
parameters (such as �) we can define with certainty, and oth-
ers (such as ) we know to high precision, but most data is
measured and therefore contains measurement error.

So what we really solve isn’t the problem we want, but
some nearby problem, and in addition to reporting the
computed solution, we really need to report a bound on
either

• the difference between the true solution and the com-
puted solution (a forward error bound ), or

• the difference between the problem we solved and the
problem we wanted to solve (a backward error bound ).

This need occurs throughout computational science. For
example, 

• If we compute the resonant frequencies of a model of a
building, we want to know how these frequencies change
if the load within the building changes.

• If we compute the stresses on a bridge, we want to know
how sensitive these values are to changes that might oc-
cur as the bridge ages.

• If we develop a model for our data and fit the parameters
using least squares, we want to know how much the para-
meters would change if the data were wiggled within the
uncertainty limits.

In this homework assignment, we use some simple
problems to investigate the use of several tools for sensi-
tivity analysis.

Sensitivity Is Measured by Derivatives
The best way to measure the sensitivity of a variable x to a

change in a parameter t is to compute dx/dt because, by Tay-
lor series, if � is a small number, then

.

Thus, the change in x due to a change in t is proportional
to dx/dt (whenever the second derivative d2x/dt2 is
bounded). Sometimes we can’t compute the derivative, and
sometimes it doesn’t exist, but this is the method of choice
whenever possible.

As an example, let’s use the derivative to gain insight into
the sensitivity of a quadratic equation’s roots to changes in
the coefficients.

PROBLEM 1. 

Suppose x1 and x2 are the roots of the quadratic equation
.

a. Use implicit differentiation to compute dx/db.
b. We know that the roots are

.

Differentiate this expression with respect to b, and show
that the answer is equivalent to the one you obtained in (a).

c. Find values of b and c for which the roots are very sensitive
to small changes in b and values for which they aren’t sensitive.

If we need to vary several parameters, the partial deriva-
tives of the variable with respect to the parameters yield the
sensitivity information.

Derivatives also give sensitivity information for con-
strained problems. If we want to minimize a function f(x)
subject to the constraints h(x) = 0, for example, we learned
in calculus to introduce Lagrange multipliers �, one per con-
straint, and look for solutions (x*, �*) for which the La-
grangian function has a zero
gradient. The “artificial” variables � actually have a physi-
cal meaning: �i is the partial derivative of L with respect to
the constraint hi. Therefore, the value of the multipliers at

L f T( , ) ( ) ( )x x h xλλ λλ= +

x b b c1 2
21

2
4, = − ± −⎛

⎝
⎞
⎠

x bx c2 0+ + =

x t x t
dx
dt

t( ) ( ) ( )+ ≈ +δ δ

�
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SENSITIVITY ANALYSIS
When a Little Means a Lot

By Dianne P. O’Leary

I N CONTRAST TO CLASSROOM EXERCISES,

THE REAL WORLD RARELY PRESENTS US

WITH A PROBLEM IN WHICH THE DATA IS

KNOWN WITH ABSOLUTE CERTAINTY. SOME 

Editor: Dianne P. O’Leary, oleary@cs.umd.edu
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a point where h(x) = 0 measures the sensitivity of f to small
changes in the constraint. For this reason, Lagrange multi-
pliers are sometimes called marginal values or reduced costs.
We’ll see an example of their use in Problem 3.

Condition Numbers Give Bounds on Sensitivity
Although the derivatives of the variable with respect to the
parameters provide the “gold standard” for sensitivity analy-
sis, differentiation isn’t always practical. For example, a lin-
ear system of equations with 100 variables has 104

coefficients in the matrix—that’s a lot of partial derivatives
to compute and assess! Because of this, shortcuts have been
developed that give less-specific information but summarize
what can happen in the worst case for perturbations of a
given size. These shortcuts involve computing a condition
number for the problem.

Given a condition number, we can make statements such
as the following: if the matrix is changed to A + E, where

,

and � is a small number, then the difference between the so-
lution to the linear system and the solution xe to the
linear system is bounded by 

, (1)

where � (A) is the condition number of A and � < 1/� (A).
By its very nature, the statement involving condition

numbers is a worst-case statement because it must hold for
all perturbations that are small enough. For some values of
E, the error bound in Equation 1 can be a serious overesti-
mate, but some particular matrix always exists for which the
bound is tight.

Condition numbers let us replace the full set of partial de-
rivatives by a single number, but even that one number can
be hard to compute—for example, �(A) = ||A|| ||A–1||. The
norm of A is usually easy to compute—depending on our
choice of norm:

• ||A||1 is the maximum of the 1-norm of the columns of A.
• ||A||� is the maximum of the 1-norm of the rows of A.
• ||A||2 is the square root of the largest eigenvalue of ATA.

A vector’s 1-norm is just the sum of the absolute values of its
components, so it’s easy to compute ||A||1 and ||A||�, but
the 2-norm is more problematic.

Even so, computing any of these norms for A–1 is quite ex-
pensive because computing the inverse of a matrix is expen-
sive (and generally not a good idea). Therefore, we usually
use an estimated condition number. In Matlab, we can use
cond(A,normtype) to compute the condition number (set-
ting normtype to 1, 2, or inf), or use the cheaper function
condest to estimate the condition number.

PROBLEM 2. 

Consider the linear system Ax = b with

,

where � = 0.002.
a. Plot the two equations defined by this system and com-

pute the condition number of A(cond(A)).
b. Compute the solution x* to Ax = b and also compute

the solution to the nearby systems for 
i = 1, …, 1,000, where the elements of E(i) are normally dis-
tributed with mean 0 and standard deviation � =.0001. (You
can do this by setting each E = tau*randn(2,2).) Plot x(i) –
x*. This plot reveals the forward error in using (A + E(i)) as
an approximation to A. In a separate figure, plot the residu-
als b – Ax(i) (the backward error) for each computed solution.

c. Repeat (a) and (b) with the linear system Ax = b with

.

d. Discuss your results. Why do the forward error plots
for the two problems look so different? How does the con-
dition number relate to what you see in the forward error
plots? What do the backward error plots tell you?

Monte Carlo Experiments
Can Estimate Sensitivity
In Problem 2b, you did a Monte Carlo experiment. The idea
is to take random samples of nearby problems and see how
the solution changes. This is a fine way to measure sensi-
tivity if a condition number won’t give enough informa-
tion or if we can’t obtain derivatives, but the process can
be expensive.

Let’s get experience with two more applications of Monte
Carlo to estimate sensitivity, one involving linear program-
ming and one involving a differential equation.
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PROBLEM 3. 

Investigate the sensitivity of the linear programming problem

subject to

a. Let A = [1, 1], b = 1, and cT = [–3, –1]. Solve the linear
program (using, for instance, Matlab’s linprog) and use the
Lagrange multipliers (also called dual variables) to evaluate
the sensitivity of cTx to small changes in the constraints. Il-
lustrate this sensitivity using a Monte Carlo experiment,
solving 100 problems with A replaced by A + E(i), where the
elements of E(i) are uniformly distributed on the interval [–�,
�], with � = 0.001. (You can do this by setting each E =
2*tau*(rand(1,2)-.5).) Plot all the solutions in one fig-
ure and all the function values cTx in another.

Repeat for two more examples:
b. A = [1, 1], b = 1, cT = [–1.0005, –0.9995].
c. A = [0.01, 5], b = 0.01, cT = [–1, 0].
Explain how the Lagrange multiplier for the constraint

Ax � b gives insight into the sensitivity observed in the cor-
responding Monte Carlo experiment. 

PROBLEM 4.

Consider the very simple differential equation for y(t):

,

where y(0) = 1 and a(t) is given. Let’s investigate the equa-
tion’s sensitivity to our knowledge of a.

To make the problem concrete, we can divide the US pop-
ulation growth rate a(t) into two pieces: a rate of 0.006 due
to births and deaths and a rate of 0.003 due to migration.
Determine how much the population will increase over the
next 50 years if this rate stays constant, and how much it will
increase if we set migration to zero. Then perform Monte
Carlo experiments, assuming that the birth/death rate is
normally distributed with mean 0.006 and standard devia-
tion 0.001, and the migration rate is uniformly distributed
between 0 and 0.003. Also experiment with what happens if
years of high growth rate come early, followed by years of
low growth rate, and vice versa. Plot and discuss the results.

Confidence Intervals Can Give Insight
Another way to assess sensitivity is to make a statement such
as the following: if we repeat the data measurement many
times, we expect that, 95 percent of the time, the solution’s
computed value will lie in the interval [xlo, xup]. Such an in-
terval is called a confidence interval, and � = .95 is the confi-
dence level, determined from statistical estimation, assuming
that the errors in the measurements are random.

y ay' =

x2 0≥ .

x1 0≥ ,

Ax ≤ b,

min
x

cT x

Y O U R  H O M E W O R K  A S S I G N M E N T

TOOLS

S tandard advanced calculus textbooks and textbooks on
optimization, such as that by Stephen Nash and Ariela

Sofer, discuss Lagrange multipliers.1

Condition numbers are commonly used to measure the
sensitivity of linear systems of equations, eigenvalues, eigen-
vectors, and other quantities. Nicholas Higham’s book is a
good reference.2

George Fishman’s book offers more information on Monte
Carlo estimation.3

Standard statistical textbooks explain the use of confidence
intervals, which can also be applied to constrained problems.4

One alternative to the methods we consider in the main
text is interval analysis. In this method, we carry upper and
lower bounds on each quantity along through our calcula-
tions. The result is a rigorous, although often pessimistic, set
of forward error bounds on the answer. The method’s most
forceful advocate was Ramon E. Moore,5 and many text-
books apply the method to scientific computing.

A second alternative is the use of symbolic computation, in

which we carry analytic expressions for each quantity. Sys-
tems such as Maple (www.maplesoft.com; included in Mat-
lab) or Mathematica (www.wolfram.com) are incredibly
useful, but eventually they produce a formula that must be
evaluated using arithmetic. These systems have pitfalls of
their own: the computation can use a tremendous amount
of time and storage, and the systems can produce formulas
that, when evaluated, lead to unnecessarily high relative and
absolute errors.
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As an example, consider a linear system Ax = b and assume
that the error b – btrue is normally distributed with mean 0
and variance S2. Suppose we want to estimate the value of
wTx; taking wT to be the first unit vector, for example, gives
us an estimate of x1. We proceed as follows: 

• Determine a value � from the cumulative normal distrib-
ution, so that 

.

For 95 percent confidence intervals, � � 1.960. 
• Given the value �, compute

,

where solves Ax = b.

Then [�lo, �up] is a 100 � percent confidence interval for wTx.
The procedure has more general forms. It’s possible to

construct (wider) confidence intervals that have joint prob-
ability � so that, for example, we can bound all the compo-
nents of x simultaneously. There’s also a nonparametric form
of the result that lets us compute confidence intervals when
the error isn’t normally distributed. See the “Tools” sidebar

for some references.
Let’s apply our procedure to the examples in Problem 2.

PROBLEM 5.

Using the two linear systems from Problem 2, perform a
Monte Carlo experiment that computes the solution to the
nearby systems

for i = 1, …, 1,000, where the elements of e are normally dis-
tributed with mean 0 and standard deviation � = 0.0001.
Compute 95 percent confidence intervals on each compo-
nent of the solution to the two linear systems, and see how
many of the components of the Monte Carlo samples lie
within the confidence limits.

W e’ve experimented here with several ways to mea-
sure sensitivity in our problems; the “Tools” side-

bar gives additional alternatives. A good computational
scientist computes not just an answer to a problem but an
assessment of how good it is, and sensitivity analysis is an
important piece of this assessment.

Ax b e( )i = +

x̂

φ κup T T T= + − −w x w wˆ ( )A S A2 1

φ κlo T T T= − − −w x w wˆ ( )A S A2 1

1
2

2 2

π
α

κ
κ

e dzz−
−

+
=∫ /

issue of CiSE for more information about multigrid
methods, or visit our Web site at www.computer.org/
cise/homework/.)

PROBLEM 1.

Work through the V-Cycle algorithm to see exactly what
computations it performs on our simple example for a se-
quence of grids defined by h = 1/2, 1/4, 1/8, and 1/16. Esti-
mate the amount of work, measured by the number of
floating-point multiplications and divisions that it does.

Answer: 
The V-Cycle performs the operations shown in Figure 1.

Partial Solution to Last Issue’s Homework Assignment

MULTIGRID METHODS: MANAGING MASSIVE MESHES
By Dianne P. O’Leary

I N THE LAST ISSUE’S INSTALLMENT OF YOUR

HOMEWORK ASSIGNMENT, WE INVESTI-

GATED MULTIGRID METHODS FOR SOLVING

LINEAR SYSTEMS. (PLEASE SEE P. 10 OF THIS
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The total cost is less than the cost of 2(	1 + 	2) iterations,
plus two residual calculations, all done on the h = 1/16 grid,
plus four multiplications by R1/8.

PROBLEM 2. 

Convince yourself that the storage necessary for all the ma-
trices and vectors is also a modest multiple of the storage
necessary for the finest grid.

Answer:
The right-hand sides have

elements, which is less than twice the storage necessary for
the right-hand side for the finest grid. The same is true for
the solution vectors. Similarly, each matrix h has at most
half the number of nonzeros as the one for the next finer
grid, so the total matrix storage is less than two times that
for A1/16.

We can store the matrices Ph as sparse matrices or, because
we need only to form their products with vectors, we can just
write a function to perform multiplication without explic-
itly storing them.

PROBLEM 3.

Write a program that applies the multigrid V-Cycle itera-
tion to the two-dimensional problems used in the homework
assignment given in the last issue of CiSE. The Matlab pro-
gram generateproblem.m produces a structure called mesh,
which contains, in addition to the matrices and right-hand
side information, the operators P and the coordinates p of
the mesh points. The differential equation is

for (x, y) � [–1, 1] � [–1, 1] (myproblem=1) or for this do-
main with a hole cut out (myproblem=2). The boundary
conditions are that u is zero on the square’s boundary and,
for the second case, that the normal derivative is zero at the
hole’s boundary.

Set � = 0 and compare the time for solving the problem
using multigrid to the methods defined in the last issue.

Answer:
In the solution to the July/August 2006 homework assign-

ment on iterative methods (see the last issue), we saw that the
fastest algorithm for the finest grid in myproblem=1 was the
AMD-Cholesky algorithm, which, on my computer, took

− − + =u x y u x y u x y f x yxx yy( , ) ( , ) ( , ) ( , )κ

15 7 3 1 16 1 1 2 1 4 1 8 4+ + + = + + + −( / / / )

Y O U R  H O M E W O R K  A S S I G N M E N T

	1 G-S iterations for h = 1/16: 15 	1 multiplications (by h2/2)
h = 1/16 residual evaluation 16 multiplications
Multiplication by R1/8 14 multiplications

	1 G-S iterations for h = 1/8: 7 	1 multiplications
h = 1/8 residual evaluation 8 multiplications
Multiplication by R1/4 6 multiplications

	1 G-S iterations for h = 1/4: 3 	1 multiplications
h = 1/4 residual evaluation 4 multiplications
Multiplication by R1/2 2 multiplications

Direct solution of the system for h = 1/2: 1 multiplication

Multiplication by P1/2 2 multiplications
	2 G-S iterations for h = 1/4: 3 	2 multiplications

Multiplication by P1/4 6 multiplications
	2 G-S iterations for h = 1/8: 7 	2 multiplications

Multiplication by P1/8 14 multiplications
	2 G-S iterations for h = 1/16: 15 	2 multiplications

Figure 1. Answer to Problem 1. The V-Cycle algorithm performs these operations for a sequence of grids defined by h =
1/2, 1/4, 1/8, and 1/16.
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roughly 0.2 seconds; the storage was roughly five times that
for the matrix. The fastest iterative method—conjugate gra-
dients with an incomplete Cholesky preconditioner—took
0.9 seconds. My implementation of multigrid for this prob-
lem took four iterations and 8.2 seconds. Multigrid’s virtue,
though, is that if we want a finer mesh, we’ll still probably get
convergence in roughly four iterations; the number of itera-
tions for the other algorithms increased with h, so eventually
multigrid wins.

PROBLEM 4.

Repeat your experiment from Problem 3, but use � = 10 and
100 and then � = –10 and –100. (When � � 0, the differen-
tial equation is called the Helmholtz equation.) The differen-
tial equation remains elliptic for positive � but not for
negative. How was multigrid convergence affected?

Answer:
The number of iterations remained four for � = 10, 100,

and –10, but for � = –100, multigrid failed to converge. As
noted in the iterative methods solution, we need a more
complicated algorithm.

Note that the function smooth.m is a much faster im-
plementation of Gauss-Seidel than that given in the iter-
ative method’s solution.
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