity of
A(·, ·) gives

A(u−uh, u−uh) = A(u−uh, u−χh+χh−uh) = A(u−uh, u−χh)+A(u−uh, χh−uh) .
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Now the orthogonality condition (3.22) tells us that the last term is zero since
χh − uh ∈ V h. Combining this result with (3.23) and using the bound on A(·, ·)
given in (3.16) we have

m
∥∥u− uh∥∥2 ≤ A(u− uh, u− χh) ≤M

∥∥u− χh∥∥ ∥∥u− uh∥∥ ∀ χh ∈ V h

and thus ∥∥u− uh∥∥ ≤ M

m

∥∥u− χh∥∥ ∀ χh ∈ V h .

Taking the infimum over all χh ∈ V h provides the final result.

As an immediate corollary to this result we have that if the family of sub-
spaces V h has the property that the norm of u minus its best approximation in V h

approaches zero as h→ 0 then we have convergence of uh to u as h→ 0.

Corollary 3.7. If {V h}, 0 < h < 1, is a family of subspaces of V which satisfy

lim
h→0

inf
χh∈V h

∥∥u− χh∥∥ = 0 (3.24) {abs_corgalerkin}

then
∥∥u− uh∥∥→ 0 as h→ 0.

It is important to note that if wh is any element of V h then

inf
χh∈V h

∥∥u− χh∥∥
1
≤
∥∥u− wh∥∥

1
.

This is particularly useful when we want to bound the error
∥∥u− uh∥∥

1
in terms of

powers of h. From the study of approximation theory, we know that bounds are
not readily available for the best approximation but bounds are easy to obtain for
particular elements of V h such as the V h-interpolant of u. Thus if we can bound
the error in u and its V h-interpolant in terms of powers of h, then we have a useful
bound for

∥∥u− uh∥∥
1
. We return to this when we consider particular examples in

the next chapter.
The discrete weak problem (3.20) results in a linear algebraic system of equa-

tions once a basis is chosen for the n-dimensional space V h. In particular, let
{φi(x)}, i = 1, . . . , n be a basis for V h. Then uh ∈ V h can be written as a linear
combination of these basis vectors, i.e.,

uh =
n∑
j=1

ξjφj(x)

and thus (3.20) becomes

A
( n∑
j=1

ξjφj(x), vh
)

= F (v) ∀ vh ∈ V h . (3.25) {abs_dwpb}
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Now testing (3.25) against each vh ∈ V h is equivalent to testing it against each
element in the basis for V h so that we have

n∑
j=1

ξjA
(
φj(x), φi(x)

)
= F

(
φi(x)

)
i = 1, 2, . . . , n

or in matrix form Ac = b where A is an n× n matrix, c, b ∈ Rn with

Aij = A(φj , φi) , ci = ξi and bi = F (φi) . (3.26) {abs_defa}

Properties of the bilinear form A(·, ·) are inherited by the matrix A. From numerical
linear algebra, we know that a symmetric, positive definite matrix is easily solved
by Cholesky factorization or by an iterative method. Consequently, it is worth-
while to note the conditions on A(·, ·) which guarantee that the resulting matrix is
symmetric, positive definite.

Lemma 3.8. Let A(·, ·) be a symmetric bilinear form defined on V × V . If A(·, ·){abs_thm_spd}
satisfies the coercivity condition (3.17), then the matrix defined by (3.26) is sym-
metric and positive definite.

Proof. See exercises.

Of course we have not discussed choices of the finite dimensional subspaces
V h; we address some simple choices in the next chapters when we consider spe-
cific examples; Chapter 6 is devoted entirely to the study of finite element spaces.
However, it is important to keep in mind that of all possible choices for V h, finite
element methods usually employ continuous piecewise polynomial spaces.

We have seen that if our bilinear form is symmetric and coercive, then the
resulting matrix is symmetric, positive definite. However, since the size of our
linear system can be quite large, especially in two and three dimensions, we would
also like to have a sparse, banded matrix. The choice of basis for V h governs this
sparsity. In particular, we choose basis functions which have compact support, i.e.,
are zero outside of a compact set. So, for example, in one dimension we choose
basis functions which are nonzero on as few intervals as possible.

Example 3.9 Returning to (3.15), the variational formulation in Example 3.1, we
see that the corresponding discrete weak problem is to seek uh ∈ V h ⊂ H1

0 (0, 1)
satisfying ∫ 1

0

∂uh

∂x

∂vh

∂x
dx =

∫ 1

0

sinπx vh dx ∀ vh ∈ V h

and Galerkin’s lemma provides us with an error bound using the norm on H1(0, 1).
In particular we have that∥∥u− uh∥∥

1
≤ inf
χh∈V h

∥∥u− χh∥∥
1

where ∥∥u− uh∥∥
1

=

(∫ 1

0

(u− uh)2 dx+

∫ 1

0

(
du

dx
− duh

dx
)2 dx

)1/2

.
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3.4 The Rayleigh-Ritz problem
{abs_sec_min}

Recall from linear algebra that determining an x ∈ Rn satisfying the linear system
Ax = b, where A is an n×n symmetric, positive definite matrix, b ∈ Rn, is equivalent
to solving the minimization problem

min
y∈Rn

(
1

2
yTAy − yT b

)
. (3.27) {abs_minla}

See exercises. Although we rarely solve a linear system as a minimization problem,
the equivalence between the two problems is often useful. In this section we want to
show that an analogous relationship exists between the solution of the weak problem
(3.13) and an appropriate minimization problem; this minimization problem is often
called the Ritz problem or the Rayleigh-Ritz problem.

Consider the minimization problem

min
v∈V
J (v) (3.28) {abs_min}

where J : V → R is the functional defined by

J (v) =
1

2
A(v, v)− F (v) ∀ v ∈ V . (3.29) {abs_definej}

It turns out that if A(·, ·) satisfies the hypotheses of the Lax-Milgram theorem and
is symmetric then solving the minimization problem (3.28) is equivalent to solving
the weak problem (3.13). Consequently, once we discretize a symmetric problem,
we have the choice of solving it as a system of linear algebraic equations or as a
minimization problem. The following result demonstrates the equivalence of the
two problems.

Theorem 3.10. Let A(·, ·) be a symmetric bilinear form satisfying the hypothe- {abs_thm_weakmin}
ses of the Lax-Milgram Theorem. Then the problem of finding a u satisfying the
weak problem (3.13) and finding a solution to the minimization problem (3.28) are
equivalent.

Proof. First assume that u ∈ V satisfies the weak problem (3.13) and let w ∈ V
be artibrary. Then using the definition (3.29) of J and the linearity of A(·, ·) and
F (·), we obtain

J (u+ w) =
1

2
A(u+ w, u+ w)− F (u+ w)

=
1

2
A(u, u) +

1

2

(
A(w, u) +A(u,w)

)
+A(w,w)− F (u)− F (w)

= J (u) +A(u,w)− F (w) +A(w,w) ,

where in the last step we have used the symmetry of A(·, ·) and the definition of J .
Since w ∈ V and u satisfies (3.13), A(u,w)−F (w) = 0. Also since A(·, ·) is coercive,
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A(w,w) > 0 for w 6= 0. Therefore J (u + w) > J (u) and thus u is a minimizer of
(3.28).

Now assume that u minimizes J (v) for all v ∈ V . Then for any scalar σ and v ∈ V ,
u+ σv ∈ V and so J (u+ σv) ≥ J (u). Then the function g(σ) = J (u+ σv) has a
minimum at σ = 0. From calculus, we know that

dg

dσ

∣∣∣
σ=0

= 0 .

Since

dg

dσ
=

d

dσ

(
1

2
A(u+ σv, u+ σv)− F (u+ σv)

)
=

d

dσ

(
1

2
A(u, u) + σA(u, v) +

1

2
σ2A(v, v)− F (u)− σF (v)

)
= A(u, v) + σA(v, v)− F (v)

where we have used the properties of A(·, ·) and the inner product. Evaluating this
derivative at σ = 0, we arrive at A(u, v)−F (v) = 0 for all v ∈ V , i.e., if u minimizes
(3.28) then u satisfies (3.13).
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Exercises
3.1. Let Ph be the projection operator Ph : V → V h. Demonstrate that∥∥u− uh∥∥ ≤ M

m

∥∥u− Phu∥∥ , (3.30)

where M,m are the constants appearing in the Lax Milgram Theorem 3.5.

3.2. Prove Lemma 3.8.

3.3. Show that on H1
0 (Ω) the H1-norm and the H1-seminorm are equivalent

norms.

3.4. Show that determining an x ∈ Rn satisfying the linear system Ax = b, where
A is an n × n symmetric, positive definite matrix, b ∈ Rn, is equivalent to
solving the minimization problem (3.27).

3.5. Give an example of a weak formulation for a linear two-point boundary value
problem on [0, 1] which is not equivalent to a Rayleigh-Ritz minimization
problem. Explain your reasoning.
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Chapter 4

Finite Element Method
for Ordinary Differential
Equations

{chap_fem1d}
In this chapter we consider some simple examples of the finite element method for
the approximate solution of ordinary differential equations. Although the principal
use of finite element methods is for approximating solutions to partial differential
equations, it is instructive to look at one-dimensional problems for their simplicity
and ease of understanding. In addition, when we approximate PDEs using rectan-
gular elements, then we take tensor products of one-dimensional elements.

In the first three examples we consider a two-point boundary value problem
for a second-order linear ordinary differential equation. Each of these examples
is constructed so that the approach for handling different boundary data is made
evident. The fourth example is a higher order differential equation.

In each example we define an appropriate weak formulation, either prove or
indicate how the hypotheses of the Lax-Milgram theorem can be established, discuss
the finite element approximation of the weak problem, and present error estimates.
In addition, we provide computational results for some examples.

4.1 A two-point BVP with homogeneous Dirichlet
boundary data

{1d_sec_homodir}
We begin by considering the following two-point boundary value problem on [0, 1]
where we seek a function u(x) satisfying

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) for 0 < x < 1

u(0) = 0
u(1) = 0 ,

(4.1) {1d_homodir_2ptbvp}

where p(x), q(x), and f(x) are given functions defined on [0, 1]. In the sequel we
assume that 0 < pmin ≤ p(x) ≤ pmax and qmin = 0 ≤ q(x) ≤ qmax where pmin, pmax,
and qmax are positive constants and f ∈ L2(0, 1). This problem is often referred to
as a Sturm-Liouville problem.

53
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It is well-known that whenever f, q ∈ C[0, 1] and p ∈ C1[0, 1] the boundary
value problem (4.1) possesses a unique classical solution u(x) ∈ C2(0, 1) which
satisfies (4.1) for every x ∈ [0, 1]. We are interested in a weak or generalized solution
of (4.1); i.e.,in a function u(x) that satisfies (4.1) in some sense even when f, p, q
are not continuous; if f, p, q are sufficiently smooth then we want the weak solution
to coincide with the classical solution.

4.1.1 Weak formulation

In choosing the underlying Hilbert space for our weak formulation of (4.1), we know
that multiplication of the differential equation by an appropriate test function,
integrating over the domain and then integrating by parts to balance the order of
the derivatives results in both the test and trial functions having one derivative.
Consequently we require our solution to be in L2(0, 1) and to possess at least one
weak L2-derivative. In addition, we constrain our space so that we only consider
functions which satisfy the homogeneous Dirichlet boundary conditions. Thus we
choose H1

0 (0, 1) to be the underlying Hilbert space in which we seek a solution u(x)
and for our test space. On H1

0 (0, 1) we define the bilinear form A(·, ·) by

A(v, w) =

∫ 1

0

p(x)v′(x)w′(x) dx+

∫ 1

0

q(x)v(x)w(x) dx = (pv′, w′) + (qv, w) , (4.2){1d_homodir_bilinear}

where (·, ·) denotes the standard L2(Ω)-inner product. The weak problem is stated
as: {

seek u ∈ H1
0 (0, 1) satisfying

A(u, v) = (f, v) ∀ v ∈ H1
0 (0, 1) .

(4.3){1d_homodir_weak}

Note that if u is the classical solution of (4.1) then u(x) also satisfies the weak
problem because for v ∈ H1

0 (0, 1)

(f, v) =

∫ 1

0

fv dx =

∫ 1

0

(
−(pu′)′ + qu

)
v dx

=

∫ 1

0

pu′v′ dx+

∫ 1

0

quv dx−
[
pu′v

] ∣∣1
0

=

∫ 1

0

pu′v′ dx+

∫ 1

0

quv dx = A(u, v) .

Conversely, if u ∈ H1
0 (0, 1) satisfies (4.3) and is u is sufficiently smooth, i.e.,u ∈

C2(0, 1), a situation which can be guaranteed if p, q and f are themselves sufficiently
smooth, then u coincides with the classical solution of (4.1). The homogeneous
Dirichlet boundary conditions are satisfied because u ∈ H1

0 (0, 1) and the differential
equation holds because

A(u, v)− (f, v) =

∫ 1

0

pu′v′ dx+

∫ 1

0

quv dx−
∫ 1

0

fv dx

=

∫ 1

0

[
(−pu′)′ + qu− f

]
v dx = 0 ∀ v ∈ H1

0 (0, 1)
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and v ∈ H1
0 (0, 1) is arbritary. Recall that if we can find a function u ∈ H1

0 (0, 1)
which is the unique solution of (4.3), then we call u the weak solution of (4.1) in
H1

0 (0, 1).
To prove the existence and uniqueness of u ∈ H1

0 (0, 1) satisfying (4.3) we use
the Lax-Milgram theorem (Theorem 3.5) and verify that A(·, ·) and F (v) satisfy the
hypotheses of this theorem. Clearly, A(·, ·) is a bilinear form on H1

0 (0, 1)×H1
0 (0, 1).

We first show that it is bounded on the space H1
0 (0, 1), i.e., |A(v, w)| ≤M ‖v‖1 ‖u‖1.

To do this we use properties of integrals, the given bounds on p, q and the Cauchy-
Schwartz inequality to obtain

|A(v, w)| ≤
∣∣∣ ∫ 1

0

p(x)v′w′ dx
∣∣∣+
∣∣∣ ∫ 1

0

q(x)vw dx
∣∣∣

≤ pmax

∣∣∣ ∫ 1

0

v′w′ dx
∣∣∣+ qmax

∣∣∣ ∫ 1

0

vw dx
∣∣∣

= pmax

∣∣∣(v′, w′)∣∣∣+ qmax

∣∣∣(v, w)
∣∣∣

≤ pmax‖v′‖0‖w′‖0 + qmax‖v‖0‖w‖0 .

To complete the result, we note that by the definition of the L2-norm and the
H1-norm and seminorm, ‖w′‖0 = |w|1, ‖·‖0 ≤ ‖·‖1, | · |1 ≤ ‖·‖1. Thus

|A(v, w)| ≤ pmax ‖v‖1 ‖w‖1 + qmax ‖v‖1 ‖w‖1 ≤ C ‖v‖1 ‖w‖1 ,

where C = pmax + qmax. Therefore, condition (3.16) of the Lax-Milgram theorem is
satisfied.

In general, demonstrating coercivity of the bilinear form usually requires more
finesse than proving continuity. We must prove that A(v, v) ≥ m ‖v‖21. In our case
we have

A(v, v) =

∫ 1

0

p(v′)2 dx+

∫ 1

0

qv2 dx ≥ pmin‖v′‖20 + qmin‖v‖20 .

But we have assumed qmin = 0 so

A(v, v) ≥ pmin‖v′‖20 .

We must now bound ‖v′‖0 = |v|1 below by a constant times ‖v‖1 for all v ∈ H1
0 (0, 1).

The fact that v ∈ H1
0 (0, 1) allows us to use the Poincaré inequality (??) to bound

|v|1 ≥ 1
Cp
‖v‖0. Using this bound for the entire term ‖v′‖20 = |v′|21 does not give us

the desired result so we use the approach of breaking this term into two parts; we
have

pmin‖v′‖20 = pmin|v|21 = pmin

(1

2
|v|21 +

1

2
|v|21
)
≥ 1

2
pmin

(
|v|21 +

1

C2
p

‖v‖20
)
.

Then

A(v, v) ≥ 1

2
pmin

[
min

(
1,

1

C2
p

)](
|v|21 + ‖v‖20

)
= m ‖v‖21 ,
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where we have used the definition of the H1-norm, ‖·‖21 = ‖·‖20 + | · |21; thus the
coercivity condition (3.17) is satisfied. Clearly F (v) = (f, v) is a bounded linear
functional on H1

0 (0, 1). Thus the Lax-Milgram theorem guarantees the existence of
a unique u ∈ H1

0 (0, 1) which satisfies (4.3).
In this problem we constrained our Hilbert space to consist of functions which

satisfy the homogenous Dirichlet boundary conditions. We recall that boundary
conditions which are satisfied by constraining the admissible or trial space are called
essential.

4.1.2 Approximation using piecewise linear polynomials

We now turn to approximating u, the solution of the weak problem (4.3), by its
Galerkin approximation uh in a finite dimensional subspace Sh0 of H1

0 (0, 1). The
approximate solution is required to satisfy (4.3) but only for all vh ∈ Sh0 ; the discrete
weak problem is { seek uh ∈ Sh0 satisfying

A(uh, vh) =
(
f, vh

)
∀ vh ∈ Sh0 .

(4.4){1d_homodir_dweak}

Because Sh0 ⊂ H1
0 (0, 1) the conditions of the Lax Milgram theorem are automatically

satisfied on Sh0 and so we are guaranteed that there exists a unique uh ∈ Sh0 which
satisfies (4.4). Moreover, Galerkin/Cea’s Lemma gives us the error estimate∥∥u− uh∥∥

1
≤ C inf

χh∈Sh
0

∥∥u− χh∥∥
1
. (4.5){1d_homodir_errorba}

First we choose Sh0 to be the space of continuous linear piecewise polynomials
defined on a partition of [0, 1] which satisify the homogeneous Dirichlet boundary
conditions. In particular, we consider the following partition of [0, 1]:

0 = x0 < x1 < · · · < xN+1 = 1 where xi = xi−1 + hi, 1 ≤ i ≤ N + 1 , (4.6){1d_subdiv}

and where hi, 1 ≤ i ≤ N + 1 are given numbers such that 0 < hi < 1 and∑N+1
i=1 hi = 1. We define h = max

1≤i≤N+1
hi; if hi = h for all i then we call the

subdivision uniform. A continuous piecewise linear function with respect to the
given subdivision on [0, 1] is a function φ(x) defined on [0, 1] which is linear on each
subinterval; i.e.,φ(x) = αix + βi on [xi, xi+1], 0 ≤ i ≤ N . To impose continuity
we require that the constants satisfy αi, βi where αi−1xi + βi−1 = αixi + βi, i =
1, . . . , N ; We define

Sh0 = {φ(x) : φ ∈ C[0, 1],
φ(x) linear on [xi, xi+1] for 0 ≤ i ≤ N,φ(0) = φ(1) = 0} . (4.7){1d_homodir_sh}

As we discussed in Chapter ?? we want to choose a basis whose functions have
as small support as possible so that the resulting coefficient matrix is sparse. For
1 ≤ i ≤ N we consider again the “hat” functions (see Figure 1.3)

φi(x) =


x− xi−1

hi
for xi−1 ≤ x ≤ xi

xi+1 − x
hi+1

for xi ≤ x ≤ xi+1

0 elsewhere.

(4.8){1d_homodir_basis}
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Clearly φi(x) ∈ Sh0 for 1 ≤ i ≤ N . Moreover, we easily see that

φi(xj) = δij =

{
1 if i = j
0 otherwise

(4.9){1d_homodir_propbasis}

for 1 ≤ i ≤ N and 0 ≤ j ≤ N + 1. Here δij denotes the Kronecker delta function.
The following proposition justifies our intuition that the functions defined in (4.8)
form a basis for Sh0 .

Proposition 4.1. Sh0 defined by (4.7) is an N -dimensional subspace of H1
0 (0, 1). {1d_prop_homodir_sh}

The functions {φi(x)}Ni=1 defined in (4.8) form a basis for Sh0 .

Proof. Every function φ(x) ∈ Sh0 also belongs to L2(0, 1) and each function is
piecewise linear, so analogous to the function |x|, each has a weak derivative (which
is piecewise constant) in L2(0, 1). Also φ(0) = φ(1) = 0 for all φ ∈ Sh0 so that
Sh0 ⊂ H1

0 (0, 1). We now show that {φi(x)}, i = 1, . . . , N are linearly independent
and span the space Sh0 . To see that we have a linearly independent set, let ψ(x) =∑N
i=1 ciφi(x); we want to show that the only way ψ(x) = 0 for all x is if ci = 0 for

i = 1, . . . , N . Using (4.9), we see that ψ(xi) = ci for 1 ≤ i ≤ N . Thus if ψ(x) = 0 for
all x we have that ci = 0 for i = 1, . . . , N ; in addition if ci = 0 for all 1 ≤ i ≤ N then
the nodal values of ψ are zero and since it is piecewise linear, it is zero everywhere.
Hence we conclude that the functions are linearly independent. To show that the
set spans Sh0 we let ψ(x) be an arbitrary element of Sh0 and show that we can write

ψ(x) as a linear combination of the φi(x), i = 1, . . . , N ; i.e.,ψ(x) =
∑N
i=1 ciφi(x).

But this can be done by letting ci = ψ(xi), i.e.,setting ci to be the nodal values of
ψ.

Once we have chosen a basis for Sh0 , the problem (4.4) reduces to solving a
system of N algebraic equations in N unknowns. Since uh ∈ Sh0 , we let uh(x) =∑N
j=1 ξjφj(x) and write (4.4) as

N∑
j=1

ξjA(φj , φi) = (f, φi) for 1 ≤ i ≤ N .

Then ~c = (ξ1, ξ2, . . . , ξN )T satisfies the matrix system

A~c = ~b , (4.10) {1d_homodir_matrix}

where~b =
(
(f, φ1) , (f, φ2) , . . . , (f, φN )

)T
andA is the N×N matrix whose elements

are given by
Aij = A(φj , φi) =

(
pφ′j , φ

′
i

)
+ (qφj , φi)

or
Aij = Sij +Mij

with Sij =
(
pφ′j , φ

′
i

)
and Mij = (qφj , φi). The matrix A is symmetric, positive

definite (see the exercises) and tridiagonal. If p(x) = q(x) = 1 on [0, 1] and we use



58 Chapter 4. Finite Element Method for Ordinary Differential Equations

a uniform mesh, then the matrices S and M are explicitly given by

S =
1

h



2 −1 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 0 0
. . .

. . .
. . .

0 · · · 0 −1 2 −1
0 · · · 0 −1 2


(4.11) {1d_homodir_stiffness}

and

M =
h

6



4 1 0 · · · 0
1 4 1 0 · · · 0
0 1 4 1 0 0

. . .
. . .

. . .

0 · · · 0 1 4 1
0 · · · 0 1 4


. (4.12){1d_homodir_mass}

In the case p = 1 the matrix S is called the stiffness matrix of the basis {φi}Ni=1

while in the case q = 1, the matrixM is called the Gram matrix or the mass matrix
associated with the basis {φi}Ni=1.

Solution of the linear system

Our coefficient matrix is a symmetric, positive-definite, tridiagonal matrix. If we
choose a direct solver, then a Cholesky tridiagonal solver should be used because
it takes advantage of these properties of the matrix. Recall that in a Cholesky
factorization we write A = LLT where L is a lower triangular matrix with positive
elements on the diagonal. If A is the tridiagonal matrix

A =


a1 b2
b2 a2 b3

. . .
. . .

. . .

bN aN

 =


α1

β2 α2

. . .
. . .

βN αN




α1 β2

α2 β3

. . .
. . .

αN


then

α1 =
√
a1

for i = 2, . . . , N βi = bi/ai−1 and αi =
√
ai − β2

i .
(4.13){1d_trisolver_factor}

Note that we can not determine all the βi first and then determine the αi but rather
for each i we must determine βi and then αi before incrementing i. To solve the
system A~c = ~f we write LLT~c = ~f and solve L~y = ~f and LT~c = ~y. Doing this we
have the equations

y1 = f1/α1

for i = 2, . . . , N yi =
fi − βiyi−1

αi

(4.14){1d_trisolver_forward}
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and
cN = yN/αN

for i = N − 1, . . . , 1 ci =
yi − βi+1yi+1

αi
.

(4.15){1d_trisolver_backward}

For simplicity of exposition we have defined new variables, αi, βi, yi, and ci while in
practice the entries of A and ~f are overwritten and no new arrays need be defined.

Error estimates and interpolation results

The bound for the error (4.5) in terms of the error in u and its best approximation
in the subspace is not particularly useful in computations; what we would like is
to measure the error in terms of powers of h. In order to have a quantitative
estimate in terms of powers of h we need to estimate the H1-error in u and its best
approximation in Sh0 but this is difficult to do. However, we note that

inf
χh∈Sh

0

∥∥u− χh∥∥
1
≤
∥∥u− wh∥∥

1
for any wh ∈ Sh0

is always true by the definition of the best approximation. So we immediately have∥∥u− uh∥∥
1
≤ C

∥∥u− wh∥∥
1

for any wh ∈ Sh0 . (4.16) {1d_homodir_h1errorba}

Thus we need to find an element of Sh0 for which an approximation result is available.
Recall from elementary numerical analysis that one way to approximate a

function is to use a polynomial interpolant; i.e.,to find a polynomial which agrees
with the given function or its derivatives at a set of points. One such example is
a Lagrange interpolant which interpolates given data or function values. Due to
the fact that one cannot guarantee that the norm of the difference in the function
and the Lagrange interpolating polynomial approaches zero as the degree of the
polynomial increases, one often considers piecewise polynomial interpolation. In
piecewise Lagrange interpolation we put together Lagrange polynomials of a fixed
degree to force them to interpolate the given function values or data. For example,
a piecewise linear Lagrange polynomial is a continuous function which is a linear
polynomial over each subinterval. Clearly, a piecewise linear Lagrange polynomial
over the subdivision of [0, 1] given in (4.6) which is zero at x = 0 and x = 1 is an
element of Sh0 .

We state the estimates for the error in a function in H1(0, 1) and its Sh-
interpolant where Sh is the space of piecewise linear functions defined over the
given partition with no boundary conditions imposed; i.e.,

Sh = {φ(x) ∈ C[0, 1] : φ(x) linear on [xi, xi+1] for 0 ≤ i ≤ N} . (4.17) {1d_define_sh}

Then these results also hold for Sh0 ⊂ H1
0 (0, 1). If v(x) is a continuous function on

[0, 1] then we can find a unique element which agrees with v(x) at each of the points
xi, i = 0, . . . , N +1; we call this element of Sh the Sh-interpolant of v and denote it
by Ihv. Once we have the standard estimate for the approximation of a function by
its piecewise linear Lagrange interpolant measured in the H1-norm, then, we can
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use it in (4.16) to obtain an estimate in terms of powers of h. The following lemma
gives standard results for approximating a function by its piecewise linear Lagrange
interpolant in the L2 and H1 norms; see [Prenter] for details.

Lemma 4.2. Let f ∈ H1(0, 1) and Sh ⊂ H1(0, 1) be defined by (4.17); let Ihf {1d_thm_linear_interpolant}
denote the Sh-interpolant of f . Then there exists positive constants C1, C2, and
C3, independent of h and f , such that∥∥f − Ihf∥∥

0
≤ C1h ‖f‖1 . (4.18){1d_interl2orderh}

In addition, if f ∈ H2(0, 1) then∥∥f − Ihf∥∥
0
≤ C2h

2 ‖f‖2 (4.19){1d_interl2orderhsq}

and ∥∥f − Ihf∥∥
1
≤ C3h ‖f‖2 . (4.20){1d_interh1}

It is important to note that if the solution u to our problem is not smooth
enough, i.e.,u ∈ H1(0, 1) and u 6∈ H2(0, 1), then (4.19) and (4.20) do not hold. In
this situation we only have (4.18) and

∥∥u− Ihu∥∥
1
≤ C ‖u‖1; the latter implying

that there is no convergence in h; i.e.,as h→ 0,
∥∥u− Ihu∥∥

1
does not approach zero.

We say that the rate of convergence in (4.19) is order h squared, which is quadratic
convergence, and denote it O(h2); similarly the rate of convergence in (4.20) is O(h)
which is linear convergence. From (4.19) and (4.20) we see a pattern arising that
the error in the interpolant measured in the L2 norm is one order higher than the
error measured in the H1 norm; this is due to the fact that the H1 norm measures
errors in the derivatives as well as the function values.

We can now use Lemma 4.2 to state an estimate for the error in u and uh

measured in the H1-norm in terms of powers of h. We require u ∈ H2(0, 1) ∩
H1

0 (0, 1); note that this can be guaranteed if f, q, p ∈ L2(0, 1). In this case we get
the optimal rate; this means that we get the same rate of convergence as h→ 0 as
the interpolant.

Theorem 4.3. Let u ∈ H2(0, 1)∩H1
0 (0, 1) and let uh be the Galerkin approximation{1d_thm_h1error}

of u in the space Sh0 defined by (4.7); i.e.,uh satisfies (4.4). Then there exists a
positive constant C, independent of u, h, or uh such that∥∥u− uh∥∥

1
≤ Ch ‖u‖2 . (4.21){1d_homodir_h1error}

Proof. The proof is an obvious consequence of (4.20) and (4.16).

It is often the case that we are interested in estimating the error in just the
function itself and not its derivatives; in this case we want an estimate for the error
in the L2-norm. From the definition of the L2- and H1-norms we immediately have
that ∥∥u− uh∥∥

0
≤
∥∥u− uh∥∥

1
≤ Ch ‖u‖2 ,



4.1. A two-point BVP with homogeneous Dirichlet boundary data 61

the latter inequality holding if u ∈ H2(0, 1)∩H1
0 (0, 1). However, Lemma 4.2 suggests

that we should be able to improve the error to O(h2); in addition, computations
indicate that O(h2) is attainable. In order to obtain an optimal L2-estimate, we
must assume sufficient smoothness on u and use a technique known as “Nitsche’s
trick”.

Theorem 4.4. Let u ∈ H2(0, 1) ∩ H1
0 (0, 1) be the solution of (4.3) and let uh be {1d_thm_l2error}

the Galerkin approximation of u in the space Sh0 defined by (4.7) satisfying (4.4).
Then there exists a positive constant C, independent of u, h, or uh such that∥∥u− uh∥∥

0
≤ Ch2 ‖u‖2 . (4.22) {1d_homodir_l2error}

Proof. Let e = u−uh and let ψ be the unique function in H1
0 (0, 1) (whose existence

and uniqueness is guaranteed by the Lax-Milgram theorem) satisfying

A(ψ, φ) = (e, φ) ∀ φ ∈ H1
0 (0, 1) . (4.23) {1d_homodir_nitsche}

Since e ∈ H1
0 (0, 1) we can set φ = e in the above expression to obtain

‖e‖20 = (e, e) = A(ψ, e) .

Now Galerkin orthogonality for this problem guarantees that A(u− uh, vh) = 0 for
all vh ∈ Sh0 and thus A(e, vh) = 0 for all vh ∈ Sh0 and we can add this term without
impunity. We know that A(·, ·) is linear and symmetric so we have

‖e‖20 = A(ψ, e)−A(e, vh) = A(e, ψ − vh) ∀ vh ∈ Sh0 .

Using the boundedness of the bilinear form gives us

‖e‖20 ≤ C ‖e‖1
∥∥ψ − vh∥∥

1
∀ vh ∈ Sh0 .

We can use Theorem 4.3 to bound ‖e‖1 by Ch ‖u‖2. If we set vh to be the Sh0 -
interpolant of ψ then if ψ ∈ H1

0 (0, 1) ∩ H2(0, 1) the estimate (4.20), along with
Theorem 4.3 implies

‖e‖20 ≤ Ch
2 ‖ψ‖2 ‖u‖2 .

From the theory of elliptic partial differential equations one can show that if ψ is
the solution to (4.23) and ψ ∈ H2(0, 1) ∩ H1

0 (0, 1) then we can bound ψ by the
L2-norm of the data; i.e.,‖ψ‖2 ≤ C ‖e‖0. Substituting this bound for ψ into the
above expression gives the desired result from

‖e‖20 ≤ Ch
2 ‖e‖0 ‖u‖2 .

It is important to realize that in order to get the optimal estimates in the
L2- and H1-norms, we must have additional smoothness on our solution. This is a
consequence of approximation theory, not an artifact of our finite element analysis.
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When we present some numerical simulations, we see that a loss in accuracy occurs
if our solution is not smooth enough.

We have now completed our analysis of a finite element solution of (4.1) using
continuous, piecewise linear polynomials. Before turning our attention to imple-
menting the method to obtain some numerical results we consider approximating
using higher degree polynomials and then remind ourselves how the entries in the
matrix and right-hand side of (4.10) are obtained.

4.1.3 Approximation using higher degree polynomials
{1d_sec_higher}

From the error estimate (4.21) we see that the rate of convergence is linear in the H1

norm. If we want our calculations to converge at a higher rate, such as quadratically,
then we have to choose a higher degree polynomial for our approximating space
Sh0 . In this section we give some general results for the error in the interpolating
polynomial for a kth degree polynomial and then use these to get optimal error
estimates for our problem. We also consider a basis for quadratic polynomials and
the structure of the resulting linear system which is no longer tridiagonal as it was
when we used linear polynomials. The case of continuous, cubic polynomials is left
to the exercises.

We now define Sh to be the space of continuous, piecewise polynomials of
degree k or less over the partition of [0, 1] defined in (4.6), i.e.,

Sh = {φ(x) : φ ∈ C[0, 1], φ(x) polynomial of
degree ≤ k on [xi, xi+1] for 0 ≤ i ≤ N} . (4.24){1d_shk}

Sh0 is defined in the same way except we require φ(x) to be zero at the endpoints;

Sh0 = {φ(x) : φ ∈ C[0, 1], φ(x) polynomial of
degree ≤ k on [xi, xi+1] for 0 ≤ i ≤ N,φ(0) = φ(1) = 0} . (4.25){1d_shzerok}

A theorem for the Sh-interpolant of functions in H1 is provided in the following
lemma.

Lemma 4.5. Let f ∈ Hk+1(0, 1) and Sh ⊂ H1(0, 1) where Sh is defined by (4.24);{1d_thm_interpolant}
let Ihf denote the Sh-interpolant of f . Then there exists positive constants C1, C2,
independent of h and f , such that∥∥f − Ihf∥∥

0
≤ C1h

k+1 ‖f‖k+1 (4.26){1d_interl2orderhkp1}

and ∥∥f − Ihf∥∥
1
≤ C2h

k ‖f‖k+1 . (4.27){1d_interh1orderk}

Note that (4.26) reduces to (4.19) and (4.27) reduces to (4.20) when k = 1.
These are the best rates of convergence possible with a kth degree polynomial. If
f is not in Hk+1(0, 1) then there is a loss in the rates of convergence. For example,
if f ∈ Hk(0, 1) and not in Hk+1(0, 1), then a power of h is lost in each estimate. If
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our finite element solution is in Hk+1(0, 1) then optimal rate of convergence in the
H1 norm are given in the following theorem.

Theorem 4.6. Let u ∈ Hk+1(0, 1)∩H1
0 (0, 1) be the solution of (4.3) and let uh be{1d_thm_h1errork}

the Galerkin approximation of u in the space Sh0 defined by (4.25) satisfying (4.4).
Then there exists a positive constant C, independent of u, h, or uh such that∥∥u− uh∥∥

1
≤ Chk ‖u‖k+1 . (4.28) {1d_opt_h1rate}

We note that this estimate says that if the solution is sufficiently smooth, then
increasing the degree of the polynomial by one increases the rate of convergence by
one.

As before, we are often interested in the L2 norm of the error. We can mimic
the proof of Theorem 4.4 to get the following result when Sh0 is defined by (4.25).
See the exercises for details.

Theorem 4.7. Let u ∈ Hk+1(0, 1)∩H1
0 (0, 1) be the solution of (4.3) and let uh be {1d_thm_l2errork}

the Galerkin approximation of u in the space Sh0 defined by (4.25) satisfying (4.4).
Then there exists a positive constant C, independent of u, h, or uh such that∥∥u− uh∥∥

0
≤ Chk+1 ‖u‖k+1 . (4.29) {1d_homodir_l2errork}

We note that the optimal rate of convergence in the L2 norm is one power of h
higher than in the H1 norm which measures the error in the derivatives of the
solution as well as the solution itself.

We now turn to the concrete problem of finding a basis for Sh or Sh0 when we
choose quadratic polynomials, i.e., k = 2. In this case we know that the rates of
convergence are O(h2) in the H1 norm and O(h3) in the L2 norm, if the solution is
sufficiently smooth. We use the same partition of [0, 1] as before, i.e., that given in
(4.6). The problem now is that over each element [xi−1, xi] the basis function must
be a quadratic; however, it takes three points to uniquely determine a quadratic.
To this end, we add a node in each subinterval; the easiest thing to do is add a
node at the midpoint of each subinterval, xi− 1

2
= (xi−1 +xi)/2. We still have N+1

elements, but now have the N + 2 points from the endpoints of the intervals plus
the N + 1 midpoints giving a total of 2N + 3 points. Analogous to the continuous,
piecewise linear case, we expect that a basis for Sh for k = 2 consists of 2N + 3
elements and for Sh0 we don’t need the endpoints so we have 2N + 1 elements in
basis.

For simplicity of exposition, we renumber our 2N + 3 nodes as xi, i =
0, . . . , 2N + 2. However, we must remember that the elements are [x2j−2, x2j ] for
j = 1, . . . , N + 1. To determine a nodal basis for Sh we require each φi in the basis
to have the property that it is one at node xi and zero at all other nodes. In the
basis for piecewise linear polynomials we were able to make the support of the basis
functions to be two adjacent elements; the same is true in this case. However, now
we have two different formulas for the basis functions determined by whether the
function is centered at an endpoint of an interval or the midpoint.
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To easily get an idea what these quadratic functions look like, we first write the
polynomials on [−1, 1] with nodes x = −1, 0, 1; we can then translate them to the
desired interval. From these we can determine the shape of our basis functions. For
the quadratic function which is one at the midpoint, i.e., x = 0, and zero at x = ±1
we have φ(x) = 1−x2. For the quadratic function which is one at x = −1 and zero
at x = 0, 1 we have φ(x) = 1

2 (x2 − x). Similarly for a quadratic function which is
one at x = 1 and zero at x = −1, 0 we have φ(x) = 1

2 (x2 + x). These functions are
illustrated in Figure 4.1 and have the same shape as the ones on [x2j−2, x2j ]. We
can splice together the two functions centered at the endpoints of the interval to get
a complete picture of the basis function centered at an endpoint which has support
over two intervals; this is demonstrated in the right plot in Figure 4.1. Note that
analogous to the case of continuous piecewise linear polynomials the quadratic basis
functions will be in C0 but not C1.

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Figure 4.1. Plot on left shows nodal quadratic functions on [−1, 1] and
plot on right shows shape of quadratic basis function centered at endpoint of an
interval having support over two intervals.{1d_fig_quad_basis}

To find the analogous polynomials on [x2j−2, x2j ] we need to translate our
functions on [−1, 1] to the desired interval or equivalently solve linear systems. For
example, a straightforward way to find the quadratic which is one at x2j−1 and zero
at the endpoints is to solve

0 = a+ b
(
x2j−2

)
+ c
(
x2j−2

)2
1 = a+ b

(
x2j−1

)
+ c
(
x2j−2

)2
0 = a+ b

(
x2j

)
+ c
(
x2j

)2
.

In later chapters we discuss more efficient approaches to finding basis functions.
The support of the quadratic basis functions for Sh0 on a uniform partition of [0, 2]
with h = 0.5 are illustrated in Figure 4.2.

We have seen that once a basis for the finite dimensional space is chosen, the
discrete problem can be converted to solving a linear system of equations. The (i, j)
entry of the coefficient matrix A is given by the same expression as in the case of
piecewise linear functions except we are using a different basis; specifically, we have

Aij = (pφ′j , φ
′
i) + (qφj , φi)

where φi is now a quadratic polynomial. We recall that when the standard “hat”
functions were used as a basis for Sh0 the resulting matrix was N ×N , symmetric,
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Figure 4.2. Support of quadratic basis functions on the uniform partition
of [0, 2] with h = .5 assuming homogeneous Dirichlet boundary conditions.{1d_fig_quad_basis2}

positive definite and tridiagonal. In the case of our quadratic basis functions in Sh0 ,
the matrix is still symmetric and positive definite but we note that the size of our
matrix has increased to 2N + 1. Also, it is no longer tridiagonal. To determine the
bandwidth of the matrix, we need to ascertain where the zero entries begin in each
row. We return to Figure 4.2 and note that for a basis function φi centered at a

midpoint node xi, the integral
∫ 1

0
φiφj dx is zero when j > i + 1 or j < i − 1, i.e.,

outside of the interval; the same is true for the term
∫ 1

0
φ′iφ
′
j dx. However, for a

basis function φi centered at the right endpoint node xi, the integral
∫ 1

0
φiφj dx is

potentially nonzero in that interval and the next which includes a total of five basis
functions, counting itself. Thus the integral is zero when j > i+ 2 or j < i− 2 and
the maximum bandwidth of the matrix is five. This system can be efficiently solved
by a direct method such as a banded Cholesky algorithm or an iterative method
such as conjugate gradient or one of its variants.

If we desire to have a method which converges cubically in the H1 norm, then
we can choose continuous, piecewise cubic polynomials for Sh. Because we need
four points to uniquely determine a cubic, we add two points to each interval in
our original partition given in (4.6). For Sh0 we now have N + 2(N + 1) = 3N + 2
points and we expect that this is the dimension of the space and thus the dimension
of the resulting matrix. The shape of the basis functions and the structure of the
resulting matrix is explored in the exercises.

4.1.4 Numerical quadrature
{1d_sec_quadrature}

If we are implementing our example given in (4.1) in the case p = q = 1 with
continuous, piecewise linear polynomials for Sh0 and where we are using a uniform
grid, then (4.11) and (4.12) explicitly give the coefficient matrices. However, entries
in the right-hand side of (4.10) must be computed and also entries for the coefficient
matrix for general p, q. For some choices of f we could evaluate the integrals exactly.
However, if we want to write a general finite element program then we should be
able to do problems where the integrals can not be evaluated exactly. In this
case, we must use quadrature rules to approximate the integrals. Recall that in
our error analysis, we have assumed that the integrals are computed exactly; the
effects of numerical integration are discussed in a later chapter. For now, we present
some widely used quadrature formulas in one-dimension and give general rules for
choosing a formula.
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In numerical integration we approximate the integral by the sum of the inte-
grand evaluated at a prescribed set of points multiplied by weights; i.e.,∫ b

a

f(x) dx ≈
∑
k

f(qk)wk , (4.30){numint}

where qk represent the quadrature points and wk the quadrature weights. Of par-
ticular interest in one dimension are the Gauss quadrature rules; in these rules the
quadrature points and weights are chosen so that the rule integrates exactly as
high a degree polynomial as possible. Specifically, if we use n Gaussian quadrature
points then the rule integrates polynomials of degree 2n− 1 exactly. The Gaussian
quadrature rule for one point is the well known midpoint rule. The following table
gives the Gaussian quadrature points and weights on the interval [−1, 1].

Table 4.1. Gauss quadrature formulas on [−1, 1]
{gaussquad1d}

n nodes weights
1 0.0000000000 2.0000000000
2 ± 1√

3
= ±0.5773502692 1.0000000000

3 ±0.7745966692 0.5555555556
0.0000000000 0.8888888889

4 ±0.8611363116 0.3478548451
±0.3399810436 0.6521451549

5 ±0.9061798459 0.2369268850
±0.5384693101 0.4786286701
0.0000000000 0.5688888889

If the domain of integration is different from (−1, 1), then a change of variables

is needed. For example, to compute the integral
∫ b
a
f(x̂) dx̂ we use the linear

mapping x̂ = a + b−a
2 (x + 1) to map to the integral over (−1, 1). In this case we

have ∫ b

a

f(x̂) dx̂ =
b− a

2

∫ 1

−1

f(a+
b− a

2
(x+ 1) dx .

Then we apply the quadrature rule to the integral over (−1, 1). Note that we
have just modified the quadrature weight by multiplying by b−a

2 and mapping the
quadrature point to the interval (a, b).

When choosing a quadrature rule, we want to use as low a degree rule as
possible for efficiency but as high a degree rule as necessary for accuracy. It is not
necessary to evaluate the integrals exactly, even if this is possible; however, we must
assure that the error in the numerical quadrature does not contaminate the power
of h accuracy in our estimate. When using piecewise linear polynomials for the
finite element space in one-dimension for the problem (4.1), it is adequate to use a
one-point Gauss quadrature rules; for piecewise quadratic polynomials a two-point
rule is adequate.
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4.1.5 Computational examples

In this section we implement two specific examples of the boundary value problem
given in (4.1) where we know the exact solution so that errors and rates of con-
vergence can be calculated. These problems differ in the choice of p, q and f . The
choice of f is especially important because a lack of smoothness in f results in the
solution not being smooth enough to guarantee the optimal rates of convergence.
In all computations we use continuous, piecewise polynomials on a uniform grid,
an appropriate Gauss quadrature rule to evaluate the integrals in the coefficient
matrix and the right-hand side, and a direct solver for the linear system. For the
error computation we use a higher order quadrature rule to evaluate the integrals.
The reason for the higher order rule in the error computation is to make absolutely
sure that no error from the numerical integration contaminates the calculation of
the error. The computations are performed using h = 1/4, 1/8, 1/16, and 1/32 with
linear, quadratic and cubic elements; the H1- and L2-errors are computed for each
grid.

For each example we are interested in calculating the numerical rate of con-
vergence and comparing it with the theoretical results presented in Theorems 4.3,
4.4,?? and ??. The errors for each grid can be used to compute an approximate
rate of convergence. For example, we have

∥∥u− uh∥∥ ≈ Chr where we expect r to
approach some value as the grid size decreases. If we have the error, Ei, on two
separate meshes then we have that E1 ≈ Chr1 and E2 ≈ Chr2 where E1 and E2

represent
∥∥u− uh∥∥ on the grid with mesh spacing h1 and h2, respectively. If we

solve for C and set the two relationships equal, we have E1/h
r
1 ≈ E2/h

r
2 ; solving

for r we obtain

r ≈ lnE1/E2

lnh1/h2
. (4.31) {1d_calculate_rate}

We note that if the grid spacing is halved, i.e., h2 = h1/2 then the error should be

approximately decreased by
(

1
2

)r
since E2 ≈

(
h2

h1

)r
E1. This implies that if r = 1

the error is approximately halved when the grid spacing is halved; if the rate is two,
then the error is reduced by a factor of one-fourth when the grid spacing is halved,
etc.

{1d_example_1}
Example 4.8 We first consider the problem

−u′′ + π2u = 2xπ2 sinπx− 2π cosπx for 0 < x < 1
u(0) = u(1) = 0 ,

(4.32) {1d_homodir_example1}

whose exact solution is given by u = x sinπx. Since our solution u(x) = x sinπx
is actually in C∞0 (0, 1) we expect the optimal rates of convergence; in particular
if we use continuous, piecewise linear polynomials then the rate r, calculated from
(4.31), should approach two as h → 0 for the L2-norm and approach one for the
H1-norm. These values for r are calculated in Table 4.2 along with the errors and
rates using continuous, piecewise quadratic and cubic polynomials; in the table we
computed the rate using the errors at h = 1/4 and 1/8, at h = 1/8 and 1/16, and
at h = 1/16 and h = 1/32. Note that, in fact, r → 1 in the H1 error and r → 2
in the L2-error as Theorems 4.3 and 4.4 predict when piecewise linear polynomials
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are used; the optimal rates for quadratic and cubic polynomials are also obtained.
In these calculations we used a one-point Gauss rule for linear polynomials, a two-
point Gauss rule for quadratic polynomials, and a three-point Gauss rule for cubic
polynomials. In Table 4.3 we illustrate what happens if we use continuous quadratic
polynomials using a one-point, a two-point and a three-point Gauss quadrature
rule. Note that the rates of convergence using a two-point and a three-point rule are
essentially the same, but when we use the one-point rule the results are meaningless.

Table 4.2. Numerical results for Example 4.8 using continuous, piecewise
linear polynomials.

{1d_table_homodir_example1_linear}
pk h

∥∥u− uh∥∥
1

rate
∥∥u− uh∥∥

0
rate

linear 1/4 0.47700 0.28823× 10−1

linear 1/8 0.23783 1.0041 0.69831× 10−2 2.0459
linear 1/16 0.11885 1.0007 0.17313× 10−2 2.0120
linear 1/32 0.059416 1.0002 0.43199× 10−3 2.0028

quadratic 1/4 0.49755×10−1 0.15707× 10−2

quadratic 1/8 0.12649×10−1 1.9758 0.20227× 10−3 2.9570
quadratic 1/16 0.31747×10−2 1.9940 0.25553× 10−4 2.9847
quadratic 1/32 0.79445×10−3 1.9986 0.32031× 10−5 2.9960

cubic 1/4 0.51665×10−2 0.10722× 10−3

cubic 1/8 0.64425×10−3 3.003 0.67724× 10−5 3.985
cubic 1/16 0.80496×10−4 3.001 0.42465× 10−6 3.9953
cubic 1/32 0.10061×10−4 3.000 0.26564× 10−7 3.9987

{1d_example_2}
Example 4.9 The next problem we want to consider is

−u′′ = −α(α− 1)xα−2 for 0 < x < 1
u(0) = u(1) = 0 ,

(4.33){1d_homodir_example2}

where α > 0; the exact solution u is given by u(x) = xα − x. The results for
various values of α are presented in Table 4.4 using continuous, piecewise linear
polynomials and a one-point Gauss quadrature rule. Recall that the optimal rates
in this case are O(h) in the H1 norm and O(h2) in the L2 norm. Note that for
α = 7/3 we get the optimal rates of convergence. However, for α = 4/3 we have
less than optimal rates and for α = 1/3 the H1-error is almost constant and the
rate in the L2-norm is less than one. Of course, the reason for this is that when
α = 3/2 the exact solution u = x4/3 − x 6∈ H2(0, 1) and when α = 1/3 the exact
solution u = x1/3 − x 6∈ H1(0, 1). Thus the interpolation results (4.19) and (4.20)
do not hold and hence Theorems 4.3 and 4.4 do not apply.
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Table 4.3. Numerical results for Example 4.8 using continuous, piecewise
quadratic polynomials with three different quadrature rules.

{1d_table_homodir_example1_quad}
Gauss h

∥∥u− uh∥∥
1

rate
∥∥u− uh∥∥

0
rate

Quadrature Rule
one-point 1/4 8.885 0.3904
one-point 1/8 18.073 0.3665
one-point 1/16 36.391 0.3603
one-point 1/32 72.775 0.3587

two-point 1/4 0.49755×10−3 0.15707× 10−4

two-point 1/8 0.12649×10−3 1.9758 0.20227× 10−5 2.9570
two-point 1/16 0.31747×10−4 1.9940 0.25553× 10−6 2.9847
two-point 1/32 0.79445×10−5 1.9986 0.32031× 10−7 2.9960

three-point 1/4 0.49132×10−3 0.18665× 10−4

three-point 1/8 0.12109×10−3 1.9620 0.24228× 10−5 2.9456
three-point 1/16 0.31724×10−4 1.9911 0.30564× 10−6 2.9868
three-point 1/32 0.79430×10−5 1.9978 0.38292× 10−7 2.9967

Table 4.4. Numerical results for Example 4.9.
{1d_table_homodir_example2}

α h
∥∥u− uh∥∥

1
rate

∥∥u− uh∥∥
0

rate

7/3 1/4 0.1747 0.17130× 10−1

7/3 1/8 0.08707 1.0046 0.33455× 10−2 1.9726
7/3 1/16 0.04350 1.0012 0.84947× 10−3 1.9776
7/3 1/32 0.02174 1.0007 0.21495× 10−3 1.9826

4/3 1/4 0.47700 0.28823× 10−1

4/3 1/8 0.23783 0.7690 0.69831× 10−2 1.8705
4/3 1/16 0.11885 0.7845 0.17313× 10−2 1.8834
4/3 1/32 0.059416 0.7965 0.43199× 10−3 1.8005

1/3 1/4 0.43332 0.14594
1/3 1/8 0.43938 0.10599 0.4615
1/3 1/16 0.46661 0.07922 0.4200
1/3 1/32 0.50890 0.06064 0.3857

4.2 A two-point BVP with Neumann boundary data
{1d_sec_homoneu}

In this section we consider the same differential equation as in the first section but
now we impose Neumann boundary data instead of homogeneous Dirichlet data. In
particular we seek a function u(x) satisfying

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) for 0 < x < 1

u′(0) = 0
u′(1) = α .

(4.34) {1d_homoneu_2ptbvp}
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As before, p and q are bounded functions on [0, 1] satisfying 0 < pmin ≤ p(x) ≤ pmax

but now we impose 0 < qmin ≤ q(x) ≤ qmax for all x ∈ [0, 1]. Again if f, q ∈ C[0, 1]
and p ∈ C1[0, 1] the boundary value problem (4.34) possesses a unique classical
solution u(x) ∈ C2(0, 1) which satisfies (4.34) for every x ∈ [0, 1]. Note that here
we require that qmin > 0 to guarantee a unique solution; this is because if q = 0
and u satisfies (4.34) then so does u+ C for any constant C.

In this case our underlying finite element space is H1(0, 1) because we have
no boundary conditions to impose on the space. The weak formulation is{ seek u ∈ H1(0, 1) satisfying

A(u, v) = (f, v) + αp(1)v(1) ∀ v ∈ H1(0, 1) ,
(4.35){1d_homoneu_weak}

where

A(v, w) =

∫ 1

0

p(x)v′(x)w′(x) dx+

∫ 1

0

q(x)v(x)w(x) dx ∀ v, w ∈ H1(0, 1) .

Clearly, if u(x) satisfies the classical problem (4.34), then u(x) satisfies (4.35) be-
cause ∫ 1

0

f(x)v dx =

∫ 1

0

(
−(p(x)u′(x))′ + q(x)u(x)

)
v(x) dx

= −pu′v
∣∣1
0
+

∫ 1

0

p(x)u′(x)v′(x) dx+

∫ 1

0

q(x)u(x)v(x) dx

= −p(1)u′(1)v(1) + p(0)u′(0)v(0) +A(u, v)

= A(u, v)− αp(1)v(1) ,

where we have imposed the homogenous Neumann boundary condition u′(0) = 0
and the inhomogeneous condition u′(1) = α. Note that these boundary conditions
are not imposed on the space, but rather on the weak formulation; these are called
natural boundary conditions.

In a manner similar to the example in Section 4.1, we can show that the hy-
potheses of the Lax-Milgram theorem are satisfied. Recall that in proving coercivity
for the previous example, we used the Poincaré inequality to relate the L2 norm
with the H1 seminorm. We can not longer do this because our function is not zero
on any portion of the boundary. However, coercivity can be proved in a straight-
forward manner; the details are left to the exercises. Thus we are guaranteed the
existence and uniqueness of a solution to (4.35).

If we want to seek an approximation to u(x) in the space of continuous, piece-
wise linear functions defined over the subdivision (4.6) then we cannot use the
space Sh0 defined in (4.7) since this space was designed to approximate functions in
H1

0 (0, 1). Instead we consider Sh where

Sh = {φ(x) ∈ C[0, 1], φ(x) linear on (xi, xi+1) for 0 ≤ i ≤ N} . (4.36){1d_homoneu_sh}

Similar to the homogeneous Dirichlet case, it can be shown that Sh is an N + 2
dimensional subspace of H1(0, 1); a basis for Sh is given by the standard “hat”
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functions that we used for Sh0 along with one defined at each endpoint. Specifically,
we have the functions ψi, i = 1, . . . , N + 2 defined by

ψi(x) =

 φ0(x) for j = 1
φi−1(x) for 2 ≤ i ≤ N + 1
φN+1(x) for j = N + 2

(4.37){1d_homoneu_basis}

where φi(x), i = 1, . . . N are given by (4.8) and

φ0(x) =

{ x1 − x
h1

for 0 ≤ x ≤ x1

0 elsewhere
(4.38) {1d_hatl}

and

φN+1(x) =


x− xN
hN+1

for xN ≤ x ≤ 1

0 elsewhere .
(4.39) {1d_hatr}

Galerkin’s theorem guarantees that there is a unique uh ∈ Sh ⊂ H1(0, 1)
satisfying

A(uh, vh) = (f, vh) + αp(1)vh(1) ∀ vh ∈ Sh . (4.40) {1d_homoneu_dweak}

The problem of finding a uh ∈ Sh which satisfies (4.40) reduces to solving a linear
system of equations; in this case the coefficient matrix has dimension N + 2. In
addition, we can use the interpolation results given in Lemma 4.2 to obtain the
following optimal error estimates. See the exercises for a proof.

Theorem 4.10. Let u ∈ H2(0, 1) be the solution of (4.34) and let uh be the {1d_thm_homoneu_error}
Galerkin approximation in Sh defined by (4.36) given by (4.40). Then for some
constant C, independent of h, u, and uh we have∥∥u− uh∥∥

k
≤ Ch2−k ‖u‖2

for k = 0, 1.

One purpose of the following computations is to demonstrate the difference in
satisfying a boundary condition by imposing it on the space (an essential bound-
ary condition) and imposing it weakly through the weak formulation (a natural
boundary condition).

{1d_example_3}
Example 4.11 We consider the problem

−u′′ + π2u = 2xπ2 sinπx− 2π cosπx for 0 < x < 1
u′(0) = 0
u′(1) = −π ,

(4.41) {1d_neu_example3}

whose exact solution is given by u = x sinπx. Note that this is the same differential
equation as in Example 4.8 but now we are imposing Neumann boundary conditions.
Since our solution u(x) = x sinπx is actually in C∞(0, 1) we expect the optimal rates
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of convergence which we can see are obtained from Table 4.5. The approximate
solutions using uniform grids of h = 1

4 , 1
8 and 1

16 along with the exact solution are
plotted in Figure 4.3. Note that although our exact solution is zero at the endpoints,
our approximate solution is not because we imposed Neumann boundary conditions.
However, the approximate solution does not satisfy the exact derivative boundary
condition because we have satisfied it weakly. In the last plot in Figure 4.3 we have
blown up the approximate solutions at the right end point which should have a
slope of −π. The approximate derivative at the right boundary is -1.994, -2.645,
-2.917 and -3.036 for h = 1/4, 1/8, 1/16, and 1/32 respectively. These correspond
to errors of 1.147, 0.4968, 0.2244 and 0.1055. As h → 0 the derivative of the
approximate solution at x = 1 approaches the exact value of −π linearly; this is
expected because the rate of convergence in the H1 norm is one. Note that this
is in contrast to Example 4.8 where our approximate solution exactly satisfied the
homogeneous Dirichlet boundary condition because we imposed it on our space.

Table 4.5. Numerical results for Example 4.11 using continuous, piecewise
linear polynomials.

{1d_table_example3}
h

∥∥u− uh∥∥
1

rate
∥∥u− uh∥∥

0
rate

1/4 0.48183 0.22942× 10−1

1/8 0.23838 1.0153 0.56235× 10−2 2.0281
1/16 0.11892 1.0033 0.13988× 10−2 2.0073
1/32 0.059425 1.0009 0.34924× 10−3 2.0019

4.3 A two-point BVP with inhomogeneous boundary
data

{1d_sec_inhomo}
In the previous two sections we considered two-point boundary values problems
with homogeneous Dirichlet boundary data and homogeneous and inhomogeneous
Neumann data. Consequently, the only type of boundary conditions that are left to
see how to handle are inhomogeneous Dirichlet data and mixed, or Robin, boundary
conditions. In this section we demonstrate how an inhomogeneous Dirichlet bound-
ary condition can be handled; the mixed boundary condition is handled similarly to
the inhomogeneous Neumann boundary condition. In particular we seek a function
u(x) satisfying

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) for 0 < x < 1

u(0) = α u′(1) + σu(1) = β ,
(4.42){1d_inhom_2ptbvp}

where α, β, and σ are constants. Note that if we choose σ = 0 then we just have
an inhomogeneous Neumann boundary condition at the right endpoint as we did in
(4.34).
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Figure 4.3. Plots of the exact solution and three piecewise linear approxi-
mations. The last plot gives a blow-up of the right endpoint demonstrating that the
natural boundary condition is only satisfied weakly.{1d_fig_neu}

We know that the underlying Hilbert space for the weak formulation should
be H1(0, 1) or some subspace.. For the Dirichlet boundary condition in Section 4.1
we imposed the boundary condition on the space; i.e.,we sought our solution in the
subspace of H1(0, 1) consisting of all functions that were zero on the boundary.
However, we can not constrain our space to be all functions φ ∈ H1(0, 1) which
satisfy φ(0) = α. The reason is that this is not a subspace of H1(0, 1) since, for
example, if v(0) = α and w(0) = α then (v + w)(0) = 2α.

Inhomogeneous Dirichlet boundary conditions can be handled in several ways.
One of the easiest ways to handle them theoretically is to transform the problem
into one which has homogeneous Dirichlet boundary data. In our problem we
choose a function g(x) ∈ H1(0, 1) such that g(0) = α and such that g(x) is nonzero
only on [0, ξ] where ξ < 1; the reason for the latter requirement is so that the
boundary condition at x = 1 is unaffected. We then define w(x) = u(x) − g(x) so
that w(0) = u(0) − g(0) = 0. Because we have converted the problem to one for
w = u− g with g(x) zero outside [0, ξ], ξ < 1 we have the same boundary condition
for w′(1) as for u′(1). The differential equation is now modified as

− d

dx

(
p(x)

d(w + g)

dx

)
+ q(x)(w + g) = f(x) .

Because g(x) is a known function, the two-point boundary value problem for w(x)
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becomes

− d

dx

(
p(x)

dw

dx

)
+ q(x)w = f(x) + (p(x)g′(x))′ − q(x)g(x) for 0 < x < 1

w(0) = 0
w′(1) + σw(1) = β ,

(4.43) {1d_inhom_2ptbvp_2}
The mixed boundary condition at the right boundary is handled in a similar

manner to the inhomogeneous Neumann. In this case, instead of w′(1) being set to
a constant, we have w′(1) = β − σw(1). When we substitute this value in the weak
form, the constant β goes to the right hand side of the equation because it is known
whereas the term σw(1) is unknown and is incorporated in the bilinear form.

We now define a weak problem for the function w(x) = u(x) − g(x). Let
Ĥ1(0, 1) be the subspace of H1(0, 1) consisting of all functions in H1(0, 1) which
are zero at x = 0. Then we seek a w ∈ Ĥ1(0, 1) satisfying{

seek u ∈ Ĥ1(0, 1) satisfying

A(w, v) = (f, v)−A(g, v) + βp(1)v(1) ∀ v ∈ Ĥ1(0, 1) ,
(4.44){1d_inhom_weak}

where

A(w, v) = (pw′, v′) + (qw, v) + σp(1)w(1)v(1) . (4.45){1d_inhom_bilinear}

To demonstrate that a solution to (4.43) is also a solution to (4.44) we first note
that∫ 1

0

[
− (pw′)′ + qw

]
v dx =

∫ 1

0

pw′v′ dx+

∫ 1

0

qwv dx− p(1)w′(1)v(1) + p(0)w′(0)v(0)

=

∫ 1

0

pw′v′ dx+

∫ 1

0

qwv dx− p(1)
(
β − σw(1)

)
v(1)

= A(w, v)− βp(1)v(1) .

Now the right-hand side of (4.43) can be written as∫ 1

0

(
f(x) + (p(x)g′(x))′

)
v(x) dx−

∫ 1

0

q(x)g(x)v(x) dx

= (f, v)−
∫ 1

0

p(x)g′(x)v′(x) dx+ p(1)g′(1)v(1)− p(0)g′(0)v(0)

−
∫ 1

0

q(x)g(x)v(x) dx

= (f, v)−
(∫ 1

0

p(x)g′(x)v′(x) dx+

∫ 1

0

q(x)g(x)v(x) dx
)

= (f, v)−A(g, v)

where we have used the fact that v ∈ Ĥ1(0, 1) implies v(0) = 0 and g(1) = g′(1) = 0
because g = 0 in (ξ, 1]. Combining these two results demonstrates that if w satisfies
the classical two-point boundary value problem (4.43) then w satisfies the weak
problem (4.44).
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Using similar techniques as before, we can demonstrate that A(·, ·) defined by
(4.45) satisfies the conditions of the Lax-Milgram theorem and that the right-hand
side of (4.44) denotes a bounded linear functional on the Hilbert space Ĥ1(0, 1).
Then we have that there exists a unique solution w ∈ Ĥ1(0, 1) to (4.44). The
generalized or weak solution u to (4.42) is given by u = w + g.

To find an approximate solution to (4.44) in the space of piecewise linear
functions which are zero at x = 0 we define the (N + 1)-dimensional subspace of
Ĥ1(0, 1)

Ŝh = {φ ∈ Ĥ1(0, 1) : φ is piecwise linear on each subinterval and φ(0) = 0} ,

where we are using the mesh defined by

0 = x0 < x1 < · · · < xN+1 = 1 where xi = xi−1 + hi, 1 ≤ i ≤ N + 1 ,

A basis for Ŝh is given by φi, i = 1, . . . , N +1 where φ1, . . . , φN are defined by (4.8)
and φN+1 is defined by (4.39). We choose g(x) = aφ0(x) where φ0(x) is the basis

function defined by (4.38). Then the resulting linear system is given byA~c = ~b where

Aij = A(φj , φi) for 1 ≤ i, j ≤ N + 1 and ~bi = −A(aφ0, φi) + (f, φi) + bp(1)φi(1) for
1 ≤ i ≤ N +1. We note that the coefficient matrix in the resulting algebraic system
has the same formulas for the entries as in our previous examples, the dimension is
just N + 1. However, the right-hand side has an additional contribution in the first
entry due to the boundary condition at x = 0 and in the last position due to the
inhomogeneous mixed boundary condition.

We should note that in more complicated problems in higher dimensions, it
may not be so easy to construct the function g. To handle the problem theoretically,
we can always assume such a function but implementing in a computer program
may be more difficult. In later chapters we see different ways to implement inho-
mogeneous Dirichlet boundary data.

Summarizing, we see that the mixed boundary condition at x = 1 required no
adjustment of the underlying Hilbert space but rather was “automatically” satisfied
by our choice of the weak formulation. As before, such a boundary condition is called
natural. On the other hand, the Dirichlet boundary condition required that we
constrain our underlying Hilbert space so that the boundary condition is satisfied.
This is another example of an essential boundary condition.

4.4 A fourth order example
{1d_sec_fourth}

In this section we consider approximating the solution of a fourth order boundary
value problem. In particular, we consider

d2

dx2

(
r(x)

d2u

dx2

)
− d

dx

(
p(x)

du

dx

)
+ q(x)u(x) = f(x) 0 < x < 1

u(0) = u(1) = 0 u′′(0) = u′′(1) = 0 ,
(4.46) {1d_fourth_bvp}

where rmax ≥ r(x) ≥ rmin > 0 and pmax ≥ p(x) ≥ 0, qmax ≥ q(x) ≥ 0 for all
x ∈ [0, 1]. Other boundary conditions which can be applied are explored in the
exercises.
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This problem differs from the previous second order problem because when
we perform a a single integration by parts we have three derivatives on the trial
function and two on the test function. To balance the derivatives we need to perform
a second integration by parts. An obvious choice for the bilinear form A(·, ·) is

A(v, w) =

∫ 1

0

(
rv′′w′′ + pv′w′ + qvw

)
dx . (4.47){1d_fourth_bilinear}

In this situation we immediately realize that due to the appearance of second deriva-
tives we can no longer use H1(0, 1) as our underlying Hilbert space; we must now
use H2(0, 1) which is the space of all functions in L2(0, 1) which possess weak L2

derivatives up to order two. The notation H2
0 (0, 1) is used for the space

H2
0 (0, 1) = {v ∈ H2(0, 1) : v(0) = v(1) = v′(0) = v′(1) = 0} . (4.48){1d_htwozero}

Because we have boundary conditions on u′′ we don’t need H2
0 (0, 1) so we

consider the space H2(0, 1)∩H1
0 (0, 1) which is the set of all functions v in H2(0, 1)

which satisfy v(0) = 0 and v(1) = 0. Then our weak formulation is to{
seek u ∈ H2(0, 1) ∩H1

0 (0, 1) satisfying
A(u, v) = (f, v) ∀ v ∈ H2(0, 1) ∩H1

0 (0, 1) .
(4.49){1d_fourth_weak}

If u is the classical solution of (4.46) then

(f, v) =

∫ 1

0

(
(ru′′)′′ − (pu′)′ + qu

)
v dx

=

∫ 1

0

(
−(ru′′)′v′ + (pu′)v′ + quv

)
dx+ ru′′v′|10 − pu′v|10

=

∫ 1

0

(
ru′′v′′ + pu′v′ + quv

)
dx

= A(u, v) ,

where we have imposed the boundary conditions u′′(0) = u′′(1) = 0 on the weak
form and used the fact that v ∈ H2(0, 1)∩H1

0 (0, 1) implies v(0) = v(1) = 0. In this
case the boundary conditions u′′(0) = u′′(1) = 0 are natural boundary conditions
and u(0) = u(1) = 0 are essential boundary conditions.

The proof that the bilinear form defined by (4.47) satisfies the hypotheses of
the Lax-Milgram theorem is left to the exercises. In the sequel we assume that a
unique solution to the weak problem can be guaranteed.

We now consider the approximate problem. An immediate consequence of
having H2(0, 1) as the underlying Hilbert space is that we can no longer approx-
imate using continuous piecewise linear polynomials or even continuous piecewise
polynomials of degree k. A space Sh consisting of piecewise polynomials satisfies
Sh ⊂ H1(0, 1) if and only if the functions in Sh are continuous; for Sh ⊂ H2(0, 1)
we require the functions and the first derivatives to be continuous. These results are
formally proved in a general setting in a later chapter. As a consequence of using
H2(0, 1) as the underlying space we must now investigate piecewise polynomials
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which are in C1(0, 1) so that we can guarantee them to be subspaces of H2(0, 1).
We consider two spaces: piecewise cubic Hermite polynomials and piecewise cubic
splines.

4.4.1 Piecewise cubic Hermite polynomials
{1d_subsec_cubicher}

In this section we consider a space of piecewise polynomials which are C1(0, 1)
and which are cubic on each subinterval of a partition of [0, 1]; for simplicity of
exposition we take a uniform partition. We define the space of piecewise cubic
Hermite polynomials over the subdivision

0 = x0 < x1 < · · · < xN+1 = 1 where xi = xi−1 + h, h =
1

N + 1

to be all polynomials φ(x) ∈ C1(0, 1) which are cubic on each subinterval [xi, xi+1].
The dimension of this space is easily determined by considering the number of
degrees of freedom and number of constraints we have. On each of the N + 1
subintervals there are four degrees of freedom to determine a cubic yielding a total
of 4N+4 degrees of freedom; for the piecewise polynomial to be C1(0, 1) we require
continuity of the polynomial and its derivative at each of the N interior nodes
yielding a total of 2N constraints. Combining these results, we see that this space
is a (2N + 4)-dimensional subspace of H2(0, 1). We define the space Hh to be the
space of piecewise cubic Hermite polynomials over the given partition; i.e.,

Hh = {φ(x) : φ ∈ C1(0, 1),

φ(x) is a cubic polynomial on [xi, xi+1], 0 ≤ i ≤ N} . (4.50) {1d_fourth_herbasis}

Of course for our particular example we have to constrain this space to satisfy the
homogeneous Dirichlet boundary conditions. However, we first consider a basis for
Hh.

A convenient way to establish a basis for Hh is to consider translations of func-
tions defined on [−1, 1]. In particular, we consider the piecewise cubic polynomials
ξ(x) and η(x) defined by

ξ(x) =

{
(x+ 1)2(−2x+ 1) −1 ≤ x ≤ 0
(x− 1)2(2x+ 1) 0 ≤ x ≤ 1

and

η(x) =

{
x(x+ 1)2 −1 ≤ x ≤ 0
x(x− 1)2 0 ≤ x ≤ 1

on [−1, 1] These polynomials are illustrated in Figure 4.4. Note that ξ(x) ∈
C1[−1, 1], ξ(±1) = 0, ξ′(0) = 0, and ξ′(±1) = 0; also η(x) ∈ C1[−1, 1], η(0) =
η(±1) = 0, η′(±1) = 0, and η′(0) = 1.

We now translate these cubic polynomials to the interval [xi−1, xi+1] for i =
1, . . . , N to obtain our basis elements ξi(x) and ηi(x). Specifically, we define

ξi(x) =

{
ξ(xh − i) xi−1 ≤ x ≤ xi+1

0 elsewhere
(4.51) {1d_fourth_xi}
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-1 1

1

ξ(x)

-1 1

η(x)

Figure 4.4. Basis functions for cubic Hermite polynomials on [−1, 1] {1d_fig_hercubic_trans}

and

ηi(x) =

{
η(xh − i) xi−1 ≤ x ≤ xi+1

0 elsewhere
(4.52) {1d_fourth_eta}

for i = 1, . . . , N . So far we have 2N functions and we know that the dimension of
Hh is 2N + 4 so we must define four additional functions. To this end, we define
ξ0(x), ξN+1(x) and η0(x), ηN+1(x) by

ξ0(x) =

{
ξ(xh ) 0 ≤ x ≤ x1

0 elsewhere
η0(x) =

{
η(xh ) 0 ≤ x ≤ x1

0 elsewhere
(4.53){1d_fourth_xil}

ηN+1(x) =

{
η(xh − (N + 1)) xN ≤ x ≤ xN+1

0 elsewhere.
(4.54){1d_fourth_etar}

and

ξN+1(x) =

{
ξ(xh − (N + 1)) xN ≤ x ≤ xN+1

0 elsewhere
(4.55){1d_fourth_xir}

Summarizing, we have that

ξi(xj) = δij and ξ′i(xj) = 0 for 0 ≤ i, j ≤ N + 1 (4.56){1d_fourth_xi_eqn}

and
ηi(xj) = 0 and hη′i(xj) = δij for 0 ≤ i, j ≤ N + 1 . (4.57){1d_fourth_eta_eqn}

These polynomials are illustrated in Figure 4.5.
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Figure 4.5. Basis functions for cubic Hermite polynomials{1d_fig_hercubic_basis}

Clearly these 2N + 4 functions {ξi}N+1
0 , {ηi}N+1

0 belong to Hh; moreover,
they form a basis for Hh. To see this, let p(x) ∈ Hh so that p ∈ C1(0, 1), p(x) is a
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cubic on each subinterval [xi, xi+1], 0 ≤ i ≤ N . Clearly p(x) is uniquely determined
by its value and that of its derivative at the N+2 nodes x0, . . . , xN+1. Using (4.56)
and (4.57) we have

p(x) =

N+1∑
i=0

p(xi)ξi(x) + h

N+1∑
i=0

p′(xi)ηi(x) .

Thus the vectors span Hh and are also clearly linearly independent.
Of course, for our example, we must constrain the space to satisfy the homoge-

neous Dirichlet boundary conditions. To this end, we define Ĥh to be all functions
φ(x) ∈ Hh which satisfy φ(0) = φ(1) = 0. In this case we choose the 2n + 2 func-
tions {ξi}N1 , {ηi}N+1

0 ; we do not include ξ0, ξN+1 since from (4.56) we know that

ξ0(0) = 1, ξN+1(1) = 1 so that ξ0, ξN+1 6∈ Ĥh.

We can now pose our weak problem over Ĥh ⊂ H2(0, 1) ∩H1
0 (0, 1). We seek

uh ∈ Ĥh satisfying

A(uh, vh) =

∫ 1

0

(
ruh
′′
vh
′′

+ puh
′
vh
′
+ quhvh

)
dx =

(
f, vh

)
∀ vh ∈ Ĥh . (4.58) {1d_fourth_dweak}

Once we have chosen a basis for our approximating space, we know that our
discrete weak problem reduces to solving a linear system of algebraic equations
Ac = F . We let {φi}2N+2

i=1 be the basis functions {ξi(x), ηi(x)} defined by (4.51)–
(4.54) and ordered in the sequence {η0,ξ1, η1, ξ2, η2, . . . , ξN , ηN , ηN+1}. If we write

uh =
∑2N+2
i=1 cjφj(x) then the cj ’s represent either the nodal values of uh or of

h(uh)′. The matrix A whose entries are given by

Aij =

∫ 1

0

(
r(x)φ′′i (x)φ′′j (x) + p(x)φ′i(x)φ′j(x) + q(x)φi(x)φj(x)

)
dx

is a symmetric matrix. However, the matrix is no longer tridiagonal as in the case
of piecewise linear elements but rather has the block tridiagonal form

A0 B0 0 · · · 0
B0 A1 B1 0 · · · 0

0 B1 A2 B2 0 0
. . .

. . .
. . .

0 · · · 0 BN−2 AN−1 BN−1

0 · · · 0 BN−1 AN


where the Ai’s and Bi’s are 2 × 2 matrices. To see this, consider the interval
[xi−1, xi+1]. The basis functions which are nonzero on this interval are ξi−1, ηi−1,
ξi, ηi, ξi+1, and ηi+1 so that the maximum number of nonzero entries in a single
row is six. It can be shown that the coefficient matrix is also positive definite so
that the linear system can be efficiently solved using a block Cholesky factorization.

In order to obtain an error estimate we turn to Galerkin’s theorem which
provides us with the H2-estimate∥∥u− uh∥∥

2
≤ inf
χh∈Ĥh

∥∥u− χh∥∥
2
, (4.59) {1d_fourth_error}
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where u and uh satisfy (4.49) and (4.58), repectively. To bound the term for the
error in the best approximation, we consider the Hh interpolant. The Hermite cubic
interpolant of a function g(x) on the uniform partition of [0, 1]

0 = x0 < x1 < · · · < xN+1 = 1 where xi = xi−1 + hi, 1 ≤ i ≤ N + 1 ,

where g(0) = g(1) = 0 is given by

Ihg =

N∑
i=1

g(xi)ξi(x) + h

N+1∑
i=0

g′(xi)ηi(x) . (4.60){1d_fourth_hercubic_definter}

From approximation theory we have the following result which tells us how well
a function can be approximated by its cubic Hermite interpolant. As in the case
of the piecewise linear interpolant, additional smoothness on the function must be
assumed in order to get the optimal rates of approximation.

Lemma 4.12. Let f ∈ Hs(0, 1) where 2 ≤ s ≤ 4 and let Ihf denote its piecewise{1d_thm_hercubic_inter}
cubic Hermite interpolant defined by (4.60). Then for 0 ≤ k ≤ 2 and for some
constant C, we have that ∥∥f − Ihf∥∥

k
≤ Chs−k ‖f‖s . (4.61){1d_hercubic_inter}

Note that in order to get the optimal accuracy, e.g.,O(h4) in the L2-norm, we must
have that f ∈ H4(0, 1).

We can now use Lemma 4.12 to bound the right-hand side of (4.59). We have
the following error estimates; the proof is similar to that of Theorems 4.3 and 4.4.

Theorem 4.13. Let u ∈ Hk(0, 1), 2 ≤ k ≤ 4, be the solution of (4.49) and let{1d_thm_hercubic_error}
uh ∈ Ĥh be the solution of (4.58). Then∥∥u− uh∥∥

j
≤ Chk−j ‖u‖k (4.62){1d_fourth_hercubic_error}

where j = 0 or j = 2.

In practice, cubic Hermite functions are not often used. The reason for this
is twofold. First, there are, in general, 2N + 4 parameters to compute in one
dimension; as we will see in the next section there is an approximating space which
maintains the same accuracy as cubic Hermites with only N + 4 parameters. Hence
for cubic Hermite polynomials we would be solving a (2N + 4)-dimensional system
in R1 versus a (N+4)-dimensional system; this difference in size of the linear system
magnifies as we move to higher dimensions. Secondly, the Hermite cubic interpolant
matches the function and its derivative at the nodes. In many situations, especially
in more than one-dimension, it is not possible to accurately specify the derivatives
at the nodes. The space considered in the next section requires interpolation of the
function values only.



4.4. A fourth order example 81

4.4.2 Piecewise cubic spline functions

{1d_subsec_splines}
In this section we consider a finite dimensional subspace of H2(0, 1) which has two
desirable properties. We will require that only function values (and not derivatives)
will be used to interpolate smooth functions and that our space has as small a
dimension as possible. To do this, we constrain the space of Hermite cubics to
obtain the space

Ch = {φ(x) : φ(x) ∈ C2[0, 1], φ(x)is a cubic in each [xi, xi+1]} , (4.63) {1d_fourth_spline_space}

where we are using the same uniform partition defined by h = 1/(N + 1) as before.
In an analogous manner to the case of Hh of cubic Hermite polynomials, we can
determine that Ch is a (N + 4)-dimensional subspace of H2(0, 1).

We must now specify a basis for Ch. In our space Hh of cubic Hermite polyno-
mials, there was a clear criterion for determining its elements. In fact, to determine
φ ∈ Hh we just specified φ(xi) and φ′i(xi) at the nodes xi, 0 ≤ i ≤ N + 1, thus
defining a unique cubic polynomial on each interval and at the same time assuring
that it be in C1[0, 1]. For the cubic spline space Ch, the obvious thing to try in or-
der to assure C2-continuity at the nodes would be to specify φ(x), φ′(x), and φ′′(x)
there. However, this cannot be done using cubic polynomials because we would be
overspecifying them.

Instead of specifying basis functions which interpolate a function and its first
and second derivatives at the nodes, we take the approach of constructing a basis
for Ch. To find the ith basis function we first note that its support cannot be in
the interval [xi−1, xi+1] as was the case with piecewise linear functions and Her-
mite cubic functions. To see this, we note that there are eight degrees of freedom
to determine the cubic polynomials on [xi−1, xi+1] and a total of nine conditions
to specify over the three nodes, i.e.,φ(xi±1) = φ′(xi±1) = φ′′(xi±1) = 0 and the
continuity of φ(x), φ′(x), and φ′′(x) at x = xi. Consequently, we must extend our
interval to [xi−2, xi+2] and attempt to construct a C2 function which is cubic on
each of the four subintervals [xi−s, xi−s+1], for s = −1, 0, 1, 2 and which is zero
outside the interval [xi−2, xi+2]. In this case we have 16 degrees of freedom and
15 conditions to impose so that it is clearly possible; the extra degree of freedom
will be used to specify that the function is one at node xi. A straightforward, but
tedious, computation gives such a function on the interval [−2, 2]; this function is
illustrated in Figure 4.6. Translating this function to the interval [xi−2, xi+2] for
2 ≤ i ≤ N − 1 we have

φi(x) =

{
φ(xh − i) xi−2 ≤ x ≤ xi+2

0 elsewhere
(4.64) {FEM1D_figures/1d_fourth_spline_basis1}
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where

φ(x) =



1

4
(x+ 2)

3 −2 ≤ x ≤ −1 ,

1

4

(
1 + 3(1 + x) + 3(1 + x)2 − 3(1 + x)3

)
−1 ≤ x ≤ 0 ,

1

4

(
1 + 3(1− x) + 3(1− x)2 − 3(1− x)3

)
0 ≤ x ≤ 1 ,

1

4
(2− x)3 1 ≤ x ≤ 2 .

(4.65) {1d_fourth_spline_basis2}

Clearly each φi(x) ∈ Ch for 2 ≤ i ≤ N − 1; we have a total of N − 2 functions so

-2 -1 1 2

1

φ(x)

Figure 4.6. Basis function on [−2, 2] for cubic splines{1d_fig_basis_spline1}

that an additional six basis functions are needed to reach the dimension N + 4. We
add the functions defined below where we have introduced extra nodes x−1 = −h
and xN+2 = 1 + h:

φ−1(x) =

{
φ(xh + 1) 0 ≤ x ≤ x1

0 otherwise
φ0(x) =

{
φ(xh + 1) 0 ≤ x ≤ x2

0 otherwise

φ1(x) =

{
φ(xh − 1) 0 ≤ x ≤ x3

0 otherwise
φN (x) =

{
φ(xh −N) xN−2 ≤ x ≤ 1
0 otherwise

φN+1(x) =

{
φ(xh −N − 1) xN−1 ≤ x ≤ 1
0 otherwise

(4.66){1d_fourth_spline_basis_end}

φN+2(x) =

{
φ(xh −N − 2) xN ≤ x ≤ 1
0 otherwise .

         

1

φ
0

φ
1

φ
2

φ
-1

φ
N+2

φ
N+1

φ
N

φ
N-1

x
0

x
1

x
2

x
3

x
4

x
N-3

x
N-2

x
N-1

x
N

x
N+1

Figure 4.7. Basis functions for cubic splines{1d_fig_basis_spline2}

The set {φi(x)}N+2
i=−1 form a basis for Ch. These basis functions are illustrated in

Figure 4.7.
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An important difference in the basis functions for cubic splines and those we
studied for piecewise linear functions and cubic Hermites is that the unknowns we
solve for are no longer the nodal values of uh. This is because the cubic spline basis
functions are no longer zero at all nodes except one.

Since for our problem the underlying Hilbert space is H2(0, 1) ∩ H1
0 (0, 1),

i.e.,all functions in H2(0, 1) which are zero at x = 0 and at x = 1, we need only

N + 2 basis functions. We define Ĉh as

Ĉh = {φ ∈ Ch : φ(0) = φ(1) = 0} .

For cubic splines we can not simply omit the specific basis functions which are
nonzero at x = 0 and x = 1 as we did for the piecewise linear basis. We can equip
Ĉh with a basis consisting of {φi}N−1

i=2 and the four functions φ̃0 , φ̃1, φ̃N , and φ̃N+1

which are obtained as linear combinations of the remaining φi(x)’s so that they
vanish at x = 0 and at x = 1. For example, φ̃0 = φ0 − 4φ−1, φ̃1 = φ1 − φ−1. (See
exercises.)

As before, in order to obtain error estimates using cubic splines as our ap-
proximating space, we need to obtain estimates for the error in the cubic spline
interpolant. We note that we have N + 2 nodes and the space Ch has dimension
N + 4; thus if the interpolant matches the function value at the N + 2 nodes, then
we have two additional conditions to impose. There are numerous choices; here we
consider one type of cubic spline interpolant of a function f ∈ H2(0, 1). We require
the interpolant, denoted Ihf , to satisfy the N + 4 conditions

Ihf(xi) = f(xi) for 0 ≤ i ≤ N + 1

Ihf
′
(x0) = f ′(x0) , Ihf

′
(xN+1) = f ′(xN+1) .

(4.67) {1d_fourth_spline_definter}

Lemma 4.14. Let f ∈ Hs(0, 1), 2 ≤ s ≤ 4. Then for 0 ≤ r ≤ 2 we have that {1d_thm_spline_inter}∥∥Dr(f − Ihf)
∥∥

0
≤ Chs−r ‖Dsf‖ . (4.68) {1d_fourth_spline_inter}

We now state a result analogous to Theorem 4.13 .

Theorem 4.15. Let u ∈ Hk(0, 1), 2 ≤ k ≤ 4 be the solution of (4.49) and let {1d_thm_spline_error}
uh ∈ Ĉh be the solution of (4.58). Then∥∥u− uh∥∥

j
≤ Chk−j ‖u‖k (4.69) {1d_fourth_spline_error}

where j = 0 or j = 2.
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Chapter 5

Simple Examples on
Rectangular Domains

{chap_fem2d}
In this chapter we consider simple elliptic boundary value problems in rectangular
domains in R2 or R3; our prototype example is the Poisson equation but we also
briefly consider the biharmonic equation and the Helmholtz equation. Similar to
our exposition of the two-point boundary value problem in Chapter 4, we consider
the implementation of different boundary conditions for our prototype equation.
Much of this chapter is a straightforward extension of the analysis presented in
the previous chapter for the two-point boundary value problem. However, a few
important differences are evident.

For the finite element approximation of these elliptic boundary value problems,
we only consider approximating with finite elements spaces which are obtained by
taking tensor products of one-dimensional finite element spaces. In Chapter 6 we
consider the general problem of determining finite element spaces on polygonal
domains and in a later chapter we consider isoparametric finite elements for curved
domains.

5.1 The Poisson equation with homogeneous
Dirichlet boundary data

{2d_sec_homodir}
In this section we consider Poisson’s equation defined in a bounded domain in R2

or R3 with homogeneous Dirichlet boundary data. We let ~x denote a point in R2

or R3. Specifically, we let Ω be an open, connected, bounded set in R2 or R3 and
let ∂Ω denotes its boundary. At this point in our discussion of the finite element
method, we only have the background to use finite element spaces which are tensor
products of the one dimensional finite element spaces discussed in the last chapter.
Consequently, when we move to the discretization stage we require that Ω be a
rectangular domain. However, the weak formulations that we present hold for more
general domains. In the next chapters we address the problem of discretizing using
other elements suitable for more general domains. We let Ω denote the closure of
Ω; i.e.,Ω = Ω ∪ ∂Ω. Let f = f(~x) be a given function that is continuous on the
closure of Ω; i.e.,f ∈ C(Ω). We say that a function u(~x) defined on Ω is a classical

85
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solution of the Poisson equation with homogeneous Dirichlet boundary conditions
if u ∈ C2(Ω), u ∈ C(Ω) and u satisfies {2d_homodir}

−∆u(~x) = f(~x) for ~x ∈ Ω (5.1a){2d_poisson}

u(~x) = 0 for ~x ∈ ∂Ω , (5.1b){2d_dirbc}

where ∆u = uxx + uyy in R2 or analogously ∆u = uxx + uyy + uzz in R3. It is
well known that for sufficiently smooth ∂Ω there exists a unique classical solution
of (5.1).

In the sequel, we assume enough smoothness of the boundary so that the
domain admits the application of the divergence theorem. Every polygonal domain
or a domain with a piecewise smooth boundary has sufficient smoothness for our
purposes.

We make extensive use of Green’s formula which is the analog of the integration
by parts formula in higher dimensions and is derived from the divergence theorem
of vector calculus. Let ~n denote the unit outer normal to ∂Ω and let dS denote the
measure defined on the boundary and dV the measure of volume. We have that for
v ∈ C1(Ω), w ∈ C2(Ω)∫

Ω

v∆w dV =

∫
∂Ω

v(~n · ∇w) dS −
∫

Ω

∇w · ∇v dV

or equivalently ∫
Ω

v∆w dV =

∫
∂Ω

v
∂w

∂~n
dS −

∫
Ω

∇w · ∇v dV . (5.2){2d_green}

5.1.1 Weak formulation

To define the weak formulation we first determine the underly As before, we impose
the homogeneous Dirichlet boundary conditions by constraining our space H1(Ω);
in particular we have the space

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω} .

The weak formulation which we consider is{ seek u ∈ H1
0 (Ω) such that

A(u, v) =

∫
Ω

∇v · ∇w dV = (f, v) ∀ v ∈ H1
0 (Ω) .

(5.3){2d_homodir_weak}

The solution u ∈ H1
0 (Ω) of (5.3) is called the generalized or weak solution of (5.1).

If u satisfies the classical problem (5.1) then u satisfies the weak formulation
(5.1) because ∫

Ω

fv dV = −
∫

Ω

∆uv dV ∀ v ∈ H1
0 (Ω)

=

∫
Ω

∇u · ∇v dV −
∫
∂Ω

∂u

∂~n
v dS
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=

∫
Ω

∇u · ∇v dV

= A(u, v) ,

where we have used Green’s formula (5.2) and imposed the fact that v = 0 on ∂Ω.
The existence and uniqueness of a weak solution to (5.3) can be verified by

satisfying the hypotheses of the Lax-Milgram theorem. Recall that the norm on
H1(Ω) is defined by

‖u‖21 =

∫
Ω

(
u2 +∇u · ∇u

)
dV = ‖u‖20 + ‖∇u‖20 = ‖u‖20 + |u|21 .

The bilinear form is bounded on all of H1(Ω) since

|A(u, v)| =
∣∣∣ ∫

Ω

∇u · ∇v dV
∣∣∣ = | (∇u,∇v) |

≤ ‖∇u‖0‖∇v‖0 ≤ ‖u‖1 ‖v‖1 ,

where we used the Cauchy-Schwarz inequality and the definition of the H1 and L2

norms.
We must now show coercivity of the bilinear form, i.e.,there exists a constant

m > 0 such that

A(u, u) =

∫
Ω

(∇u · ∇u) dV ≥ m ‖u‖21 ∀ u ∈ H1
0 (Ω) .

Note that the bilinear form A(u, u) can also be written as

A(u, u) = |u|21 =
1

2

(
|u|21 + |u|21

)
.

Our underlying Hilbert space is H1
0 (Ω) so we can use the Poincaré inequality to

demonstrate that the standard H1-norm is norm equivalent to this semi-norm and
thus coercivity is guaranteed in an analogous manner to the homogeneous Dirichlet
problem for the two-point boundary value problem of the last chapter. Specifically,
we have

A(u, u) =
1

2

(
|u|21 + |u|21

)
≥ 1

2
min{1, 1

C2
p

}
(
‖u‖20 + |u|21

)
= m ‖u‖21 ,

where Cp is the constant in the Poincaré inequality. We have demonstrated the
boundedness and coercivity of the bilinear form defined in (5.3) and thus the Lax-
Milgram theorem guarantees the existence and uniqueness of a solution to the weak
problem (5.3) because the right-hand side is obviously a bounded linear functional
on H1(Ω). The bilinear form is symmetric and so we know that approximating the
solution of the weak problem is equivalent to the minimization problem

min
v∈H1

0 (Ω)

∫
Ω

(1

2
∇v · ∇v − fv

)
dV .
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5.1.2 Approximation using bilinear functions
{2d_sec_bilinearspace}

In later chapters we consider finite element spaces over polygonal or curved do-
mains. At present, we restrict the domain so that we can use rectangular elements;
therefore, the finite element spaces can be constructed from the spaces used in the
previous chapter. As in the one-dimensional case, we must now choose a finite di-
mensional subspace of Sh0 (Ω) ⊂ H1

0 (Ω) in which to seek the approximate solution.
For the discrete problem we have{ seek uh ∈ Sh0 (Ω) satisfying

A(uh, vh) =
∫

Ω

(
∇uh · ∇vh

)
dV =

(
f, vh

)
∀ vh ∈ Sh0 .

(5.4){2d_homodir_dweak}

Existence and uniqueness of the solution to this problem is guaranteed by the Lax-
Milgram theorem.

To approximate our finite element solution we consider the concrete case where
Ω is the unit square or unit cube. We choose the space Sh0 (Ω) to be continuous,
piecewise bilinear functions defined on Ω ⊂ R2 or continuous, piecewise trilinear
functions9 for Ω ⊂ R3. We formally construct the bilinear basis functions; the
trilinear basis functions are defined analogously. Let N,M be positive integers and
let hx = 1/(N+1), hy = 1/(M+1) and consider the subdivision of Ω into rectangles
of size hx × hy where

xi = ihx, 0 ≤ i ≤ N + 1, yj = jhy, 0 ≤ j ≤M + 1 .

See Figure 5.1 for a sample grid on a unit square with hy = 2hx. Let φi(x),
1 ≤ i ≤ N represent the standard “hat” piecewise linear basis functions in x and
let φj(y), 1 ≤ j ≤M , be similarly defined, i.e.,

φi(x) =


x− xi−1

hx
for xi−1 ≤ x ≤ xi

xi+1 − x
hx

for xi ≤ x ≤ xi+1

0 elsewhere

φj(y) =


y − yj−1

hy
for yj−1 ≤ y ≤ yj

yj+1 − y
hy

for yj ≤ y ≤ yj+1

0 elsewhere.

On Ω = (0, 1)× (0, 1) we now define the NM bilinear functions

φij(x, y) = φi(x)φj(y) for 1 ≤ i ≤ N , 1 ≤ j ≤M . (5.5){2d_homodir_basis}

We easily see that φij(xi, yj) = 1 and φij(xk, yl) = 0 for k 6= i or l 6= j . Also
φij(x, y) is zero outside of [(i− 1)hx, (i+ 1)hx]× [(j− 1)hy, (j+ 1)hy]. The support
of φj(x, y) is illustrated in Figure 5.1 and the shape of a specific bilinear function
φ2,3 which is one at node (x2, y3) is given in Figure 5.2.

For Ω the unit square, we choose Sh0 (Ω) ≡ Sh0 (0, 1)⊗Sh0 (0, 1) to be the tensor
product of the subspaces Sh0 (0, 1) (one each in the x− and y− directions) of one-
dimensional piecewise linear, continuous functions which vanish at zero and one.

9A bilinear or trilinear function is a function which is linear with respect to its variables because
if we hold one variable fixed, it is linear in the other; for example f(x, y) = xy is a bilinear function
but f(x, y) = x2y is not.
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x0 x1 x2 xi xN+1hx

y1

y2

yj−1

yj

yM+1

hy
(xi, yj)

φijb

Figure 5.1. Grid on a unit square with support of basis function φij(x, y)
indicated.{2d_fig_grid}
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Figure 5.2. Support of bilinear basis function φ2,3.{2d_fig_basis_linear}

Sh0 (Ω) consists of all functions v(x, y) on (0, 1)× (0, 1) of the form

v(x, y) =

N∑
i=1

M∑
j=1

cijφi(x)φj(y) =

N∑
i=1

M∑
j=1

cijφij(x, y) . (5.6){2dfunc}
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Note that the general form of a bilinear function in R2 is a0 + a1x + a2y + a3xy
compared with a linear function in two variables which has the general form a0 +
a1x+a2y. Clearly Sh0 (Ω) is the space of all continuous, piecewise bilinear functions
(with respect to the given subdivision) which vanish on the sides of the unit square.
Also, every piecewise bilinear function w(x, y) can be written in the form (5.6) with
cij = f(xi, yj); i.e.,it is a linear combination of the P = NM linearly independent
functions φij(x, y). Sh0 (Ω) is an P -dimensional subspace of H1

0 (Ω); note that for
M = N , Sh0 is an N2 dimensional subspace whereas in one dimension, it was an
N dimensional subspace. Of course this affects the size of our resulting matrix
problem.

From previous discussions we know that once a basis is chosen for the ap-
proximating subspace, the discrete problem can be written as a linear system of
equations. To investigate the structure of the coefficient matrix for our choice of
bilinear basis functions, we let the basis functions φij(x, y) for Sh0 (Ω) be rewritten
in single index notation; for simplicity of exposition we choose M = N . We have

{ψk(x, y)}N
2

k=1 = {φij(x, y)}Ni,j=1 .

For example, ψk = φk1 for 1 ≤ k ≤ N , ψN+k = φk2 for 1 ≤ k ≤ N , etc. Our
discrete weak formulation (5.4) is equivalent to seeking uh ∈ Sh0 satisfying

A(uh, ψi) = (f, ψi) for 1 ≤ i ≤ N2 .

We now let uh =
∑N2

j=1 cjψj and substitute into the above expression. The result

is a linear system of N2 equations in the N2 unknowns {cj}N
2

j=1; i.e.,A~c = ~F where

~c = (c1, . . . , cN2)T , Fi = (f, ψi) and Aij = A(ψi, ψj). Note that with the numbering
scheme we are using for the basis functions, we are numbering our unknowns which
correspond to the coefficients cj across rows. Because we have assumed the same
number of points in the x and y directions we could have easily numbered them
along columns of the grid.

To determine the structure of the resulting matrix we consider the ith row of
the matrix and decide how many nonzero entries are in the row. Because we know
the matrix is symmetric, we only consider terms above the diagonal. Clearly there
can be nonzero entries in columns i and i + 1. The next nonzero entries occur for
unknowns corresponding to basis functions in the next row of the grid. Specifically
we can have nonzero entries in columns i+N − 1, i+N and i+N + 1 where N is
the number of unknowns across the row. The coefficient matrix A is an N2 × N2

symmetric, positive definite matrix which has a block tridiagonal structure of the
form

A =


A0 A1 0 · · · 0
A1 A0 A1 0 · · · 0

. . .
. . .

. . .

0 · · · 0 A1 A0 A1

0 · · · 0 A1 A0

 , (5.7){2dPDmatrix}

where A0 and A1 are N ×N tridiagonal matrices. (See exercises.) A matrix of this
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form can be solved efficiently by a banded Cholesky algorithm, a block tridiagonal
solver or an iterative solver.

Error estimates
{2dsubsecPDerr}

Galerkin’s theorem provides us with the estimate∥∥u− uh∥∥
1
≤ inf
χh∈Sh

0

∥∥u− χh∥∥
1
. (5.8) {2dGalerr}

As before, we turn to the interpolant of u in our finite dimensional space Sh0 (Ω)
to obtain an estimate in terms of powers of h. Specifically for R2, we denote
Ihv as the unique function in Sh0 (Ω) which satisifes (Ihv)(xi, yj) = v(xi, yj) for
0 ≤ i, j ≤ N + 1. We can write Ihv as a linear combination of our basis functions;
i.e.,(Ihv)(x, y) =

∑N
i,j=1 v(xi, yj)φij(x, y). For v defined on Ω ⊂ R2, we let Ihxv and

Ihy v denote the interpolation operators in the x- and y-directions; i.e.,

(Ihxv)(x, y) =

N∑
i=1

v(xi, y)φi(x) and (Ihy v)(x, y) =

N∑
j=1

v(x, yj)φj(y) .

Then we have that

(Ihy I
h
xv)(x, y) = Ihy

(
N∑
i=1

v(xi, y)φi(x)

)
=

N∑
j=1

(
N∑
i=1

v(xi, yj)φi(x)

)
φj(y)

= (Ihv)(x, y) .

Similarly, Ihv = Ihx I
h
y v. For Ω ⊂ R3 clearly Ihv = Ihx I

h
y vI

h
z . This result can be used

to prove the following theorem which gives us an estimate of the error in v − Ihv
when v is sufficiently smooth.

Lemma 5.1. Let v ∈ H2(Ω). Then if Ihv is the interpolant of v in Sh(Ω), the space
of continuous, piecewise bilinear functions, then there exist constants Ci, i = 1, 2
independent of v and h such that∥∥v − Ihv∥∥

0
≤ C1h

2 ‖v‖2 (5.9) {2dintl2}

and ∥∥v − Ihv∥∥
1
≤ C2h ‖v‖2 . (5.10) {2dinth1}

As in the case in one-dimension, we can now make use of the interpolation result
to prove an optimal error estimate in the H1-norm. To obtain a result for the L2-
norm we again use “Nitsche’s trick” in a manner completely analogous to that in
the one-dimensional case where now we make use of elliptic regularity. The details
of the proof are left to the exercises.
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Theorem 5.2. Let u ∈ H2(Ω)∩H1
0 (Ω) be the solution of (5.3) where Ω = (0, 1)× {2dPDerrthm}

(0, 1). Let Sh0 (Ω) be the space of piecewise bilinear functions which vanish on ∂Ω
and let uh be the Galerkin approximation to u in Sh0 (Ω) defined by (5.4). Then∥∥u− uh∥∥

1
≤ Ch ‖u‖2 (5.11) {2dPDerrh1}

and ∥∥u− uh∥∥
0
≤ Ch2 ‖u‖2 (5.12){2dPDerrl2}

for some constants C independent of h and u.

5.1.3 Higher order elements

Our discussion of approximating the problem (5.1) posed on Ω = (0, 1) × (0, 1)
has so far included only piecewise bilinear function spaces. Of course, we can also
use tensor products of higher order spaces such as the quadratic or cubic functions
in one space dimension. Note that a general biquadratic function has the form
a0 + a1x + a2y + a3xy + a4x

2 + a5y
2 + a6x

2y + a7xy
2 + a8x

2y2 compared with a
general quadratic function in two dimensions which has the form a0 + a1x+ a2y +
a3xy+ a4x

2 + a5y
2. As in the one-dimensional case, for a smooth enough solution,

these spaces yield higher rates of convergence then that achieved with piecewise
bilinear approximations. The construction of the basis functions in two or three
dimensions is done analogous to the piecewise bilinear case; the details are left to
the exercises.

5.1.4 Numerical quadrature

Once again, the entries in the matrix and right-hand side of our linear system are
calculated using a numerical quadrature rule which has the form∫

Ω

f(~x) dΩ ≈
∑
i

f(~qi)ωi ,

where the points ~qi are the quadrature points and ωi are the quadrature weights.
Because we are using rectangular elements with basis functions obtained by taking
the tensor product of one-dimensional basis functions, the most straightforward
approach is to use tensor products of the quadrature rules in one spatial dimension.
Typically, we use the same quadrature rule in each spatial dimension. For example,
if we have the rule ∫ b

a

f(x) dx =
∑
i

f(qi)wi

then we can write∫ b

a

∫ d

c

f(x, y) dydx ≈
∫ b

a

(∑
j

f(x, qj)wj

)
≈
∑
i

∑
j

f(qi, qj)wjwi .

In one dimension we employed the Gauss-Legendre quadrature rules on [−1, 1]. If
we take the tensor products of a p-point Gauss rule in each direction then we would
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Table 5.1. Tensor product of Gauss quadrature rules in two dimensions
{2d_table_quad}

1-D rule # points in R2 points qi & weights wi

r 1 point Gauss 1 q1 = (0, 0) w1 = 4

rr rr 2 point Gauss 4 qi = 1√
3

{
(−1,−1), (1,−1), (−1, 1), (1, 1)

wi = 1

r r rr r rr r r
3 point Gauss 9 qi =

√
3
5

{
(−1,−1), (0,−1), (1,−1), (−1, 0),

((0, 0), (1, 0), (−1, 1), (0, 1), (1, 1)
}

wi = 1
81

{
25, 40, 25, 40, 64, 40, 25, 40, 25

}

have one point for the tensor product of the one-point rule, four points for the
tensor product of the two-point rule, etc. The quadrature points in two dimensions
formed by the tensor product of one-point through three-point Gauss quadrature
rules are described in Table 5.1. Note that in three dimensions we have 1, 8, and
27 quadrature points for tensor products of these three quadrature rules. To apply
these rules to an integral over an arbitrary rectangular domain, we must perform a
change of variables in both the x and y directions analogous to the one-dimensional
case. For our example, if we are using bilinear or trilinear elements, then the tensor
product of the one-point Gauss rule is adequate; for biquadratics or triquadratics
we need to use the tensor product of the two-point Gauss rule.

5.2 The Poisson equation with Neumann boundary
data

In this section we consider solving Poisson’s equation on an open, bounded domain
in R2 or R3 where we specify Neumann data on a portion of the boundary and
Dirichlet data on the remainder of the boundary. In particular, we seek a function
u satisfying

−∆u(~x) = f(~x) for ~x ∈ Ω

u(~x) = 0 for ~x ∈ Γ1 (5.13) {2d_PDN}
∂u

∂~n
(~x) = g(~x) for ~x ∈ Γ2 ,
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where Γ1 ∪Γ2 = ∂Ω, Γ1 ∩Γ2 is a set of measure zero, and ∂u/∂~n denotes the direc-
tional derivative of u in the direction of the unit outward normal to the boundary
of the domain. We note that if Γ1 = ∂Ω then we have the purely Dirichlet problem
discussed in Section 5.1; in the case Γ2 = ∂Ω we have a purely Neumann problem.
As expected, in the latter case the problem does not have a unique solution. It is
well known that for sufficiently smooth ∂Ω there exists a unique classical solution
of (5.13) provided, of course, that Γ1 is measurable.

5.2.1 Weak Formulation

For this problem we define H1
B(Ω) as

H1
B(Ω) = {u ∈ H1(Ω) : u = 0 on Γ1} . (5.14){2dh1b}

Our weak formulation is{ seek u ∈ H1
B(Ω) satisfying

A(u, v) ≡
∫

Ω

∇u · ∇v dΩ = (f, v) +

∫
Γ2

gv ∀ v ∈ H1
B(Ω) .

(5.15){2d_PDNw}

If u is a solution of the classical problem (5.13) then by Green’s theorem u satisfies

(f, v) = −
∫

Ω

∆uv dΩ =

∫
Ω

∇u · ∇v dΩ−
∫

Γ

∂u

∂~n
v ds

= A(u, v)−
∫

Γ1

∂u

∂~n
v ds−

∫
Γ2

∂u

∂~n
v ds

= A(u, v)−
∫

Γ2

g(~x)v ds ∀ v ∈ H1
B(Ω) ,

where we have used the fact that the boundary integral over Γ1 is zero since
v ∈ H1

B(Ω) and for the boundary integral over Γ2 we have used ∂u/∂~n = g(~x).
In this problem the Dirichlet boundary condition on Γ1 is essential whereas the
Neumann boundary condition on Γ2 is natural. It’s interesting to compare the
weak formulation (5.15) with the analogous weak formulation (??) for the two-
point boundary value problem. In the one-dimensional case, we simply have the
value of the derivative at a point times the test function at the same point. In two
spatial dimensions with inhomogeneous Neumann boundary conditions we have a
line integral on the right-hand side of the weak form and in three spatial dimen-
sions we have a surface integral. This complicates the implementation of the method
but it is straightforward; for example, for Ω ⊂ R2 we have a line integral on the
boundary which can be approximated using a Gauss quadrature rule. The existence
and uniqueness of a solution to (5.15) is demonstrated in an analogous manner to
the purely Dirichlet problem discussed in Section 5.1. The only complication is
demonstrating that the right-hand side, which now contains a boundary integral, is
a bounded linear functional on H1(Ω).

When the classical problem is a purely Neumann problem, i.e.,when Γ2 =
∂Ω, it is clear that there is not a unique solution. Thus, we can not expect the
hypotheses of the Lax-Milgram theorem to be satisfied. In particular, we are unable
to demonstrate coercivity of the bilinear form.
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5.2.2 Approximation using bilinear functions

As a concrete example we once again take Ω = (0, 1) × (0, 1); we choose Γ1 to be
the top and bottom portions of the boundary, i.e., when y = 0 and y = 1; Γ2 is the
remainder of the boundary. We subdivide our domain into rectangles of size h× h
where h = 1/(N + 1), xi = ih, yj = jh, i, j = 0, . . . , N + 1. If we approximate
using continuous, piecewise bilinear functions as in Section 5.1, then we seek our
solution in the space Ŝh(Ω which is the space of all continuous, piecewise bilinear
functions on Ω which are zero at y = 0 and y = 1. In the x-direction we have
the N + 2 basis functions φi(x), i = 0, 1, . . . , N + 1 and N basis functions in the
y-direction φj(y), j = 1, . . . , N . In this case we have the N(N + 2) basis functions
φij(x, y) which are the tensor products of the one-dimensional basis functions. The
basic structure of the matrix is the same as in the previous example. Optimal error
estimates are derived in a completely analogous manner to the previous section
when u ∈ H2(Ω) ∩H1

B(Ω).
We note that if we attempt to discretize the purely Neumann problem, i.e.,when

Γ2 = ∂Ω, then the resulting (N + 2)2 matrix would be singular. This is to be ex-
pected because we could not prove uniqueness of the solution to the weak problem.
A unique solution to the system can be found by imposing an additional condition
on uh such as specifying uh at one point or requiring the solution to have zero mean,
i.e.,

∫
Ω
u dV = 0.

5.3 Other examples
In this section we make a few brief remarks concerning some additional examples. In
particular, we consider Poisson’s equation with inhomogeneous Dirichlet boundary
data and with a mixed boundary condition, a purely Neumann problem for the
Helmholtz equation and a fourth order equation.

5.3.1 Other boundary conditions

As in the one-dimensional case, we can consider problems with inhomogeneous
Dirichlet boundary conditions such as

−∆u = f ~x ∈ Ω
u(~x) = q(~x) on Γ .

(5.16) {2d_Pi1}

To treat the inhomogeneous Dirichlet condition we proceed formally as before and
define a function g(~x) ∈ H1(Ω) such that g(~x) = q(~x) on Γ. Then we convert the
problem into one which has homogeneous Dirichlet boundary conditions. Then our
solution is u(~x) = w(~x) + g(~x) where w is the unique solution in H1

0 (0, 1) of

A(w, v) = (f, v)−A(q, v) ∀ v ∈ H1
0 (0, 1) ,

where, as before,

A(w, v) =

∫
Ω

∇w · ∇v dV .
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The most serious difficulty arises when we try to approximate. In the one-dimensional
case, it was easy to determine a function gh in our approximating subspace; how-
ever, for higher dimensions this is not the case. When we choose a finite dimensional
approximating subspace, in general, we are not able to find a function gh in this
subspace to use for the function g above. If gh is not in the approximating subspace
then uh = wh + gh is not in the approximating space. We postpone discussion of
this problem until a later chapter.

A problem with a mixed boundary condition such as

−∆u = f ~x ∈ Ω
∂u

∂~n
+ α(~x)u(~x) = q(~x) on Γ

(5.17){2d_Pi2}

can be handled analogous to the one-dimensional case; i.e.,we merely include a term∫
Γ
αuv ds in the bilinear form and add the boundary integral

∫
Γ
qv ds to the right-

hand side. Recall that in the one-dimensional case, we had to add point values of
the solution and/or test function to the bilinear form or right-hand side whereas
in the two-dimensional case we are modifying the bilinear form and the right-hand
side by a boundary integral.

5.3.2 A Neumann problem for the Helmholtz equation

We have seen that the purely Neumann problem for Poisson’s equation; i.e.,when
Γ2 = ∂Ω, does not have a unique solution and if we attempt to discretize then we
are lead to a singular matrix. If, however, we consider the Neumann problem for
the Helmholtz equation

−∆u+ σ2u = f in Ω

∂u

∂~n
= 0 on ∂Ω

then the problem possesses a unique solution for u ∈ C2 and sufficiently smooth
∂Ω. In this case the weak formulation is to find u ∈ H1(Ω) such that

A(u, v) ≡
∫

Ω

(
∇u · ∇v + uv

)
dV = (f, v) ∀ v ∈ H1(Ω) .

This bilinear form is coercive on H1(Ω) as well as bounded. In fact for k2 = 1

A(u, u) =

∫
Ω

∇u · ∇u+ u2 dV = ‖u‖21

and in general

A(u, u) =

∫
Ω

∇u · ∇u+ u2 dV A(u, u) =

∫
Ω

∇u · ∇u+ u2 dV = ‖u‖21 gemin1, k2 ‖u‖21 .
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5.3.3 A fourth order problem

The biharmonic equation is the fourth order partial differential equation

∆∆u = ∆2u = f in Ω .

We may impose boundary conditions such as

u =
∂u

∂~n
= 0 on ∂Ω .

We define H2
0 (Ω) to be the space

H2
0 (Ω) = {v ∈ H2(Ω) | v =

∂v

∂n
= 0 on ∂Ω}.

A weak formulation is to seek u ∈ H2
0 (Ω) such that

A(u, v) = F (v) ∀ v ∈ H2
0 (Ω)

where

A(u, v) =

∫
Ω

∆u∆v dΩ ∀ u, v ∈ H2
0 (Ω)

and

F (v) =

∫
Ω

fv dΩ ∀ v ∈ H2
0 (Ω)

It can be shown that if u is the classical solution of the biharmonic problem then
u satisfies this weak problem; moreover, the weak problem has a unique solution u
in H2

0 (Ω). (See exercises.) To discretize this problem we must use a subspace of
H2

0 (Ω) such as bicubic splines or bicubic Hermites in Ω ⊂ R2. However, in the next
chapter we see that when we use a triangular element, it is not so easy to obtain a
subspace of H2.

5.4 Computational examples
Before looking at a specific example, we first compare the number of nodes, the
number of unknowns, and the number of quadrature points required to approximate
the solution of the problem −∆u + u = f with homogeneous, Neumann boundary
conditions in one, two and three dimensions. Note that in this purely Neumann
problem the number of unknowns is the same as the number of nodes. Specifically
we compare the number of unknowns for various values of h for linear, bilinear and
trilinear elements as well as for tensor products of quadratic and cubic spaces. We
also provide the minimum number of quadrature points that are used in each case.
Recall that the number of unknowns corresponds to the size of the matrix and the
number of quadrature points influences the amount of work required to compute
the entries in the matrix and right-hand sides. In all cases we assume a uniform
grid with spacing h in each dimension. The “curse of dimensionality” can clearly
be seen from Table 5.2.
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Table 5.2. Comparison of number of unknowns for solving a problem on
a domain (0, 1)n, n = 1, 2, 3 using tensor products of one-dimensional elements.

{2d_table_work}
Number of unknowns Number of

h = 0.1 h = 0.01 h = 0.001 quadrature pts.
linear 11 101 1001 1

bilinear 121 10,201 1.030×106 1
trilinear 1331 1.030×106 1.003×109 1

quadratic 21 201 2001 2
biquadratic 441 40,401 4.004×106 4
triquadratic 9261 8.121×106 8.012×109 8

cubic 31 301 3001 3
bicubic 961 90,601 9.006×106 9
tricubic 29,791 2.727×107 2.703×1010 27

We now turn to providing some numerical results for the specific problem

−u′′(x) = (x2 + y2) sin(x, y) ∀ (x, y) ∈ Ω
u = sin(xy) on ∂Ω

(5.18) {2d_comp1}

where Ω = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 3}. The exact solution to this problem
is u(x, y) = sin(xy) whose solution is plotted in Figure 5.3 along with a contour
plot of the solution. Note that we are imposing inhomogeneous Dirichlet boundary
conditions in this example. The results presented here use bilinear and biquadratic
elements on a uniform grid of size h in each dimension; for the quadrature rule
we use the tensor product of the one point Gauss rule for bilinears and the tensor
product of the two point Gauss rule for biquadratics. As usual, a higher order
quadrature rule is used to calculate the error. The numerical rates of convergence
are obtained using (??). The results are presented in Table 5.3 and some results
are plotted for the bilinear case in Figure ??. Note that as expected, the optimal
rates of convergence are obtained.
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Table 5.3. Numerical results for (5.18) using bilinear and biquadratic elements.
{2d_table_comp1}

element h No. of
∥∥u− uh∥∥

1
rate

∥∥u− uh∥∥
0

rate
unknowns

bilinear 1/4 144 0.87717 0.76184× 10−1

bilinear 1/8 529 0.0.43836 1.0007 0.19185× 10−1 1.9895
bilinear 1/16 2209 0.21916 1.0001 0.48051× 10−2 1.9973
bilinear 1/32 9216 0.0.10958 1.0000 0.12018× 10−3 1.9994

biquadratic 1/4 529 0.70737×10−1 0.22488× 10−2

biquadratic 1/8 2209 0.17673×10−1 1.9758 0.28399× 10−3 2.9853
biquadratic 1/16 9025 0.44175×10−2 1.9940 0.35604× 10−4 2.9957
biquadratic 1/32 36,491 0.11043×10−2 1.9986 0.44539× 10−5 2.9990
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Chapter 6

Finite Element Spaces

{chap_spaces}
One of the advantages of the finite element method is that it can be used with
relative ease to find approximations to solutions of differential equations on general
domains. So far we have only considered approximating in one dimension or in
higher dimensions using rectangular elements. The goal of this chapter is to formally
define a finite element, present some examples of commonly used elements and to
establish a taxonomy for describing elements. Isoparametric elements, which are
used for domains with curved boundaries, are discussed in a later chapter.

To precisely describe a particular finite element, it is not enough to give the
geometric figure, e.g., a triangle, rectangle, etc. One must also specify the degree of
polynomial that is used. Does describing these two pieces of information uniquely
determine the choice? In fact, no. If we recall in R1 using an interval as the geomet-
ric element and specifying a cubic polynomial on each interval does not completely
describe the finite element because we can determine the cubic by function values at
four points or by function and derivative values (as in Hermite cubic) at two points.
Consequently, three pieces of information must be provided to give an adequate
description of a finite element; we must specify the geometric element, the degree of
polynomial, and the degrees of freedom which are used to uniquely determine the
polynomial.

Once we have chosen a particular finite element, we subdivide the domain
into a finite number of geometric elements; this meshing must be “admissible”, i.e.,
satisfy certain properties. We want to construct a finite element space, Sh, over
this mesh which possesses specific properties. A basic property which we said is a
distinguishing feature of the finite element method is that we use a piecewise poly-
nomial which is a kth degree polynomial when restricted to the specific element.
For conforming finite elements we require our finite element space to be a subspace
of the underlying Hilbert space. For second order problems this space was H1(Ω)
or a subspace and for fourth order problems the underlying space was H2(Ω). Con-
sequently a second property we require is a global smoothness requirement on the
space. Finally, for the finite element method to be computationally efficient we
must be able to construct a basis which has small support. Before addressing some

101
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Figure 6.1. Inadmissible triangulation due to “hanging node”{spaces_fig_inadmissible}

of these issues we consider the admissible “triangulations” of a domain.

6.1 Construction of a finite element space
{spaces_sec_construction}

6.1.1 Admissible triangulations
{spaces_sec_triangulations}

Once a specific geometric element is chosen, we subdivide the domain Ω̄ (here Ω̄
denotes the closure of Ω, i.e., the interior plus the boundary) into a finite number of
individual subsets or geometric elements. We will use the terminology triangulation
to refer to a subdivision of Ω̄ even if the specific geometric element is not a triangle.
The subsets form a triangulation of Ω̄, denoted T h, which must satisfy certain
properties. Some of these properties are obvious, such as the fact that their union
is Ω̄, while others may not be as obvious. For example, we must add a condition
which guarantees there are no “hanging nodes” as indicated in Figure 6.1.

Definition 6.1. A subdivision T h of Ω into subsets {K1,K2, . . . ,KM} is an ad-{spaces_def_admissible}
missible triangulation of Ω if it satisfies the following properties:

(i) Ω = ∪Mj=1 Kj ;

(ii) for each j, j = 1, 2, . . . ,M , the set Kj is closed and the interior of Kj is
non-empty;

(iii) for each Kj, j = 1, 2, . . . ,M , the boundary ∂Kj is Lipschitz continuous10 ;

(iv) if the intersection of two elements Kj and K` is nonempty then the intersection
must be a common vertex of the elements if the intersection is a single point;
otherwise the intersection must be an entire edge or face common to both K`
and Kj.

10A domain in Euclidean space with Lipschitz boundary is one whose boundary is “sufficiently
regular”. Formally, this means that the boundary can be written as, e.g., z = f(x, y) where f is
Lipschitz continuous. Recall that a function g is Lipschitz continuous if ‖g(p)− g(q)‖ ≤ C ‖p− q‖.
for all p, q.
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The penultimate condition in Definition 6.1 allows the application of Green’s for-
mula over each element.

The parameter h in the triangulation T h is related to the size of the geometric
elements and generally gives a measure of the coarseness or fineness of the mesh. It
is usually taken to be the diameter of the largest element, i.e., for ~p, ~q ∈ Rn

hj = max
~p,~q∈Kj

(
n∑
i=1

|pi − qi|2
)1/2

, j = 1, 2, . . . ,M

and
h = max{h1, h2, . . . , hM} .

If we have a mesh where all the geometric elements are congruent, then the trian-
gulation is uniform if all the elements are the same size; otherwise the triangulation
is called nonuniform.

Clearly, we are interested in obtaining approximations on successively finer
triangulations. For this reason, it is important to look at properties of families of
triangulations. For example, we know that when we refine a mesh we can’t just
make the elements smaller in one portion of the domain but rather refine in some
uniform way. To define the concept of a shape regular triangulation we introduce the
parameter ρ = minj ρj where ρj denotes the diameter of the largest ball contained
in an element Kj . Then a triangulation is called shape regular provided there exists
a constant σ such that

σ =
h

ρ
. (6.1) {spaces_admiss_sigma}

A family of triangulations is called shape regular (or just regular) provided σ is
uniform over the triangulations.

6.1.2 Formal definition of a finite element
{spaces_sec_fe}

From our previous examples in one and two dimensions, we saw that to completely
describe a finite element we had to give more information than simply the choice
of the geometric element and the degree of the polynomial. In fact, we need three
pieces of information – the geometric element, the specific polynomial space defined
over the geometric element, and the degrees of freedom needed to uniquely deter-
mine the polynomial. We follow Ciarlet’s approach for the formal definition of a
finite element.

Definition 6.2. A finite element in Rn is a triple (K,PK,ΘK) where {spaces_defn_fe}

(i) K is a closed subset of Rn with nonempty interior and a Lipschitz continuous
boundary.

(ii) PK is a space of dimension s of real-valued functions over the set K;

(iii) ΘK is a set of s linearly independent functionals, θi, 1 ≤ i ≤ s, defined over
the space PK.
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It is assumed that every p ∈ PK is uniquely determined by the values of the s
functionals in ΘK.

The set K is the specific geometric element in an admissible triangulation.
The space PK usually consists of a polynomial defined over K; however, we allow
a broader definition so as to include some less common elements. In practice, we
take these functions to be our basis for the space PK. The set ΘK consists of the
degrees of freedom which uniquely determine an element of PK.

We can not arbitrarily choose a triple (K,PK,ΘK) to define a finite element
because p ∈ PK may not be uniquely determined by the degrees of freedom specified
by ΘK. An obvious example is the case where we don’t have enough degrees of
freedom specified; however, even if we have enough constraints they still may not
uniquely determine the polynomials. To demonstrate that the degrees of freedom
uniquely determine the polynomial several approaches can be taken. One approach
is to show that the system of equations which results from imposing the degrees of
freedom on an arbitary p ∈ PK has a unique solution. An alternate approach is to
actually construct a basis for the space PK. We will demonstrate both techniques
when we consider specific finite elements.

6.1.3 Properties of finite element spaces
{spaces_sec_properties}

We subdivide the domain into a finite number of individual elements Kj . On each
Kj the polynomial space PKj

is specified along with the degrees of freedom which
uniquely determine a polynomial p ∈ PKj on the element Kj . Then, an associated
finite element space is defined through a systematic process. In every instance, this
space is a finite-dimensional space of functions defined over Ω. An outline of the
process is given as follows.

First, one defines the local properties with respect to each set Kj of the finite
element space Sh. Restricted to each subset Kj ⊂ Ω, functions belonging to Sh

belong to PKj
. Furthermore, over each Kj , the functions in Sh are determined by

the specified degrees of freedom.
Second, one defines the global properties with respect to Ω of the finite element

space. In particular, the desired order of global continuity and differentiability for
Sh must be specified. For example, one could merely require that Sh ⊂ C0(Ω) or
it may be necessary to require that Sh ⊂ C1(Ω).

The global properties are dictated by the differential equation which is being
approximated. We have seen that for second order differential equations the un-
derlying global smoothness of the finite element space is Sh ⊂ H1(Ω) whereas for
fourth order problems we require Sh ⊂ H2(Ω). The question then arises how we
can guarantee these global properties. Clearly the choice of local properties of Sh

influences the global properties.
The following two propositions give conditions which guarantee the standard

global smoothness conditions on Sh. The significance of the first proposition is that
imposing the global smoothness Sh ⊂ H1(Ω) does not require the functions in Sh to
be continuously differentiable but merely continuous; this should be contrasted with
the smoothness requirements for the classical solution of a second order boundary
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value problem. Similarly, the requirement Sh ⊂ H2(Ω) only requires functions
vh ∈ Sh to be in C1(Ω). In the proposition, the additional assumption that PKj ⊂
H1(Kj) is automatically satisfied when PKj

is a polynomial space on Kj .

Proposition 6.3. Assume that T h is an admissible triangulation of Ω ⊂ Rn into {spaces_thm_shinh1}
the subsets {Kj}. Let PKj

⊂ H1(Kj) for all j, let Sh ⊂ C0(Ω), and let vh|Kj
∈ PKj

for all vh ∈ Sh. Then Sh ⊂ H1(Ω). Moreover, if Sh0 consists of those functions in
Sh which vanish on the boundary of Ω, then

Sh0 ≡ {vh ∈ Sh : vh = 0 on ∂Ω} ⊂ H1
0 (Ω) .

Proof. Let vh ∈ Sh; we must show that vh ∈ H1(Ω), i.e., that vh ∈ L2(Ω) and
that its first-order weak derivatives belong to L2(Ω). Since vh ∈ C0(Ω) we have
that vh ∈ L2(Ω). To demonstrate that its first-order weak derivatives are in L2(Ω),
we must find functions whi , i = 1, . . . , n, such that∫

Ω

vh
∂φ

∂xi
dΩ = −

∫
Ω

whi φdΩ ∀ φ ∈ C∞0 (Ω) .

For each i, we choose the function whi to be the function whose restriction on each
finite element Kj is the function ∂(vh|Kj

)/∂xi; this is possible since PKj
⊂ H1(Kj).

Since each finite element Kj has a Lipschitz-continuous boundary ∂Kj , we may
apply Green’s formula to obtain∫

Kj

∂

∂xi

(
vh|Kj

)
φdx = −

∫
Kj

(
vh|Kj

) ∂φ
∂xi

dx+

∫
∂Kj

vh|Kj
φ ni,Kj

dS ,

where ni,Kj is the ith component of the unit outer normal along the boundary of
Kj . Summing over all the elements, we obtain∫

Ω

whi φdΩ = −
∫

Ω

vh
∂φ

∂xi
dΩ +

∑
j

∫
∂Kj

vh|Kjφ ni,Kj dS .

We are done if we can show that the last term vanishes. The boundary of the
elements ∂Kj can be broken up into segments that are part of ∂Ω and segments
that are also part of the boundary of an adjacent subset, say K`. In the first case,
φ = 0 so that clearly those terms vanish. In the other case, the boundary integrals
from the two adjacent elements cancel since, by hypothesis, vh ∈ C0(Ω) and if two
elements Kj and K` are adjacent then on their common boundary, ni,Kj

= −ni,K`
.

The fact that Sh0 ⊂ H1
0 (Ω) follows since ∂Ω is Lipschitz continuous and if

vh ∈ Sh0 , vh = 0 on ∂Ω.

Proposition 6.4. Assume that T h is an admissible triangulation of Ω ⊂ Rn into {spaces_thm_shinh2}
the subsets {Kj}. Let PKj

⊂ H2(Kj) for all j, let Sh ⊂ C1(Ω), and let vh|Kj
∈ PKj
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for all vh ∈ Sh. Then, Sh ⊂ H2(Ω). Moreover, if Shb consists of all functions that
vanish on the boundary, then

Shb ≡ {vh ∈ Sh : vh = 0 on ∂Ω} ⊂ H2(Ω) ∩H1
0 (Ω) (6.2) {spprop2.2}

and if Sh0 consists of all functions that vanish on the boundary and whose derivative
in the direction of the unit outer normal also vanish on the boundary, then

Sh0 ≡ {vh ∈ Sh : vh =
∂vh

∂~n
= 0 on ∂Ω} ⊂ H2

0 (Ω) . (6.3)

Proof. The proof is analogous to the proof of Proposition 6.3. The details are left
to the exercises.

6.2 Examples of finite elements on n-simplices
In R2 the common choices for a geometric element are a triangle and a quadrilateral.
If the domain is polygonal and not rectangular, then triangular elements are needed
to discretize. In R3 the commonly used elements are tetrahedra and cubes or bricks.
In a later chapter we consider isoparametric elements to handle domains with curved
boundaries. In this section we look at some of the more commonly used triangular
elements and their variants.

We have seen that to completely specify a finite element, it is not enough to
just choose a geometric element. We must also specify the degree of polynomial on
the element and the degrees of freedom which uniquely determine the polynomial.
To use the element we must also specify a basis which has small support. In the last
chapter we saw that for rectangular elements we could simply use tensor products
of the basis in one-dimension. For triangles or tetrahedra, this approach does not
work. In the following section we see that barycentric coordinates are a useful tool
in writing basis functions on a triangle or tetrahedron. In addition, one can consider
an approach of determining the basis functions on a reference element and mapping
them to the desired element.

In this section and the next we develop a taxonomy for identifying finite
elements whether in one, two or three dimensions. We identify the element by its
geometric shape which is called an n-simplex or an n−rectangle; by its type which
indicates the polynomial space, and by whether it is a Lagrange or Hermite element
which indicates the kind of degrees of freedom used.

6.2.1 n-simplices
{spaces_sec_simplices}

The first class of finite elements we consider uses subsets K of Rn that are simplices,
e.g., line segments in R1, triangles in R2 or tetrahedra in R3. Formally, we define
an n-simplex in the following way.
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Definition 6.5. Let zk, k = 1, . . . , n + 1, denote n + 1 points in Rn. The convex
hull of these n + 1 points, i.e., the intersection of all convex sets 11 containing zk,
k = 1, . . . , n + 1, is called an n-simplex and the points zk, k = 1, . . . , n + 1, are
called the vertices of the n-simplex.

For example, for n = 2 we specify three points {z1, z2, z3} and a 2-simplex is
simply a triangle with vertices (zi1 , zi2), i = 1, 2, 3, provided the three points are not
collinear. To enforce the noncollinearity of the points, we require that the matrix

 z11
z21

z31

z12 z22 z32

1 1 1


is nonsingular. Note that the magnitude of the determinant of this matrix is just
the area of the parallelogram formed by the vectors z2 − z1 and z3 − z1. For n = 3,
we specify four points {z1, z2, z3, z4} and a 3-simplex is just a tetrahedron with
vertices zi, i = 1, . . . , 4, provided the four points are not coplanar, i.e., provided the
matrix 

z11
z21

z31
z41

z12
z22

z32
z42

z13 z23 z33 z43

1 1 1 1


is nonsingular. Note that the magnitude of the determinant of this matrix is the
volume of the parallelepiped formed by the vectors zi − z1, i = 2, 3, 4.

For an integer j such that 1 < j ≤ n, any j-simplex whose vertices are a subset
of the (n + 1) vertices of a given n-simplex is called a j-face of the n-simplex. An
(n-1)-face is simply called a face and any 1-face is called an edge. In R2, triangles
have edges, i.e., 1-faces. In R3, tetrahedra have faces (2-faces) and edges (1-faces.)

6.2.2 Barycentric coordinates
{spaces_sec_bary}

A geometric concept which is useful in easily writing polynomial basis functions
on an n-simplex is the idea of barycentric coordinates which were first defined by
Möbius in 1827 (Coexeter 1969, p 27; Fauvel 1993). We know that if we are given a
frame in Rn, then we can define a local coordinate system with respect to the frame;
e.g., Cartesian coordinates. If we are given a set of n+ 1 points in Rn then we can
also define a local coordinate system with respect to these points; such coordinate
systems are called barycentric coordinates.

Suppose we are given a set of n+1 points zk ∈ Rn, k = 1, . . . , n+1, such that

11Recall that a set S is convex if given any two points x and y in S then the line segment joining
x and y lies entirely in S.
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the determinant of the matrix
z11 z21 · · · zn+11

z12
z22

· · · zn+12

...
...

...
...

z1n
z2n

· · · zn+1n

1 1 · · · 1

 (6.4) {spaces_bary_cond}

is nonzero. As we have seen, this is just the condition which guarantees in R2 that
the points are not collinear and in R3 that the points are not coplanar. Consider
the set of all linear combinations of these points of the form

q = λ1z1 + λ2z2 + · · ·λn+1zn+1

where
n+1∑
j=1

λj = 1 .

Then the coordinates (λ1, λ2, . . . , λn+1) are called the barycentric coordinates of
points of the space with respect to the given points zk, k = 1, . . . , n+ 1.

As an example of barycentric coordinates consider three specific points in R2,
z1 = (0, 0), z2 = (1, 0) and z3 = (1, 1); the points form a triangle. Any linear
combination of these three points such that λ1 + λ2 + λ3 = 1 gives the barycentric
coordinates (with respect to z1, z2, z3) of a point in R2. For example, the barycentric
coordinates ( 1

2 ,
1
4 ,

1
4 ) is the point in space with Cartesian coordinates ( 1

2 ,
1
4 ) since

1

2
(0, 0) +

1

4
(1, 0) +

1

4
(1, 1) = (

1

2
,

1

4
) .

Similarly, the barycentric coordinates (1,−1, 1) is the point in space with Cartesian
coordinates (0, 1) since

1 · (0, 0) + (−1) · (1, 0) + 1 · (1, 1) = (0, 1) .

We notice that the point ( 1
2 ,

1
4 ) with barycentric coordinates ( 1

2 ,
1
4 ,

1
4 ) lies within the

triangle formed by the given zi, i = 1, 2, 3 whereas the point (0, 1) with barycentric
coordinates (1,−1, 1) is not inside the triangle. In general, one can demonstrate
that if 0 ≤ λ1, λ2, λ3 ≤ 1 then the point q = λ1z1 + λ2z2 + λ3z3 lies inside the
triangle. If any λk, k = 1, 2, 3, is less than zero or greater than one, then the point
q lies outside the triangle. If, for example, λ1 = 0, then the point q lies on the edge
of the triangle through z2 and z3. The justifications of these statements are left to
the exercises.

Suppose now we are given a point (x1, x2, . . . , xn), in a Cartesian coordinate
system or some other frame and want to determine the barycentric coordinates of
the point with respect to a given set of n + 1 points. The barycentric coordinates
(λ1, λ2, . . . , λn+1) of the point with respect to the prescribed points n+ 1 points z1,



6.2. Examples of finite elements on n-simplices 109

z2, . . . , zn+1 are found by solving the system

n+1∑
j=1

zjiλj = xi i = 1, . . . , n

n+1∑
j=1

λj = 1 .

(6.5){spaces_bary_system}

Here zji denotes the ith component of the point zj . The coefficient matrix of (6.5)
is just the matrix in (6.4) and hence we are guaranteed a unique solution. If we
solve this system for the barycentric coordinates, then we see that the λj(x), j =
1, · · · , n+1, are linear functions of the coordinates of the point x = (x1, x2, . . . , xn) ∈
Rn, i.e.,

λj =

n∑
k=1

ζj,kxk + ζj,n+1 j = 1, . . . , n+ 1 , (6.6) {spaces_bary_solve}

where ζi,j denotes the i, j entry of the inverse of the matrix given in (6.4). For
example, the barycentric coordinates with respect to the points z1 = (0, 0), z2 =
(1, 0) and z3 = (1, 1) for the Cartesian point ( 3

4 ,
1
2 ) are found by solving the system 0 1 1

0 0 1
1 1 1

λ1

λ2

λ2

 =

 3
4
1
2
1


to get ( 1

4 ,
1
4 ,

1
2 ). We can write the barycentric coordinates asλ1

λ2

λ2

 =

−1 0 1
1 −1 0
0 1 0

 3
4
1
2
1


or in the form of (6.6) as λ1 = (−1)x1 + (0)x2 + 1, λ2 = (1)x1 + (−1)x2 + 0, etc.

We now want to see how barycentric coordinates can assist us in writing a
basis for a linear polynomial space defined on a triangle or tetrahedron where we
require that the basis is a nodal basis, i.e., it has the property that it is one at one
vertex and is zero at the other vertices. Consider the example of a 2-simplex, i.e.,
a triangle, with vertices {z1, z2, z3}. Then, the barycentric coordinates of a point
x = (x1, x2) ∈ R2 are determined by solving the linear system

z11
λ1 + z21

λ2 + z31
λ3 = x1

z12λ1 + z22λ2 + z32λ3 = x2

λ1 + λ2 + λ3 = 1 .

It is easy to see that if x is one of the vertices of the 2-simplex, say x = zk, , then
λj(zk) = δjk where δjk = 0 if j 6= k and is equal to one if j = k. For example, if
x = z1 then the barycentric coordinates of x are (1, 0, 0). Note also that λ1(x) is
zero along the edge formed by z2 and z3 since it is a linear function which is zero
at z2 and z3; thus the side of the triangle formed by the vertices z2 and z3 can be
described by the equation λ1 = 0.
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Figure 6.2. n-simplicies of type(1){spaces_fig_simplex1}
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Summarizing, we have that the barycentric coordinates (λ1, λ2, λ3) are linear
functions of x (from (6.6) ) which take on the values (1, 0, 0) at x = z1, the values
(0, 1, 0) at x = z2 and (0, 0, 1) at x = z3. Consequently, λ1 is a linear function of x
which is one at the vertex z1 and is zero at the other two vertices z2 and z3; similar
conditions hold for λ2 and λ3. Hence these barycentric coordinates can serve as
basis functions for the space of linear polynomials over the triangle formed by the
points z1, z2, and z3. When we consider quadratic or higher order basis functions
we see that we can simply take appropriate products of the λj , j = 1, . . . , n+ 1.

6.2.3 Lagrange finite elements on n-simplices

When all the specified degrees of freedom are function values, then the finite element
is referred to as a Lagrange finite element. Lagrange finite elements on n-simplices
lead to finite element spaces that are subspaces of C0(Ω) and hence by Proposi-
tion 6.3 they are subspaces of H1(Ω). Such finite elements are often referred to
as “C0-elements”. In the taxonomy of finite elements such elements are called n-
simplices of type (`) where the qualifier “type (`)” refers to the degree of polynomial
specified on the n-simplex.

Lagrange finite element on n-simplices of type (1)

We first consider an n-simplex of type (1); i.e., we are using a linear polynomial
defined over an interval in R1, a triangle in R2 or a tetrahedron in R3. These are
illustrated in Figure 6.2. We choose P(K) = P1(K) to be linear polynomials defined
over K. Since the dim(P1(K)) = 3 in R2 and dim(P1(K)) = 4 in R3, we expect a
linear function on K to be uniquely determined by its values at the n+ 1 nodes of
the n-simplex. This can be proved in several ways; in the following proposition we
prove the result using a linear algebra argument and then following the proof we
outline an alternate argument.
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Proposition 6.6. Let K be an n-simplex in Rn, n = 1, 2, 3, with vertices z1, . . . , zn+1.{spaces_thm_linpk}
A polynomial p(x) ∈ P1(K) is uniquely determined by its values at the vertices.

Proof. We present a proof for the case n = 2 and leave the case n = 3 to the
exercises; we have already addressed the case of an interval in R1. Let p = c0 +
c1x1 + c2x2 where c0, c1, c2 are constants and let ηi, i = 1, 2, 3 be the prescribed
values of p(x) at the vertices. Then we must show that there is a unique function
p(x) ∈ P1(K) such that p(zi) = ηi, i = 1, 2, 3; i.e., that the linear system

ηi = c0 + c1zi1 + c2zi2 for i = 1, 2, 3

has a unique solution. Note that the requirement that this coefficient matrix be
nonsingular is equivalent to the condition which guaranteed that the vertices were
not collinear in R2.

Alternately, we could have shown that any polynomial p(x) ∈ P1(K) can
be written in terms of its values ηi at the vertices. Recall that the barycentric
coordinates satisfy λi(zk) = δik for 1 ≤ i, k ≤ 3 so that in R2 the polynomial

η1λ1(x) + η2λ2(x) + η3λ3(x)

has the desired property; i.e., when we evaluate it at the vertices we get the nodal
values. Thus any linear polynomial on an n-simplex with vertices {z1, . . . , zn+1}
can be written as

p(x) =

n+1∑
i=1

p(zi)λi(x) .

Summarizing, we define the 2-simplex of type(1) to be the set K where K is a
triangle with vertices zi, i = 1, 2, 3 together with the space P1(K) and the degrees
of freedom of the finite element consisting of the values at the three vertices. A 3-
simplex of type(1) is a setK, whereK is a tetrahedron with vertices zi, i = 1, 2, . . . , 4,
together with the space P1(K) and the degrees of freedom of the finite element being
the values at the four vertices.

Lagrange finite element on n-simplices of type (2)

Results for n-simplices of type ` for ` > 1 follow in an analogous fashion. In R2

we know that the dimension of P2(K) is six so we must specify a second degree
polynomial at six points to uniquely determine it; the dimension of P3(K) is ten
so that a third degree polynomial must be specified at ten points on the triangle.

The most commonly chosen points are the obvious ones. These points form the `th

order principal lattice of an n-simplex K given by

L(`, n) =
{
x =

n+1∑
k=1

σk zk :

n+1∑
k=1

σk = 1,

σk ∈
{

0,
1

`
,

2

`
, · · · , `− 1

`
, 1
}
, 1 ≤ k ≤ n+ 1

} (6.7) {spaces_prin_lattice}
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Figure 6.3. `th order lattice for a 2-simplex
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where z1, z2, . . . , zn+1 are the vertices of K. It is easy to demonstrate that L(`, n)
contains

(
`+n
`

)
points. For example, in R2 for ` = 1 σk ∈ {0, 1} so that the points

in L(1, 2) are {z1, z2, z3}, i.e., the vertices of the triangle. For ` = 2, σk ∈ {0, 1
2 , 1}

so that

L(2, 2) =
{
z1, z2, z3,

z1 + z2

2
,
z1 + z3

2
,
z2 + z3

2

}
,

i.e., the verticies of the triangle and the midpoints of the sides. The `th order
principal lattice for a 2-simplex for ` = 1, 2, 3, 4 is illustrated in Figure 6.3. The fol-

lowing proposition states that an `th order polynomial on an n-simplex is uniquely
determined by its values at the points in the corresponding principal lattice.

Proposition 6.7. Let K be an n-simplex in Rn with vertices zk, 1 ≤ k ≤ n + 1.{spaces_thm_puniquelattice}
Then for a given integer ` ≥ 1, any polynomial p ∈ P` is uniquely determined by its
value at the points in L(`, n) defined by (6.7).

Proof. The proof is left to the exercies.

We now know that any quadratic polynomial on an n-simplex is uniquely
determined by its values at the nodes and the midpoints of the edges of the n-
simplex. If we can write any p ∈ P2(K) in terms of the specified values at these
nodes then we will have a basis for the space. For example, for a 2-simplex we want
to write

p(x) =

3∑
i=1

p(zi)qi(x) + p(z12)q12(x) + p(z13)q13(x) + p(z23)q23(x) ,

where qi, i = 1, 2, 3, and q12, q13, and q23 are quadratic functions on K and zij
represents the midpoint of the edge joining the nodes zi and zj . We use products
of the linear barycentric coordinates to write these quadratic functions which serve
as our basis functions with small support. First, consider the function q1 which is
a quadratic function which has the properties q1(z1) = 1 and q1(x) = 0 at the five
points z2, z3, z12, z13, and z23. Recall that λ1(x) is a linear function such that
λ1(z1) = 1, λ1(z2) = λ1(z3) = 0, so in barycentric coordinates the equation of the
line through z2 and z3 is just λ1 = 0; similarly, the equation through the midpoints
z12 and z13 is λ1 = 1/2. Since the point z23 lies on the line λ1 = 0 we have that
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the quadratic function

λ1(x)

(
λ1(x)− 1

2

)
vanishes at the five points z2, z3, z12, z13, and z23. Hence we choose q1(x) =
Cλ1(x)

(
λ1(x)− 1

2

)
and normalize so that q1(z1) = 1. Since λ1(z1) = 1 we set

C = 2. In a similar manner qi = λi(x)(2λi(x)−1), i = 2, 3. Now we must construct
a quadratic function q12 which has the properties that q12(z12) = 1 and q12(x) = 0
at the vertices and the remaining midpoints. In this case the equation of the line
through z1 and z3 is λ2 = 0 and the line through z2 and z3 is λ1 = 0. Thus
the quadratic λ1(x)λ2(x) has the property that it is zero at the verticies and the
midpoints z23, z13 and takes on the value one-fourth at z12; consequently we take
q12(x) = 4λ1(x)λ2(x). In general, qij(x) = 4λi(x)λj(x). Combining these results
we have that for p ∈ P2(K) where K is a 2-simplex

p =

3∑
i=1

p(zi)λi(2λi − 1) + 4p(z12)λ1λ2 + 4p(z13)λ1λ3 + 4p(z23)λ2λ3 .,

For a n-simplex

p =

n+1∑
i=1

p(zi)λi(2λi − 1) +

n+1∑
i,k=1
i<j

4p(zik)λiλk ∀ p ∈ P2(K) . (6.8) {spaces_quadbasis}

Recall that to determine the barycentric coordinates with respect to the points zi,
i = 1, . . . , n+ 1 we had to solve an (n+ 1)× (n+ 1) linear system of equations.

We now define the n-simplex of type (2) to be an n-simplex K together with the
space P2(K) and the degrees of freedom consisting of the values at the vertices and
the midpoints of the edges. Properties of the n-simplex of type(2) are summarized
in Table 6.1

The cases ` ≥ 3 can be handled in a similar manner. Their properties are
summarized in Table 6.1. See the exercises for details.

6.2.4 Hermite 2-simplices

In our examples so far in this chapter we have considered Lagrange finite elements
whose degrees of freedom were function values at a prescribed set of points and the
resulting finite element spaces were subspaces of H1(Ω). In the examples in this
section, we consider finite elements in which some of the degrees of freedom are
partial derivatives, or more generally, directional derivatives. We denote the partial
derivative of a function p(x) in the direction of the line segment through two points
a, b ∈ Rn and evaluated at a point x = c ∈ Rn by D[a,b]p(c). Of course, knowledge
of the directional derivatives at a point is equivalent to the knowledge of the partial
derivatives.

Hermite 2-simplex of type(3)
{spaces_sec_hermite}

Recall that in R1 we used the space of cubic Hermite polynomials to construct a
subspace of H2(Ω). However, we see that in R2 (and also in R3) using Hermite
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cubics generates a finite element space which is only a subspace of C0(Ω) and thus
only a subspace of H1(Ω) by Proposition 6.3. In the next section we consider an
example of a C1(Ω) triangular element in R2.

To uniquely determine a cubic polynomial on a triangle, we must specify ten
conditions since dimP3 = 10. The following result gives ten degrees of freedom
which are combinations of function and derivative values that uniquely determine
a polynomial p ∈ P3.

Proposition 6.8. Let K be an 2-simplex with vertices zi, 1 ≤ i ≤ 3, and let{spaces_thm_hermite}
z123 = 1

3 (z1 + z2 + z3). Then any polynomial p(x) in the space P3(K) is uniquely
determined by its value at the vertices, p(zi), i = 1, 2, 3 and the value of its two first
partial derivatives at the vertices zj, 1 ≤ j ≤ 3, and its value at the point z123.

Proof. First note we are specifying 10 degrees of freedom and dim(P3) = 10 in
R2. To show uniqueness we demonstrate that if p ∈ P3(K) and ξi, ηij , ζ are given
values then the 10× 10 system

p(zi) = ξi for i = 1, 2, 3
∂p

∂xj
(zi) = ηij for i = 1, 2, 3 and j = 1, 2

p(z123) = ζ

has a unique solution. An easy way to show this is to set all the given values, ξi,
ηij and ζ, to zero and prove that p(x) must be identically zero.

If we show that p ∈ P3(K) is zero along each edge of the triangle, then we know
that p = αλ1λ2λ3 for some constant α where λj are the barycentric coordinates
defined by (6.5). Then, since p(z123) = 0 we have that α = 0 and thus p(x) must
be identically zero in K. To demonstrate that p ∈ P3(K) is zero along each edge
of the triangle we note that along the line containing the vertices zi and zj p is
a cubic polynomial of one variable and hence we need four conditions to uniquely
determine it. But p(zi) = p(zj) = 0 and that D[zi,zj ]p(zi) = D[zi,zj ]p(zj) = 0 and
thus p is zero on each edge [zi, zj ].

We can now define the finite element which is called the Hermite 2-simplex of
type(3) where the partial derivatives at each vertex are degrees of freedom as well
as the values at the vertices and the barycenter. Since knowledge of the directional
derivatives at each vertex is equivalent to the knowledge of the partial derivatives
at each vertex, we can specify either as degrees of freedom. The properties of
the Hermite 2-simplex of type (3) are summarized in Table 6.1. Note that in the
illustration of the element in the table we indicate the partial derivative degrees of
freedom at zi by a circle centered at zi.

We now associate a finite element space Sh with a subdivision of Ω ⊂ R2 into
Hermite 2-simplices of type(3). Then a function vh ∈ Sh implies that the restriction
vh|Kj is in the space PKj = P3(Kj) for each Kj and is defined by its values at all the
vertices of the subdivison, its values at the centers of gravity of all the triangles, and
the values of its two first partial derivatives at all the vertices of the subdivision. If
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we assume that we have an admissible triangulation of our domain into 2-simplices
then we are able to obtain the following result.

Lemma 6.9. Let Sh be the finite element space associated with Hermite 2-simplices {spaces_thm_hermiteinsh}
of type(3). Then the inclusion

Sh ⊂ C0(Ω) ∩H1(Ω) (6.9)

holds.

Proof. Because of Proposition 6.3 it suffices to show that Sh ⊂ C0(Ω). Along any
common side of two adjacent triangles, there is a unique polynomial of degree three
in one variable which takes on the prescribed values and prescribed first derviatives
at the endpoints of the side yielding a total of four conditions and thus uniquely
determines a cubic in one variable.

It is tempting to think that the inclusion Sh ⊂ C1(Ω) holds for Hermite n-
simplices of type(3); however, this is not the case. Although the tangential deriva-
tive along an edge is continuous from element to element, the normal derivative is
not.

Finally, we should produce a basis set consisting of functions of minimial
support. As before, we can use the barycentric coordinates to write a polynomial
p ∈ P3 in terms of its values at the vertices and the barycenter, and the six values
of its directional derivatives at the vertices; ultimately they are used to construct
a basis for our corresponding finite element space. In particular, we want to write
any p ∈ P3 as a linear combination of appropriate cubic polynomials times the value
of p and its partial derivatives at the vertices, zi, i = 1, 2, 3, and its value at the
barycenter z123. For example, the cubic basis function at the vertex z1 should have
the property that it is one at z1, zero at z2, z3, z123 and, in addition, its partial
derivatives at nodes zi, i = 1, 2, 3, should be zero. Specifically, for all p ∈ P3(K),
K ⊂ R2

p(x) =

3∑
i=1

p(zi)
(
−2λ3

i + 3λ2
i − 7λ1λ2λ3

)
+27p(z123)λ1λ2λ3 +

3∑
i=1

3∑
j=1
j 6=i

D[zi,zj ]p(zi)λiλj(2λi + λj − 1) .

(6.10) {spaces_hermite_basis}

It is easy to see that when we evaluate p(x) given by (6.10) at zi, 1 ≤ i ≤ 3 and
at z123 we get the corresponding function values p(zi), 1 ≤ i ≤ 3, and p(z123).
It is a little more difficult to show that when we evaluate D[zi,zj ]p(x) at zi then
the terms multiplying p(zi) and p(z123) are zero and the polynomial multiplying
D[zi,zj ]p(zi) is one. The proof of this is left to the exercises but basically we must
show that D[zi,zk](λiλjλk)(zi) = 0, when we differentiate the term −2λ3

i + 3λ2
i the

terms cancel, and a relationship of the form D[zi,zk]λj = δjk − λj(zi), 1 ≤ k ≤ 3,
k 6= i then if k = j 6= i we get the desired result.
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6.2.5 C1 elements on n-simplices

For fourth order differential equations, the inclusion Sh ⊂ H2(Ω) is needed; how-
ever, none of the examples presented so far satisfy this condition. Recall that the
difficulty in the Hermite 2-simplex was the fact that the normal derivatives did not
agree along an edge common to two adjacent elements.

The Argyris triangle
{spaces_sec_argyris}

The first C1 element which we consider is the Argyris triangle which uses a complete
polynomial of degree five. The degrees of freedom consist of function values and
first and second derivatives at the vertices in addition to normal derivatives at the
midpoints of the sides. It can be shown that in R2 any p(x) ∈ P5 is uniquely
determined by the 21 degrees of freedom given by

ΘK = {Dαp(zi), |α| ≤ 2, 1 ≤ i ≤ 3,
∂

∂ni
p(zjk), 1 ≤ i ≤ 3} ,

where ni denotes the normal along the edge of the triangle formed by zj , zk, j 6=
k 6= i and zjk denotes the midpoint of that edge. Note that we have used multi-
index notation to denote the derivatives to simplify the statement of the degrees
of freedom. The Argyris 21-degree of freedom triangle is illustrated in Table 6.1
where we use | to indicate normal derivatives and a circle to indicate derivatives at
vertices.

A finite element space is constructed in the usual manner. Since we require
the normal derivative at the midpoint of each edge to be a degree of freedom, we
expect the normal derivative as well as the tangential derivative along an edge to
be continuous. The following result demonstrates that the finite element space
generated by using the Argyris triangle is a subspace of H2(Ω) and thus can be
used to approximate fourth order problems.

Proposition 6.10. Let Sh be the finite element space associated with the Argyris{spthmargyris}
triangle. Then the inclusion

Sh ⊂ C1(Ω) ∩H2(Ω)

holds.

Proof. By Proposition 6.4, it suffices to show that Sh ⊂ C1(Ω). Let Ki and Kj be
two adjacent triangles with a common side [bk, b`] where bk, b` denote vertices of
the triangulation and let vh ∈ Sh. Considered as functions of an abscissa t along
[bk, b`] the functions vh|Ki and vh|Kj are polynomials of degreee five in the variable
t. Call these polynomials q1 and q2. Since, by the definition of the space Sh, we
have

q(bk) = q′(bk) = q′′(bk) = q(b`) = q′(b`) = q′′(b`) = 0

where q = q1 − q2; it then follows that q = 0 and hence the inclusion Sh ⊂ C0(Ω)
holds. Likewise, call r1 and r2, the restrictions to the side [bk, b`] of the functions
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∂

∂~n
vh|Ki

and
∂

∂~n
vh|Kj

. Then r1 and r2 are polynomials of degree four in the variable

t and again, from the definition of Sh, we have the five conditions

r(bk) = r′(bk) = r(bk`) = r(b2) = r′(b`) = 0

where r = r1 − r2 and bk` is the midpoint of the side [bk, b`]. Therefore, r = 0. We
have thus shown the continuity of the normal derivative. Since q = 0 along [bk, b`],
q′ = 0 along [bk, b`] also. Therefore, the first derivatives are also continuous on Ω.

One difficulty with the Argyris triangle is that there are 21 degrees of freedom.
A modification to the Argyris triangle is the Bell element which suppresses the
values of the normal slopes at the nodes at the three midpoint sides, reducing the
degrees of freedom to 18. Functions in the finite element space associated with the
Bell element are in a space PB where P4 ⊂ PB ⊂ P5. Here PB denotes the space of
all fifth degree polynomials whose normal derivatives along each side of the triangle
are third degree polynomials. Note that, in general, in the Argyris triangle the
normal derivative of p ∈ P5 along each edge is a fourth degree polynomial. In this
element the degrees of freedom are

ΘK = {Dαp(zi), |α| ≤ 2, 1 ≤ i ≤ 3} .

The determination of the basis functions for both the Argyris and Bell triangles
is somewhat involved. The reader is referred to [?] for details.

Hsieh-Clough-Toucher triangles
{spaces_sec_hct}

In an effort to create an element which generates a finite element space that is
a subspace of H2(Ω) but which has fewer degrees of freedom, researchers have
developed composite type elements commonly called macro elements. In the Hsieh-
Clough-Tocher triangle, the triangle is first decomposed into three triangles by
connecting the barycenter of the given triangle with each of its vertices. On each
of the subtriangles a cubic polynomial is constructed so that the resulting function
is C1 on the original triangle. There are a total of 12 degrees of freedom which
consist of the function values and first partial derivatives at the three vertices of the
original triangle in addition to the normal derivative at the midpoints of the sides
of the original triangle.

There is also a reduced Hsieh-Clough-Toucher triangle where the degrees of
freedom have been reduced to nine. Once again, the construction of the basis
functions are involved; the reader is referred to [?, ?] for details.

6.3 Examples of finite elements on n-rectangles
{spaces_sec_rectangles}

In this section we assume that Ω ⊂ Rn is a region that can be subdivided into
rectangular elements. Many of the results are analogous to those when we subdivide
a polyhedral region into n-simplices.
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Table 6.1. Triangular elements
{spaces_table_tri}

degrees of element P`(K) dimPK
freedom
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Bell triangle PB ⊂ P5(K) 18

We let Q`, for positive integers `, be the space of all polynomials of degree
less than or equal to ` with respect to each of the n variables x1, x2, . . . , xn. For
example, if n = 2 and ` = 1 Q1 =span{1, x1, x2, x1x2}. We note that we always
have the inclusion P` ⊂ Q` and in general,

dim(Q`) = (`+ 1)n . (6.11){spdimrect}

We formally define an n-rectangle in Rn as a product of compact intervals with
non-empty interiors.

Definition 6.11. An n-rectangle, K in Rn is defined by

K =

n∏
i=1

[ai, bi] = {~x = (x1, x2, . . . , xn) : ai ≤ xi ≤ bi, 1 ≤ i ≤ n} (6.12){sprect}

for finite ai, bi for each i = 1, . . . , n.
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6.3.1 n-rectangles of type(`)
{spaces_sec_nrectangles}

As in the case of n-simplices, once we have chosen the degree of Q` then we must
specify points for the degrees of freedom, i.e., points where if we prescribe a polyno-
mial of degree ` in the n-rectangle then the polynomial is uniquely determined. An
easy way to specify the degrees of freedom is to consider a particular n-rectangle,
namely the unit hypercube [0, 1]n and specify the points on it. Then a linear map-
ping gives the points on an arbitrary n-rectangle. The following proposition gives
a set of points which guarantees that a polynomial in Q` is uniquely determined by
its values on the set.

Proposition 6.12. A polynomial p ∈ Q` is uniquely determined by its values on {spproprect}
the set

M(`, n) =

{
x =

(
i1
`
,
i2
`
, · · · , in

`

)
∈ Rn : ij ∈ {0, 1, · · · , `}, 1 ≤ j ≤ n

}
. (6.13) {sprnodes}

Proof. See exercises.

For example, in R2

M(1, 2) = {(0, 0), (0, 1), (1, 0), (1, 1)}

and in R3

M(1, 3) = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)} .

Thus a 2-rectangle of type(1) consists of a rectangular element K, the space of
linear polynomials on K, Q1(K), whose dimension is 4 and whose degrees of freedom
consist of the values at the four vertices. Similarly a 3-rectangle of type(1) consists
of a rectangular element K, the linear polynomials on K, Q1(K), whose dimension
is 8 and whose degrees of freedom consist of the values at the eight vertices.

For n-rectangles of type(2)

M(2, 2) = {(0, 0), (0, 1), (1, 0), (1, 1), (0,
1

2
), (

1

2
, 0), (

1

2
,

1

2
), (1,

1

2
), (

1

2
, 1)}

Thus a 2-rectangle of type(2) consists of a rectangular element K, the space of
quadratic polynomials on K, Q2(K), whose dimension is 9 and whose degrees of
freedom consist of the values at the four vertices, the midpoints of the edges and
the barycenter of the rectangle. Similar properties hold for a 3-rectangle of type(2),
2- and 3-rectangles of type(3).

6.3.2 Example of a rectangular C1 element
{spaces_sec_c1rectangle}

For fourth order problems, the inclusion Sh ⊂ H2(Ω) is needed. We can easily
define a rectangular element in R2 for which Sh ⊂ H2(Ω) holds. The element is
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ẑ1 ẑ2

ẑ3
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Figure 6.4. Example of an affine transformation in a 2-simplex{spaces_fig_affine}

defined by prescribing p(zi),
∂p

∂x1
(zi),

∂p

∂x2
(zi),

∂2

∂x1∂x2
p(zi) at the four vertices

of the rectangular element. The resulting polynomial p is in the space Q3 which
has dimension 16. The element is referred to as the Bogner-Fox-Schmit rectangle.
The proof that the finite element space constructed in the usual manner using this
element is a subspace of C1(Ω) is left to the exercises.

6.4 Affine families of finite elements
In this section we want to demonstrate that for many choices of finite elements,
instead of specifying a finite element discretization by the data K, PK, and ΘK, we
can prescribe one reference finite element and the affine or linear function which
maps the vertices of the reference element into the vertices of the geometric element
in the admissible triangulation of the domain. We begin discussion of affine families
of finite elements with an example.

We first consider the specific situation depicted in Figure 6.4 where we wish
to find an affine mapping which maps the vertices of triangle K̂ into the vertices
of triangle K; i.e., we seek FK such that FK(ẑi) = zi, i = 1, 2, 3 where ẑi are the

vertices of triangle K̂ and zi the vertices of triangle K. In this case, FK(x̂) can be
explicitly written as(

x1

x2

)
= FK(x̂1, x̂2) =

1

2

(
3 1
−1 1

)(
x̂1

x̂2

)
+

1

2

(
1
1

)
.

Clearly FK maps the vertices in the reference triangle K̂ into the corresponding
vertices in triangle K. Moreover, since the mapping is linear, FK( 1

2 , 0) = ( 5
4 ,

1
4 ),

FK(0, 1
2 ) = ( 3

4 ,
3
4 ), and FK( 1

2 ,
1
2 ) = ( 3

2 ,
1
2 ); i.e., the midpoints are preserved under

the transformation. In addition, the center of mass is preserved as well other points
which we may use as degrees of freedom.

Suppose now that we choose PK = P1(K) and PK̂ = P1(K̂) and we want to

compare a basis function φ̂i ∈ P1(K̂) evaluated at a point x̂ with the corresponding
basis function in PK evaluated at x = FK(x̂). For example, the basis function

φ̂3 defined on K̂ which is associated with node z3 = (0, 1) is φ̂3 = x̂2 and the
basis function φ3 defined on K which is associated with node z3 = (1, 1) is φ3 =
1
2x1 + 3

2x2 − 1. If we evaluate each basis function at, e.g., the barycenter we get
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the same value, i.e., φ̂3( 1
3 ,

1
3 ) = 1

3 and φ3( 7
6 ,

1
2 ) = 1

3 . This is because ( 7
6 ,

1
2 ) =

FK( 1
3 ,

1
3 ). Consequently, to evaluate basis functions on K at quadrature points on

K, we simply evaluate the corresponding basis function on the reference triangle
at the corresponding quadrature point. However, this is not true when we deal
with derivatives of basis functions as when we construct a stiffness matrix. For
example, ∂φ̂3

∂x̂1
= 0 and ∂φ3

∂x1
= 1

2 . We shouldn’t expect this to hold because we are
differentiating with respect to different variables so clearly we must consider the
transformation. The Jacobian of our transformation is given by

J =

( ∂x1

∂x̂1

∂x1

∂x̂2
∂x2

∂x̂1

∂x2

∂x̂2

)
=

(
3
2

1
2

− 1
2

1
2

)
.

By the chain rule we have

∂φ

∂x̂i
=

∂φ

∂x1

∂x1

∂x̂i
+

∂φ

∂x2

∂x2

∂x̂i

so that ( ∂φ
∂x̂1
∂φ
∂x̂2

)
=

( ∂x1

∂x̂1

∂x2

∂x̂1
∂x1

∂x̂2

∂x2

∂x̂2

)( ∂φ
∂x1
∂φ
∂x2

)
= JT

( ∂φ
∂x1
∂φ
∂x2

)
.

Thus ( ∂φ
∂x1
∂φ
∂x2

)
= J−T

( ∂φ
∂x̂1
∂φ
∂x̂2

)
.

For our problem this just becomes( ∂φ
∂x1
∂φ
∂x2

)
=

(
1
2 − 1

2
1
2

3
2

)( ∂φ
∂x̂1
∂φ
∂x̂2

)
.

so that with φ̂3 = x̂2 we have

∂φ3

∂x1
=

1

2

∂φ̂3

∂x̂1
− 1

2

∂φ̂3

∂x̂2
= 0− 1

2
=

1

2

∂φ3

∂x2
=

1

2

∂φ̂3

∂x̂1
+

3

2

∂φ̂3

∂x̂2
= 0 +

3

2
=

3

2

which agrees with what we would get if we differentiated φ3(x1, x2) = 1
2x1 + 3

2x2−1.
In summary, we have seen that if we have a reference element and an affine

function which maps the reference element into a particular K of our admissible
triangulation, then all of the calculations can be performed on the reference element.
Moreover, using a reference element and the linear map is a simple way to describe
a family of finite elements.

Consider the case where we are given a family (K,PK,ΘK) of triangles of

type(2) and our goal is to describe this family as simply as possible. Let K̂ be a
reference triangle with vertices ẑi and edge midpoints ẑij = (ẑi+ ẑj)/2, 1 ≤ i < j ≤
3, and let

ΘK̂ = {p̂(ẑi), 1 ≤ i ≤ 3; p̂(ẑij), 1 ≤ i < j ≤ 3}
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so that the element (K̂, PK̂,ΘK̂) with PK̂ = P2(K̂) is also a triangle of type(2).
Given any finite element K in the family, there exists a unique invertible affine
mapping

FK : x̂ ∈ R2 → FK(x̂) = BKx̂+ bK

such that
FK(ẑi) = zi, 1 ≤ i ≤ 3 ;

that is, BK is an invertible 2 × 2 matrix and bK a vector in R2. In the previous
example we constructed a specific FK of this form. Then it automatically follows
that

FK(ẑij) = zij 1 ≤ i < j ≤ 3

since the property of a point being the midpoint of a line segment is preserved under
an affine mapping. Likewise the points such as zijk = 1

3 (zi+zj+zk), ziij = 2
3zi+

1
3zj ,

etc. keep their geometrical definitions through affine transformations. Once we have
established the relation x̂ ∈ K̂ → x = FK(x̂) ∈ K, between the points of the sets K
and K̂, it is natural to associate the spaces

P∗K = {p : K → R1; p = p̂[F−1
K (x)], p̂ ∈ PK̂}

with the space PK. Then it follows that

P∗K = PK = P2(K)

since the mapping FK is affine.
In other words, rather than prescribing the family by the data K,PK,ΘK, one

cas prescribe one reference finite element (K̂,PK̂,ΘK̂) and the affine mappings FK.
Then for our example of a 2-simplex of type(2), a typical element in the family
(K,PK,ΘK) is such that

K = FK(K̂)
PK = {p : K → R1 : p = p̂[F−1

K (x)], p̂ ∈ PK̂}
ΘK = {p[FK(ẑi)], 1 ≤ i ≤ 3; p[FK(ẑij)], 1 ≤ i < j ≤ 3} .

With this example in mind, we can now give the general definition that two
finite elements (K̂,PK̂,ΘK̂) and (K,PK,ΘK), with degrees of freedom of the form
(??), are said to be affine-equivalent if there exists an invertile affine mapping

F : x̂ ∈ Rn → F (x̂) = Bx̂+ b ∈ Rn

such that the following relations hold:

K = F (K̂) (6.14)

PK = {p : K → R1; p = p̂[F−1(x)], p̂ ∈ PK̂} (6.15)

(6.16)

whenever the nodes zi (ẑi occur in the definitions of the set ΘK (ΘK̂). It is clear that
two n-simplices of type(`) for a given ` ≥ 1 are affine-equivalent. Likewise, two n-
rectangles of type(`) are affine-equivalent through diagonal affine transformations.
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Indeed, any two identical Lagrange finite elements that we have considered are
affine-equivalent. The situation for Hermite elements is less simple. For example,
consider two Hermite n-simplices of type(3) with sets of degrees of freedom involving
D[z,zj ]p(zi). Then it is clear that they are affine-equivalent because the relations

zj − zi = F (ẑj)− F (ẑi) = B(ẑj − ẑi), 1 ≤ i, j ≤ n, i 6= j .

On the other hand,the Argyris 21-degee of freedom triangle, is not, in general,
affine-equivalent unless they are equilateral triangles since the normal derivative
degrees of freedom are not preserved through an affine transformation, i.e., the
property of a vector that it be perpendicular to a hyperplane is not, in general,
preserved through an affine mapping.

A family of finite elements is called an affine family if all its finite elements are
affine-equivalent to a single finite element, which is called the reference finite element
of the family. Note that the reference element, which we denote by (K̂,PK̂ΘK̂) need
not belong to the family. In the case of an affine family consisting of n-simplices, it
is customary to choose the set K̂ to be the unit n-simplex with vertices

ẑ1 = (1, 0, . . . , 0), ẑ2 = (0, 1, 0, . . .) · · · ẑn = (0, 0, . . . , 0, 1), ẑn+1 = (0, 0, . . . , 0)

for which the barycentric coordinates take the simple form

λi = xi1 ≤ i ≤ n, and λn+1 = 1−
n∑
i=1

xi .

In the case of an affine family of rectangular elements, the usual choice for the
refence set K̂ is either the unit hypercube [0, 1]n or the hypercube [−1, 1]n.

The concept of affine family of finite elements is important because (i) in
practical computations the calculations for the matrix entries are performed on
the reference element; and (ii) for such families an elegant interpolation theory
can be developed, which in turn is the basis for most of the convergence theorems
concerning finite element approximations.


