
Codes and Communication,
or

How to talk to the computer

ISC1xxx

1 / 1



When we talk to a computer, or “give it input”, we are sending it
many kinds of information:

numbers to add
text to store
mail messages to send
music
photographs
movies

Somehow, the computer has to store all this information, and it
has to do it using electronic hardware.

2 / 1



Computer information is stored in “memory”. We can think of
computer memory as a huge array of boxes. Each box has a
numeric label, and can hold a small amount of information.

One way to give the computer information is to create a file with a
text editor. A file has a name, such as “apology.txt”, and you
might have entered the following information:

Aunt Polly,
Sorry I was late!
Tom

3 / 1



Your information gets stored in a sequence of empty boxes:

Address Contents
------- --------
1000000 Aunt Pol
1000001 ly,@Sorr
1000002 y I was
1000003 late!@To
1000004 m&------

The @ represents the carriage return or CR key you pressed twice.
The return isn’t in the same class as alphabetic characters but it’s
just as important in formatting your message.

The & represents the ”end of file” symbol or EOF.

The trailing -’s are unused memory that we didn’t actually need for
this message.

The computer “remembers” that “apology.txt” is stored starting
at location 1000000, up to the EOF symbol.

4 / 1



We pause for a few remarks:

In our example, the ”apology.txt” file was stored in
neighboring boxes, that is, 1000000, 1000001, and so on.
Because computer memory is constantly being erased and
reused, it may be necessary to store large files in a somewhat
scattered fashion. The computer knows how to find all the
scattered pieces in the right order whenever it needs them.
What we have called “boxes” are technically called computer
“words”. A modern “64 bit” computer will use words that can
hold 8 characters, as we saw in our example. Computer words
are also called “memory locations” because every word has an
address which enables the computer to find it.
We will say that a computer file is an item which has a name,
perhaps an associated icon, an address, and an end-of-file
marker, containing a set of information of interest to a user.
Most user activities will involve information stored as a file.

5 / 1



Let’s continue with the idea of storing a file such as
“apology.txt” on the computer. We saw that the first word of
memory (at address 1000000) contained this fragment:

Aunt Pol

Since computer memory can actually only store 1’s and 0’s, we
must be missing something here. It’s convenient to think of the
computer word as containing typewriter characters, but that’s not
what goes on. Actually, every character is stored in the computer
using the ASCII code. This is simply a table that translates every
character into a string of 8 0’s and 1’s. For instance the letter “A”
has the ASCII code 01000001.

Now we have room for 8 characters in the computer word. If we
replace each character by an 8 digit string of 0’s and 1’s, we will
get a string of 64 0’s and 1’s. Here’s what happens to “Aunt Pol”
after translation:

A u n t SPACE P o l

01000001 01110101 01101110 01110100 00100000 01010000 01101111 01101100

6 / 1



The 8-binary digit ASCII Code for printable characters:

space 00100000 0 00110000 @ 01000000 P 01010000 ‘ 01100000 p 01110000

! 00100001 1 00110001 A 01000001 Q 01010001 a 01100001 q 01110001

" 00100010 2 00110010 B 01000010 R 01010010 b 01100010 r 01110010

# 00100011 3 00110011 C 01000011 A 01010011 c 01100011 s 01110011

$ 00100100 4 00110100 D 01000100 T 01010100 d 01100100 t 01110100

% 00100101 5 00110101 E 01000101 U 01010101 e 01100101 u 01110101

& 00100110 6 00110110 F 01000110 V 01010110 f 01100110 v 01110110

’ 00100111 7 00110111 G 01000111 W 01010111 g 01100111 w 01110111

( 00101000 8 00111000 H 01001000 X 01011000 h 01101000 x 01111000

) 00101001 9 00111001 I 01001001 Y 01011001 i 01101001 y 01111001

* 00101010 : 00111010 J 01001010 Z 01011010 j 01101010 z 01111010

+ 00101011 ; 00111011 K 01001011 [ 01011011 k 01101011 { 01111011

, 00101100 < 00111100 L 01001100 \ 01011100 l 01101100 | 01111100

- 00101101 = 00111101 M 01001101 ] 01011101 m 01101101 } 01111101

. 00101110 > 00111110 N 01001110 ^ 01011110 n 01101110 ~ 01111110

/ 00101111 ? 00111111 O 01001111 _ 01011111 o 01101111

EOF 00000100 CR 00001111 HT 00001001

Note that EOF (end-of-file), CR (carriage return), and HT
(horizontal tab) are usually considered “unprintable” characters,
but they often occur in text files.

7 / 1



Now let’s note four levels of information in the computer:

bits: this is what we were calling 1’s and 0’s. A computer bit
is the smallest unit of memory.
bytes: this is hwat we were calling a letter or character; the
term byte includes letters, digits, symbols, and more unusual
things that don’t have a printable version. A byte is made up
of 8 bits. That means that there are 256 possible byte
patterns
words: we called these “boxes” before. Because each word in
has an address, the computer can easily store and retrieve
information in them. On typical computers, a word can hold
up to 8 bytes.
files: can be thought of as a sequence of computer words;
Files are created and modified by the user, and can be almost
any size.

8 / 1



If we plan to do numeric calculations, then the ASCII code is the
wrong way to store our information. The IEEE format is a
standard way of efficiently packing a wide range of numbers into
the computer memory.

Let’s start by thinking of the best way of planning to store
integers, that is, whole numbers or counting numbers, into a single
computer word, that is, a byte, the same amount of memory that
can only store a single letter like ‘W‘.

A byte has 8 bits, so we can represent it as a string of 0’s and 1’s.
Examples: 00000000, 00000001, 00110011, 10101010.

To write a particular byte, we have 2 choices for each bit. There
are 8 choices to make, so there are 2*2*2*2*2*2*2*2=256
possible bytes. That suggests that there is enough room in a byte
to represent any number from 0 to 255. (Computer people like to
start counting at 0, not 1!)

9 / 1



We need a systematic rule to convert a number like 17 into a
byte, and another rule to take any byte and turn it back into a
number. The obvious idea is to think of the byte in terms of binary
arithmetic.

Consider the string of digits 11010. Ordinarily, we would assume
this represents a very big number, namely

1*10,000 + 1*1,000 + 0*100 + 1*10 + 0*1

But since the only digits we see are 1’s and 0’s, this might instead
be a number written in binary arithmetic, in which case we
interpret the number using multiples of 2:

1*16 + 1*8 + 0*4 + 1*2 + 0*1

which gives us a completely different result, namely 28 (going back
to the decimal system).

Binary arithmetic is perfect for the computer, since the computer
memory bits can be thought of as binary digits (which is where the
word bits comes from..

10 / 1



A rule to turn a number n between 0 and 255 into a byte
b7—b6—b5—b4—b3—b2—b1—b0

replace n by n/2, and set the remainder to b0;
replace n by n/2, and set the remainder to b1;
replace n by n/2, and set the remainder to b2;
replace n by n/2, and set the remainder to b3;
replace n by n/2, and set the remainder to b4;
replace n by n/2, and set the remainder to b5;
replace n by n/2, and set the remainder to b6;
replace n by n/2, and set the remainder to b7;

Note that when we compute n/2, we always round the result down
to a whole number.

11 / 1



Turn the number 135 into a byte
b7—b6—b5—b4—b3—b2—b1—b0

replace 135 by 135/2=67 with remainder 1.
replace 67 by 67/2=33 with remainder 1.
replace 33 by 33/2=16 with remainder 1.
replace 16 by 16/2= 8 with remainder 0.
replace 8 by 8/2= 4 with remainder 0.
replace 4 by 4/2= 2 with remainder 0.
replace 2 by 2/2= 1 with remainder 0.
replace 1 by 1/2= 0 with remainder 1.

This means the binary representation of 135 is 10000111.

12 / 1



Our integer-to-byte rule is pretty wordy. We could almost simplify
it to two lines:

do this 8 times:
replace n by n/2, and set the remainder to b?;

To make this work, we need to know that on the first step, we
compute b0, and on the second step, b1, and so on. If we just
keep track of our repetitions, we can handle this:

Do, for each number i from 0 to 7
replace n by n/2, and set the remainder to b#i;

13 / 1



Now we need a rule to turn a byte
b7—b6—b5—b4—b3—b2—b1—b0 into a number n between
0 and 255:

set n to 0
replace n by n*2 and add b7;
replace n by n*2 and add b6;
replace n by n*2 and add b5;
replace n by n*2 and add b4;
replace n by n*2 and add b3;
replace n by n*2 and add b2;
replace n by n*2 and add b1;
replace n by n*2 and add b0;

14 / 1



We can check this with our previous result 10000111.

set n to 0
replace 0 by 0*2= 0 and add b7=1 to get 1;
replace 1 by 1*2= 2 and add b6=0 to get 2;
replace 2 by 2*2= 4 and add b5=0 to get 4;
replace 4 by 4*2= 8 and add b4=0 to get 8;
replace 8 by 8*2= 16 and add b3=0 to get 16;
replace 16 by 16*2= 32 and add b2=1 to get 33;
replace 33 by 33*2= 66 and add b1=1 to get 67;
replace 67 by 67*2=134 and add b0=1 to get 135;

15 / 1



Our byte-to-integer rule can also be simplified:

n = 0
Do, for each number i, counting down from 7 to 0
replace n by 2*n+b#i

It makes some sense that, since in the integer-to-byte rule we
divided, and count up from 0 to 7, that in the byte-to-integer rule
we multiply, and count down from 7 to 0.

16 / 1



Our integer-to-byte and byte-to-integer rules are examples of
algorithms, that is, definite rules for carrying out a computation.

Typically, an algorithm may have input quantities, that is,
information to which the algorithm is applied, and output
quantities, that is, information that is the result of the
computation.

For the integer-to-byte rule, the input is the number n, and the
output is the 8 bits {b7|b6|b5|b4|b3|b2|b1|b0}.

The other interesting thing about both algorithms is that they
involve a step that is repeated several times, which suggests that
we can simplify the description using some kind of repetition
statement - sometimes called a do loop or for loop.

17 / 1


