
Shared Memory Programming With OpenMP

Computer Lab Exercises

Advanced Computational Science II
John Burkardt

Department of Scientific Computing
Florida State University

http://people.sc.fsu.edu/∼jburkardt/presentations/fsu openmp 2011 exercises.pdf

25 October 2011

This hands on session introduces OpenMP, which can be used to write parallel programs on shared
memory systems.

The lab machines are dual processors, so we can do a small amount of parallelism directly and interac-
tively. This will require copying certain files into your directory, using the editor to make some changes,
invoking the correct compiler with the appropriate switches, running the executable program, and comparing
the execution times for different numbers of parallel processors.

We will also take advantage of FSU’s HPC system. This requires first that you have an account on the
HPC system. Moreover, the HPC file system is separate from the one on which you normally work. You
will need to copy files to a directory on the HPC system, use the appropriate compilers, and then execute
the code. Small jobs can be run interactively, but for best results, it is necessary to take advantage of the
HPC’s batch facility. The batch facility guarantees that when your program runs, it has exclusive access to
the processors that execute it. In contrast, running a program interactively means it may be sharing the
processors, and hence the timing of a parallel job can produce inconsistent results.

The HPC system uses nodes with 48 processors, so we will be able to do some interesting experiments
there.

The exercises in this hands on session will have you:

1. compile a hello program and submit a script to run it;

2. put together a simple OpenMP program called quad to estimate an integral;

3. make an OpenMP version of the md program, and determine the dependence of the wall clock time on
the problem size, and on the number of processors;

4. make an OpenMP version of the fft program, which will report a MegaFLOPS rate for various problem
sizes;

5. make an OpenMP version of the heated plate program and run it;

6. and thus prepare you for an assignment involving the jacobi program.

You will have one week to complete the assignment and turn it in.
For most of the exercises, there is a source code program that you can use. The source code is generally

available in a C, C++, FORTRAN77 and FORTRAN90 version, so you can stick with your favorite language.
You can access a copy of each code by using a browser. For each exercise, there is a corresponding web page
that lets you get a copy of the code.

1

1 Hello, OpenMP World!

Get a copy of the hello program. One location is

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2011/openmp/hello/hello.html

This program is more complicated than it should be. I added some extra sample OpenMP calls for you
to look at, including:

• How you get the “include” file.

• How you measure wall clock time.

• How you find out how many processors are available.

• How you find out which thread you are in a parallel section.

• How you find out how many threads are available in a parallel section.

• How you set the number of threads.

1.1 Compile and run HELLO locally, interactively

We can compile the program directly on the lab machine. The lab machines have the Gnu compilers. Sample
compilation statements include:

gcc hello.c -fopenmp

g++ hello.cc -fopenmp

gfortran hello.f -fopenmp

gfortran hello.f90 -fopenmp

The compilation should create an executable program called a.out. Rename it to hello:

mv a.out hello

Run the program. Although it is set up with OpenMP, you probably haven’t defined the number of
threads to use, so the program will use the default, which is probably just 1 (no parallelism).

Now set the number of threads to 2, run the program again, and notice the difference.

export OMP_NUM_THREADS=2 <=== NO SPACES around the = sign!

hello

The important thing is that the program itself did not change at all, only the environment (the value of
OMP NUM THREADS.) You can experiment with higher values. On some systems, your thread request
can’t exceed the number of cores available. On others, the thread request can be as high as you like.

For the hello program, we can’t really tell if the execution is any faster, since the task is so trivial and
takes no time to run.

If you wish to save a copy of the output file, of course, simply use the command:

hello > hello_output.txt

This will come in handy later when we want records of how our programs ran with different settings.

1.2 Run HELLO on the FSU HPC using the Queueing System

We will want to run the remaining exercises on the FSU HPC system.
Of course, it’s very convenient to have OpenMP available on the lab system. It means we can easily test

and correct our codes interactively. But when we’ve got them running correctly, we want to do transfer to
the HPC system where we can get up many processors.

So if start out with our files on the lab machine, we must transfer copies to the HPC machine, compile
the program, send a request to the batch system, and wait until our request is processed.

Copy the script hello.sh. One location is

2

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2011/openmp/hello/hello.html

Take a look at the script. There is almost nothing you have to change. The interesting features include:

• something that controls the total time allowed;

• an item that requests a number of nodes and processors;

• a statement that sets OMP NUM THREADS;

• a statement ./hello that actually runs the program;

To run the hello program on the FSU HPC system:

• The address of our HPC login node is sc.hpc.fsu.edu;

• Use sftp to transfer your program and script to the HPC file system;

• Use ssh to login to the HPC login node;

• Compile your program, and then be sure to rename it hello;

• Submit your script by typing msub hello.sh.

You can issue the command

showq

to see the status of your job (unless it’s already run.) If the output is too extensive, cut it down to just your
jobs by a command similar to:

showq | grep burkardt

Congratulations! Now we can try the harder stuff.

2 Estimate an Integral with QUAD

In this exercise, you will be asked to finish the quad program, which is partially sketched out, to approximate
the integral ∫ b

a

50

π(2500x2 + 1)
dx

The method involves defining an array x of N equally spaced numbers between a and b, then estimating
the integral as the sum of the function values at these points, multiplied by b - a and divided by N.

We will set the problem up with a=0 and b=10, so that the correct answer is about 0.49936338107645674464...
Get a copy of one of the quad programs. One location is

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2011/openmp/quad/quad.html

2.1 Make an OpenMP version of QUAD

The program is not ready to run. For one thing, you need to make sure the appropriate include file is
invoked.

You also need to write the loop that adds up the function values at the N entries of the x array. Once
you have done that, you should count the number of floating point operations in your formula, and use that
in the statement that defines the value of flops.

Finally, you need to insert the appropriate OpenMP directive just before the loop. You should try to
make sure that you classify every variable used in the loop to be private or shared or reduction. And if
you are using FORTRAN, you must make sure you add a matching “end” directive.

Once you’ve got that all done, try to compile the program, name the executable quad, copy the quad.sh
script file, and submit it to the queueing system!

3

2.2 Compare your version and mine

Once you’ve given this exercise an honest try, you may still find yourself defeated. If so, take a look at my
version of a solution, in the program quad complete. See if you can take ideas from that program to fix yours.

2.3 Measure QUAD’s MegaFLOPS against P and N

Investigate the behavior of the MegaFLOPS rate as a function of the number of integration points N. We’re
not concerned with accuracy here, just computational speed. So run your program with the following values
of N, and record the MegaFLOPS rate: N = 10, 100, 1000, 10,000, 100,000, and 1,000,000.

You can also investigate the dependence of the MegaFLOPS rate as a function of the number of processors.
The only thing you have to change in that case is the values of PPN and OMP NUM THREADS in your
job script. Go back to N = 1,000,000 and compare the MegaFLOPS rates for 1, 2, 4 and 8 processors.

3 The MD program for Molecular Dynamics

The md program is a simple example of a molecular dynamics code. Basically, it places many particles in a
3D region, gives them an initial velocity, and then tracks their movements. The particles are influenced not
just by their own momentum, but by attractions to other particles, whose strength depends on distance.

The program is divided into a few large sections. One section, the update() function, uses a large part
of the computational time. We are going to try to make some simple modifications to this function so that
the program runs faster.

Get a copy of one version of the program from:

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2011/openmp/md/md.html

3.1 Make an OpenMP version of MD

The first change you must make to the program is to include a reference to the OpenMP “include file”.
The timing that we carry out will only involve the big loop in the main program, the one that calls com-

pute and update. Replace the calls to cpu time by calls to the OpenMP timing function omp get wtime()
.

Now we are ready to parallelize one loop, namely, the loop in the update() routine. This is actually a
nested loop. Our directives will go just before the first of the two loop statements, so the parallelization will
be with respect to the J index.

If you’re using C/C++, your directive has the form:

pragma omp parallel private (list) shared (list)
pragma omp for

Try to explicitly place every loop variable into one list or the other. (There are no reduction variables in
this loop!)

Compile the program, copy the md.sh script and submit the job to be run through the queueing system.

3.2 Interchange I and J in MD’s Update Routine

It turns out that the nested loop in update() could be also be written with the loops interchanged. In the
FORTRAN77 version, this would mean we could rewrite this code as:

do i = 1, nd

do j = 1, np

4

This will make no difference in the sequential version, and the parallel version will also run correctly - but
will it run efficiently? Our job script is asking for 4 processors, and the value of ND is 3. Parallelization only
takes place with respect to the outer loop index. What do you think will happen, especially if we increase
the number of processors we ask for?

3.3 Parallelize MD’s Compute Routine

The compute() routine also has a big double loop in it, which forms almost the entire function. Although
this function does not use up so much time, we will consider making an parallel version of it. This loop calls
another function dist() which returns some variables. You will need to decide if those variables are shared
or private.

If you’re using FORTRAN77, your directive should have the form:

c$omp parallel private (list) shared (list) reduction(+: list)
c$omp do

and because you’re using FORTRAN, you also have to “close” the loop with:

c$omp end do

c$omp end parallel

at the end.
Compare the times of your program before and after the improvements made to the compute() routine.

Unfortunately, one big cost in this routine is the many calls to the dist() function. There are ways to
improve the distance calculation, but we won’t consider them today.

4 The FFT program for Fast Fourier Transforms

This exercise asks you to work on a Fast Fourier Transform program called fft. We are going to make an
OpenMP version of this program. By now you should be familiar with the initial things you have to do,
before we can even think about inserting any directives.

Get a copy of one version of the program from

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2011/openmp/fft/fft.html

4.1 Make a “basic” OpenMP version of FFT

That is, insert a reference to the “include” file, replace calls to the CPU timer by calls to omp get wtime,
get the script file fft.sh.

Since we haven’t set up any parallel loops yet, be nice to the system. Set the fft.sh script to run on a
single processor:

nodes=1:ppn=1

and

export OMP_NUM_THREADS=1

Submit the script. When the program output returns, you have a nice sampling of the MegaFLOPS rate
on this machine for a variety of problem sizes N and just one processor P.

5

4.2 Modify the STEP Function in FFT

Indications from the gprof performance profiler suggest that a significant amount of the execution time for
fft is spent in the step() function. We will try to parallelize the program by working on the main loop in
this function, whose loop index is J.

Just before the J loop, insert your OpenMP directive. Note that you must be careful in this example.
There are a number of temporary variables, include some temporary vectors, which you must declare cor-
rectly. Your directive will mainly be a list of which variables you think are shared or private. There are no
reduction variables.

When you think you have set up the correct OpenMP directive, modify the script fft.sh to run on 2, 4 or
8 processors: (your choice).

nodes=1:ppn=4

and

export OMP_NUM_THREADS=4

See if you are getting a reasonable speedup compared to your 1 processor run.
Can you check that your program is not only faster, but also...correct?

5 The HEATED PLATE program

The heated plate program is designed to solve for the steady state temperature of a rectangular metal plate
which has three sides held at 100 degrees, and one side at 0 degrees.

A mesh of M by N points is defined. Points on the boundary are set to the prescribed values. Points
in the interior are given an initial value, but we then want to try to make their values reflect the way heat
behaves in real systems.

Our simplified algorithm is an iteration. Each step of the iteration updates the temperature at an interior
point by replacing it by the average of its north, south, east and west neighbors.

We continue the iteration until the largest change at any point is less than some user-specified tolerance
epsilon.

At that time, the program writes a rather big text file (whose name is stored as the variable output file),
containing the solution information, in case anyone wants to plot it.

Note that this program expects to read the values of epsilon and output file from the command line.
Thus, if you were going to run the program interactively, you might type something like

heated_plate 0.1 plot.txt

Get a copy of one version of the heated plate program from

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2011/openmp/heated_plate/heated_plate.html

5.1 Make a “basic” OpenMP version of HEATED PLATE

Make the usual changes so that the program is ready to be run as an OpenMP program. Your first run will
be using one processor.

Get a copy of the script heated plate.sh. Start out by setting it up to run on a single processor:

nodes=1:ppn=1

and

export OMP_NUM_THREADS=1

6

How do we get the commandline input into the program? It’s easy! The script file includes a line that is
what we would type to run the program interactively. The line in the script file already includes a dummy
value of epsilon and for the output file name. You can change either of these values if you want.

Compile your program, submit the job script (for one processor), and when you get the output back,
note how long your program takes to run on one processor.

5.2 Parallelize HEATED PLATE’s temperature update loop

After you get your basic timing run, insert OpenMP directives on the loops inside the big loop. We are
talking about the double loops that save a copy of W, update W and compute the maximum change DIFF.

Each of these loops can be done in parallel, although you have to treat the variable DIFF with a little
care. In FORTRAN, you are allowed to declare DIFF as a reduction variable, as in

c$omp parallel shared (i, j, N, u, w) reduction (max: diff)

c$omp do

However C and C++ are not able to work with a reduction variable that is a maximum or minimum, so
the computation of DIFF “poisons” the whole loop. If you are working on the C or C++ code, you will
have to break up the loop that updates W and computes DIFF into two separate loops. Then the update
loop will parallelize, and the DIFF loop will not.

When you get a parallel version you are satisfied with, it should compute exactly the same values as the
sequential version. (Don’t forget to check this!) But it should run much faster. Record the CPU time, using
the same value of epsilon, for 4 threads.

6 ASSIGNMENT: The JACOBI program

The jacobi program solves a linear system using the Jacobi iteration. The program already includes some
OpenMP information, such as the include statement and the timing calls, but more changes are needed if
the program is to run in parallel.

Get a copy of the jacobi program from

http://people.sc.fsu.edu/~jburkardt/classes/acs2_2011/openmp/jacobi/jacobi.html

The program is set to run with a particular problem size N. You can change N for debugging, but the
run you turn in must have N set to 500.

The program includes a routine called jacobi() which solves the linear system, once it is specified.
Inside this routine there is an iteration, and the iteration involves a number of loops or vector operations.
Run the program on the lab machines, and make sure you understand how it works, and what the output

looks like.
Your assignment: Insert OpenMP directives into the code in the jacobi() routine, so that the resulting

code is still correct, and runs in parallel.
Demonstrate that the code runs in parallel by running it on the HPC system, first using 1 processor,

and then using 16. (This means you must change both PPN and OMP NUM THREADS in the shell
script.) If your 16 processor code does not run “significantly” faster than the 1 processor version, something
is probably wrong.

Save the output files of the two runs.

To get credit for this lab, turn in three files to Ben McLaughlin by Tuesday, 01 November 2011:

1. your revised source code;

2. the output from the HPC run on 1 processor;

3. the output from the HPC run on 16 processors.

7

