I Know It When I See It

- or -Looking for Patterns with Scatter Plots

ISC1057 Janet Peterson and John Burkardt Computational Thinking Fall Semester 2016 Scientists look for patterns in nature.

To discover such patterns, they identify interesting and measurable features, and make many observations of how these quantities change.

For example, they may measure the length of the hands and feet of many individuals, and notice that the two measurements seem to be related.

Or they may record the mileage on a car, and measure the amount of wear on its tires.

But even if we gather many measurements of such cases, it's much easier to see a pattern in a plot, than in a table of values.

A scatterplot is the simplest way to investigate the relationship between a pair of measured quantities. For example, a very patient scientist watched the Old Faithful geyser, recording how long the geyser eruption lasted, and then how long it "rested" afterwards. This resulted in 272 pairs of measurements:

Duration	Rest
3.600	79
1.800	54
3.333	74
more data	
4.417	90
1.817	46
4.467	74
	Duration 3.600 1.800 3.333 more data 4.417 1.817 4.467

While these numbers tell the whole story, we can't see it. But if we make a scatterplot of the data, some interesting patterns are visible.

Once a scatterplot has been made, we can make a judgment about whether our data is trying to tell us something.

For instance, our data might be:

- completely disorganized;
- organized into a blob;
- stretched out into a linear pattern;
- broken up into two or more clusters.

A scatterplot is a quick way to detect whether such patterns exist, and to guide a guess as to what that pattern might be. Example #1: Tallahassee Cab Fares

A scientist has taken several cab rides in Tallahassee, and has recorded the mileage and the fare. The data looks like this:

Miles	Fare (\$)
4.5	18.00
26.7	73.75
6.7	23.00
16.4	56.00
32.7	83.25
5.7	17.50
77.0	190.50
8.3	19.65

We'll search for a pattern assuming the fare depends on the mileage, so we can try a scatter plot using mileage as the x or independent variable and the fare as the y or dependent variable.

To make a scatter plot, we can begin by logging into Plotly at https://plot.ly/plot. There is already some sample data entered in the Plotly table.

h noty make charts and dashboards online

pic	<i>i</i>										
		🗄 start	er dat	a	+ NE	W GRID	Ţ	IMPORT			
+ ADD DATA	Ą	L SAVE	СОРУ	L EXPORT	C UNDO	G REDO		CHOOSE PLOT TY	PE DATA TOOLS	∑ ANALYSIS	
					×	[₽	Col1 v	Col2 v	Col3	,
							х	choose as x	choose as x	choose as x	
		LINE P	LOT				у	choose as y	choose as y	choose as y	
							1	giraffes	12	20	
							2	orangutans	18	14	
	Click th	o columr	hoado	rs to cho	050		3	monkeys	29	23	
	x and v	columns	to grag	bh. Use th	ne l		4				
	differe	nt colors	to mate	h x colun	nns		5				
	with y o	olumns.					6				
							7				
		L	ine ploi	t	-		8				
					_		9				
							10				

Option 1; Type in the Data:

Clear out the sample data by selecting + New Grid. Then we can start typing in our data:

<mark>հե</mark> plotly	make ch	arts a	nd dash	boards	s onlin	е										
	🖽 start	ter dat	ta	🗄 Da	ta				// GRI	D 1		ORT				
ADD DATA	L) SAVE	СОРУ	EXPORT	C UNDO	G REDO		СНО	DOSE PL	οτ τγι	PE D/		DLS	∑ ANALYS	IS		
				×	[L.		Col1	v		Col2	v	C	ol3	v	Co
						х	cho	oose as	x	cho	ose as	x	choo	se as	x	choos
	LINE P	LOT				у	cho		у	cho	ose as	у	choo		у	choos
						1		4.5								
				_		2		26.7								
Clic	, the colum	n hoade	urs to cho	05.0		3		6.7								
x an	d y columns	to graj	ph. Use th	ne		4		16.4								
diffe	erent colors	to mate	ch x colun	nns		5	32.7									
with	y columns.					6										
	L	ine plo	t	•		7 8 9										

Option 2: Prepare your data in a CSV file.

A Comma Separated Value or "CSV" file is a text file in which each line contains a data observation. The first line of the file can include labels for the data, as long as these are enclosed in quotes.

We might prepare a file "taxi.csv" looking like this:

"Miles",	"Fare (\$)"
4.5,	18.00
26.7,	73.75
6.7,	23.00
16.4,	56.00
32.7,	83.25
5.7,	17.50
77.0,	190.50
8.3,	19.65

After we have prepared our data in a CSV file, we log into Plotly, as usual. There is already some sample data entered in the Plotly table, but we want to replace this with our file of taxi data. We do this by going to the "import" menu item.

<mark>հե</mark> րlot	ly make c	harts a	nd dash	boards	s onlin	e				
	🖽 sta	rter dat	ta	+ NE	W GRID	Ţ	IMPORT			
ADD DATA	SAVE	Сору	EXPORT	C odau	G REDO			TPE DATA TOOLS		
				×	[t,	Col1 v	Col2 v	Col3 v	
						х	choose as x	choose as x	choose as x	
	LINE	PLOT				у	choose as y	choose as y	choose as y	
						1	giraffes	12	20	Γ
_						2	orangutans	18	14	
						3	monkeys	29	23	
C X	and v colum	nn neade ns to grai	ers to cho nh. Use th	ose 1e		4				
d	ifferent color	s to mate	ch x colun	nns		5				
W	ith y columns/	i.				6				
						7				
		Line plo	t	-		8				-
						9				+
						10				

Plotly will provide a menu to help us locate the data file on our computer. Once we have found it and highlighted it, we press **Open** to bring the data into Plotly.

D C	G	CHOOSE PLOT TYP	T E DATA TOOLS ANALYSIS			
×	× t₊	Col1 v choose as x		File Upload		
	у 1	choose as y	📝 < 🗟 jburka	ardt public_html data csv		
	2	orangutans	Places	Name	Size	Modified
	3	monkeys	🙀 Search	addresses.csv	328 bytes	03/21/2011
se	4		Recently Used	airtravel.csv	321 bytes	Sunday
2	5		🗟 jburkardt	biostats.csv	838 bytes	Yesterday at 12:01
115	6		🔯 Desktop	cities.csv	8.2 KB	Yesterday at 10:46
	7		🔤 File System	crash_catalonia.csv	156 bytes	Yesterday at 10:40
	8		BIGBOY	i csv.html	5.6 KB	09:45
	9		-	example.csv	1.1 KB	03/21/2011
	10		_	faithful.csv	4.0 KB	Yesterday at 10:36
	11		-	📄 grades.csv	1.5 KB	03/21/2011
	12		-	hurricanes.csv	502 bytes	06/27/2016
	13		-	lead_shot.csv	1.3 KB	Yesterday at 20:05
	14		_	letter_frequency.csv	687 bytes	Yesterday at 10:38
	15		_	mlb players.csv	50.5 KB	Yesterday at 10:36
	16		_	mlb teams 2012.csv	848 bytes	Yesterday at 11:26
	17			news decline.csv	236 bytes	06/27/2016
	18			nile.csv	7.8 KB	11/07/2011
	19			lally cab.csv	143 bytes	Yesterday at 17:43
	20				515 59105	
	21					
	22		4			All Files
	23				_	
	24					Cancel Open

Now the data will show up in the Plotly grid. If the CSV file included an initial header line that labeled the data, then these labels will appear at the tops of the columns in the Plotly grid.

ht. plotly	make ch	arts a	nd dash	boards	s onlin	e				
	🖽 start	ter dat	a	🎛 tal	ly_cab	(1).csv	+ NEW GRID			
ADD DATA	L L SAVE	СОРҮ	EXPORT	C UNDO	G REDO		CHOOSE PLOT TYPE	T DATA TOOL	S ANALYSIS	
				×		L,	Distance (mile	s) =	Fare (\$) 🔹	Col3
						x	choose as x		choose as x	choose as
	LINE P	LOT				у	choose as y		choose as y	choose as
						1	4.5		18	
						2	26.7		73.75	
Clink	+l l					3	6.7		23	
Click	the column d v columns	n neade s to grai	ers to cho oh. Use th	ose 1e		4	16.4		56	
diffe	rent colors	to mate	:h x colun	nns		5	32.7		83.25	
with	y columns.					6	5.7		17.5	
				_		7	77		190.5	
	L	ine plo	t	-		8	8.3		19.65	
				_		9				

Plotly always starts by assuming we want a line plot. To get a scatter plot, click on the white box that says Line plot, and it will display other optons. Choose scatter plot. The big blue box will automatically also change to Scatter plot. Now press the big blue box to make your plot.

ዜ . plotly	make ch	arts a	nd dash	board	s onlin	e				
	田 start	🖽 starter data				(1).csv	+ NEW GRID			
H ADD DATA	SAVE	СОРУ	L EXPORT	C UNDO	G REDO		CHOOSE PLOT TYPE	T DATA TOOLS		
				×	[t,	Distance (mile	s) =	Fare (\$) 🔹	Col
						x	choose as x		choose as x	choose
	SCATT	ER PL	от			у	choose as y		choose as y	choose
						1	4.5		18	
						2	26.7		73.75	
cha						3	6.7		23	
Clic	k the column id v columns	n neade s to grai	rs to cho oh. Use th	ose ne		4	16.4		56	
diffe	erent colors	to mate	:h x colun	nns		5	32.7		83.25	
with	n y columns.					6	5.7		17.5	
				_		7	77		190.5	
	Sca	atter pl	ot	•		8	8.3		19.65	
						9				
						10				

Now we see the plot of our data. We don't have many data points, and Plotly likes to use small dots, so we can't see much. Luckily, we can change the style of the plot.

There is a menu strip on the left of the plot. If you select Traces, you will see a box. The tab we want is **Style**. The style option we want is **Marker** option, which controls the color, size, and shape of the dots. The size is usually 6, but let's increase it to 16.

🎛 starter data	🗄 tally_cab (1).csv 🗠 Plot	+ NEW GRID 1 IMPORT	
^			
ල 🛃 Traces			
G Fare (\$) 🕶		
Mode Style	Error bars		
View data			
View JSON			
Share Marker	● ▼ ● 16 ▼ ■ ▼		
Traces Max # Dis	ola 0 = +		
Layout Opacity	1		
Axes Outline	• 0 •		
Notes			
Legend			
Fit data			
Themes			
	80		
	60	•	

Here's our scatter plot. The shape of the data certainly suggests a simple relationship between mileage and fare.

Select the item **Fit Data** on the menu strip on the left. By default, this option will find a straight line suggested by the shape of the data. Select **Run this** fit to add the line to the plot.

plotly make charts	and dashboards online					
🖽 starter da	ata 🔠 tally_cab (1).csv	🗠 Plot	+ NEW GRID 🔺 IM	PORT		
🕒 🖸 差 Fitting to	o trace: 🔵 Fare (\$) 👻					
O G Basic	Advanced					
View data	oose a predefined fit function					
> View ISON	ose a function family:					
	Linear 🗸					
f()	x) = m*x + b					
/ Traces Ente	er fit parameter guesses (optional):					
Layout b	m	-				
Axes Sho	w guess curve on plot					
> Notes	ine your own fit function					
Run t	his fit cancel					
- Legenu						
A Fit data	re (\$)					
P Themes	문 100					
				•		
	80			•		
	60					
	00		•			
	40					
	20	•				
		-				
	0	10	20	30	40	50
					Distance (miles)	

Here's our final scatter plot, including the line suggested by the data.

Example #2: Age, Height and Weight for our Office Staff

In order to get health insurance, all 18 people in our office must have a medical exam which records, among other things, their age, height and weight.

It's natural to expect some relationship between these quantities; tall people are likely to weight more, for instance.

Scatterplots can help us to look into this matter. We have three measurements to work with so there are several plots we can make from this data.

"Name"	"Sex"	"Age"	"Height"	"Weight"
"Alex"	М	41	74	170
"Bert"	Μ	42	68	166
"Carl"	Μ	32	70	155
"Dave"	Μ	39	72	167
"Elly"	F	30	66	124
"Fran"	F	33	66	115
"Gwen"	F	26	64	121
"Hank"	Μ	30	71	158
"lvan"	Μ	53	72	175
"Jake"	Μ	32	69	143
"Kate"	F	47	69	139
"Luke"	Μ	34	72	163
"Myra"	F	23	62	98
"Neil"	Μ	36	75	160
"Omar"	Μ	38	70	145
"Page"	F	31	67	135
"Quin"	Μ	29	71	176
"Ruth"	F	28	65	131

We can put this data into a csv file called **biostats.csv** and import it, or else wait til we log into Plotly, and type it in directly. In either case, we'll get a 5 column Plotly grid something like this:

Jur. blotly	make ch	arts ai	nd dash	board	s online						
	🞛 start	er dat	a	🗄 bi	ostats (1).csv	H NEW GRID					
ADD DATA	LE SAVE	СОРУ	EXPORT	C Odau	G REDO	CHOOSE PLOT TYP	E DATA TOOLS				
				×	L.	Name 🔻	Sex 🔻	Age 🔻	Height 🔻	Weight 🔹	Col6
					x	choose as x	choose a				
	LINE P	LOT			у	choose as y	choose a				
					1	Alex	Μ	41	74	170	
					2	Bert	Μ	42	68	166	
Clic	k the column	boado	rs to cho	05.0	3	Carl	Μ	32	70	155	
xar	nd y columns	to grag	oh. Use th	ne	4	Dave	Μ	39	72	167	
diffe	erent colors	to mate	h x colun	nns	5	Elly	F	30	66	124	
with	n y columns.				6	Fran	F	33	66	115	
					7	Gwen	F	26	64	121	
	L	ine plo	t	-	8	Hank	Μ	30	71	158	
					9	lvan	Μ	53	72	175	
OPT	TIONS				10	Jake	Μ	32	69	143	
					11	Kate	F	47	69	139	
	Error Bars	5			12	Luke	М	34	72	163	
As	symmetric Er	rrors			13	Myra	F	23	62	98	
	Group By				14	Neil	М	36	75	160	

Plotly wants to make a line plot column 1 (choose as x) versus column 2 (choose as y) but instead we want a scatter plot, of height versus weight. We need to adjust the Plotly grid so it looks like this:

📠 plotly	make ch	arts a	nd dash	boards	s online							
	田 start	ter dat	a	田 bio	ostats (1)).csv	+ NEW GRI					
ADD DATA	L SAVE	СОРҮ	EXPORT	C UNDO	G REDO		CHOOSE PLOT TY	PE DATA TOOLS				
				×		r*	Name 🔻	Sex v	Age v	Height 🔻	Weight v	Col6
						х	choose as x	choose a				
	SCATT	ER PL	от			у	choose as y	choose a				
						1	Alex	М	41	74	170	
_						2	Bert	М	42	68	166	
ch						3	Carl	М	32	70	155	
Clic	ck the column nd v columns	n heade s to grai	ers to cho oh. Use th	ose 1e		4	Dave	М	39	72	167	
diff	ferent colors	to mate	ch x colun	nns		5	Elly	F	30	66	124	
wit	h y columns.					6	Fran	F	33	66	115	
				_		7	Gwen	F	26	64	121	
	Sca	atter pl	ot	-		8	Hank	М	30	71	158	
				_		9	lvan	М	53	72	175	
OP	TIONS					10	Jake	М	32	69	143	
	Error Par	-				11	Kate	F	47	69	139	
	CITOL Ball	<u> </u>				12	Luke	М	34	72	163	
A	svmmetric Ei	rrors				15	Mara	C	72	60	0.0	

When we press Scatterplot, the dots are too small again, so we go to the left hand Traces option, choose Style and then Marker and increase the dot size to 16:

Because the data seems to suggest a line, we can choose the left hand Fit data menu option, Add fit to this trace, and Run this fit so that a line is drawn suggesting the pattern.

	starter data 🗄 biostate	5 (1).csv 🗠 Plot	+ NEW GRID 1 IMPORT
± ⊡ ± ⊃ c	Fitting to trace: • Weig	ht •	© 🔍 🕂 🗔 🗭 🕷 🖛 🚍 🔳 Click to enter Plot title
Uiew data	R ²	0.76	180 Weight Weight - fit
Share	Fit parameters	b = -239 +/- 54 m = 5.59 +/- 0.78	170
Axes	Unformatted fit parameters	b = -239.0031603897943 m = 5.585725572820834	160
Legend Fit data			to 140
¹ Themes			130
			120
			110
			• 62 64 66 68 70 72 74 76

Our data includes men and women, so we wonder if the plot can illustrate any sex differences. Since column 2 of our data is an \mathbf{M} or \mathbf{F} , we can select the Group by item on the left, and under column 2, highlight Use as G, to ask that the two sets of data be distinguished.

procij									
	🗄 starter data	🗄 biosta	its (1).csv	🗠 Plot	+	NEW GRID	IMPORT		
ADD DATA	💾 🗗 👱 SAVE COPY EXPORT	O C	DO	CHOOSE PLOT TY	TPE DATA TOOLS				
		×	, L,	Name 🔻	Sex v	Age v	Height 🔻	Weight v	Co
			x	choose as x					
	SCATTER PLOT		у	choose as y					
			G	choose as G					
			1	Alex	М	41	74	170	
Click	the column headers to ch	0050	2	Bert	М	42	68	166	
x and	l y columns to graph. Use t	the	3	Carl	М	32	70	155	
differ	rent colors to match x colu	mns	4	Dave	М	39	72	167	
with	y columns.		5	Elly	F	30	66	124	
			6	Fran	F	33	66	115	
	Scatter plot	•	7	Gwen	F	26	64	121	
			8	Hank	М	30	71	158	
OPTI	ONS		9	lvan	М	53	72	175	
	Error Bars		10	Jake	М	32	69	143	
			11	Kate	F	47	69	139	
Asy	mmetric Errors		12	Luke	М	34	72	163	
	Group By		14	Myra	F	23	62	98	
	Taut		14	Neil	М	36	75	160	
	Iext		15						

.h. plotly make charts and dashboards online

Our scatterplot will again have small dots which we want to increase. And we do indeed see an interesting pattern.

We can again choose the option **Fit** data, but this time, we will have to do it twice, for the female and male data separately. Surprisingly, the two linear relationships have very different slopes now.

Here is another scatter plot, in which we look at age versus height, and again group the data by sex. We can draw several conclusions from this plot.

Example #3: Duration and Pause for Old Faithful

Old Faithful is the nickname for a geyser in Yellowstone National Park.

It got its name because of the regularity of its eruptions. At one time, it was commonly said that it erupted every hour, like a clock. In fact, records show that the next eruption may occur in as little as 35 minutes, or as much as two hours after the previous one.

Moreover, the duration of the eruption varies, that is, the length of time during which the geyser sends water shooting up into the air.

We have 272 records, including the duration of an eruption, and the wait til the next one, in minutes, and we would like to see if there is a pattern between these variables.

Our data is stored in faithful.csv. The first line of the file contains labels, followed by 272 lines of data.

"Index",	"Duration",	"Wait"
1,	3.600,	79
2,	1.800,	54
3,	3.333,	74
	more data	
270,	4.417,	90
271,	1.817,	46
272,	4.467,	74

We start up Plotlly, import our data file, request that column 2 be used as x, column 3 for y, and specify a scatterplot:

ዜ. plotly	make ch	make charts and dashboards online									
	田 start	er dat	a	田 fai	ithful.cs	v	+ NEW GRID				
ADD DATA	SAVE	СОРУ	EXPORT	C UNDO	G REDO		CHOOSE PLOT TYPE	T E DATA TOOLS ANALYSIS			
				×		₽	Index v	Eruption length (mins)	Ŧ	Eruption wait (mins)	Ŧ
						х	choose as x	choose as x		choose as x	
	SCATT	ER PL	от			у	choose as y	choose as y		choose as y	
						1	1	3.6		79	
						2	2	1.8		54	
clia		I .				3	3	3.333		74	
	к the column nd v columns	to grau	ers to cho ph. Use ti	ose		4	4	2.283		62	
diff	erent colors	to mate	h x colur	nns		5	5	4.533		85	
wit	h y columns.					6	6	2.883		55	
				_		7	7	4.7		88	
	Sca	tter pl	ot	-		8	8	3.6		85	
						9	9	1.95		51	
OP	TIONS					10	10	4.35		85	
	Error Dara					11	11	1.833		54	
	Error Bars					12	12	3.917		84	
		1				13					

90 80 Eruption wait (mins) 70 60 50 40 4.5 1.5 2.5 3 3.5 2 4 5

Eruption Length and Wait

Eruption length (mins)

We can ask for a linear fit to this data:

The linear fit produces two numbers b and m that set up a prediction formula $y = m \times x + b$ from the data.

Based on our data, the linear fit says that:

```
estimated wait \approx 10.73 \times \text{duration} + 33.5
```

So the formula suggests a 2 minute duration is followed by a 55 minute wait, while a 4 minute duration suggests about a 76 minute wait, which matches the behavior of the line in our plot.

Example #4: Height, Weight, Age of MLB Players

We have seen, when we use the "Fit data" option in Plotly, that along with the formula for the fitting line, there is also a number reported as R^2 .

For example, for the first fitting line to our office biostat data, R^2 was about 0.76, and for our Old Faithful fitting line, R^2 was about 0.81.

When we make a scatterplot, we expect the data to be scattered, that is, not to lie neatly on a line. When we ask for a linear fit to data, we are asking for the line that comes closest to matching our messy data. The value of R^2 tells us how well we did...in other words, it tells us whether the scattered data is actually close to a linear shape, or is a terrible chaotic mess.

Whenever we ask to fit the data, Plotly will always draw us a straight line. But the value of R^2 is a warning that indicates whether that line is a good explanation of the data, or does not explain much at all.

In this example, we will study a set of data about Major League Baseball (MLB) players, including height, weight, and age. We will make some scatter plots, and ask Plotly to show us the fitting lines. With our eyes, we can make some judgment about whether the data has a simple form, but as we examine the R^2 values, we will see that it gives us a clear indication of how orderly or disorderly the data is.

The data file mlb.csv describes 1034 baseball players:

"Name"	"Team"	"Position"	"Height(in)"	"Weight(lbs)"	"Age"
"Adam Donachie"	"BAL"	"Catcher"	74	180	22.99
"Paul Bako"	" BAL"	"Catcher"	74	215	34.69
"Ramon Hernandez"	" BAL"	"Catcher"	72	210	30.78
		more data			—
"Chris Narveson"	" STL"	"Relief Pitcher"	75	205	25.19
"Randy Keisler"	" STL"	"Relief Pitcher"	75	190	31.01
" Josh Kinney"	" STL"	"Relief Pitcher"	73	195	27.92

MLB Height and Weight

Height(inches)

MLB Height and Weight

Height(inches)

MLB Age versus Weight

Age

MLB Age versus Height

Age

The MLB data never really looked as nicely patterned as many of the other datasets have been.

The fact that the data really looks scattered, and that R^2 is so low, suggests that:

- we can only roughly estimate MLB player weight from height;
- we have little accuracy in estimating weight or height from age.

There is a weak general trend from weight to increase and height to decrease with increasing age.

So...just because we can draw a fitting line doesn't mean we've discovered a strong relationship between two items of data! Example #5: Making Sense of House Prices

One of the biggest tasks for a realtor is deciding how to determine the asking price for a house. The computation is based on the intrinsic value of the house, the asking price for other houses in the neighborhood, the current state of the local housing market, interest rates and so on.

The final judgment comes with the selling price, what someone is actually willing to pay for the house, given all these factors.

We would like to use scatterplots to study how much certain features influence the size of the final selling price for a house.

The data file homes.csv describes a list of home sales:

"Sell"	"List"	"Living"	"Rooms"	"Beds"	" Baths"	"Age"	"Acres"	"Taxes"
142	160	28	10	5	3	60	0.28	3167
175	180	18	8	4	1	12	0.43	4033
129	132	13	6	3	1	41	0.33	1471
				more				
247	252	29	9	4	2	4	1.25	4626
111	120	15	8	3	1	97	1.11	3205
133	145	26	7	3	1	42	0.36	3059

We will investigate by plotting the selling price as the dependent variable (the y value) and choosing each of the remaining quantities as the x value.

Then we can ask Plotly to fit the data, that is, to come up with the best formula that predicts the value of y given the value x.

Plotly will also report the value of R^2 , which will tell us whether x is actually a useful clue for the value of y.

If you were only allowed to know one of the quantities in our table, and had to guess the selling price of the house, what are the best quantities to know? Which ones don't tell you much? List Price vs Selling Price

Living Area vs Selling Price

Rooms versus Selling Price

Rooms

Bedrooms versus Selling Price

Beds

Bathrooms versus Selling Price

Baths

Age versus Selling Price

Age

Acreage versus Selling Price

Acres

Taxes versus Selling Price

Taxes

Obviously, all the factors we've looked at can affect the selling price.

It's reasonable that the selling price is strongly related to the asking price, and close to the taxes (shouldn't it be even closer?).

After that, if we only had one item to work from, it seems like living area, number of bathrooms, and number of rooms are strong predictors.

Notice that our data included an outlier, that is, one data item that was very different from the others, a house which sold for half a million dollars, double the typical price. Sometimes, a single outlier can distort the results of an analysis. If that is suspected, the analysis can be redone by removing that outlier and seeing if the results change significantly. Example #6: Robert DeNiro's Rotten Tomato Scores

Robert DeNiro has a long career in movies. Some of his early movies are critically acclaimed, while many of his recent movies have done poorly at the box office, or were criticized because it felt that DeNiro was just "phoning in" his role, having lost interest in acting.

It's not possible to be scientific about such statements, but, on the other hand, there are a number of movie databases that collect ratings from viewers about movies, and as long as we're dealing with numbers, we have some ideas about how to investigate them.

James Chapman had the idea of looking at the Rotten Tomato ratings for movies starring DeNiro, and making a scatter plot from them.

The data file deniro.csv describes 88 movies of Robert Deniro:

"Year"	"Score"	"Title"
1968	86	"Greetings"
1970	17	"Bloody Mama"
1970	73	"Hi, Mom!"
	more	—
2015	26	"Heist"
2015	61	"The Intern"
2016	11	"Dirty Grandpa"

