
Distributed Memory Programming With MPI

ISC 5316: Applied Computational Science II
..........

John Burkardt
Department of Scientific Computing

Florida State University
http://people.sc.fsu.edu/∼jburkardt/presentations/. . .

. . . fsu mpi 2011.pdf

25 & 27 October 2011
Lab on 01 November 2011, due 08 November 2011

1 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
2 / 1

MPI: We Work on Problems that are Too Big

Richardson tries to predict the weather.

3 / 1

MPI: Big Problems Are Worth Doing

In 1917, Richardson’s first efforts to compute a weather prediction
were simplistic and mysteriously inaccurate.

But he believed that with better algorithms and more data, it
would be possible to predict the weather reliably.

Over time, he was proved right, and the prediction of weather
became one of the classic computational problems.

Soon there was so much data that making a prediction 24 hours in
advance could take...24 hours of computer time.

Events like Hurricane Irene in August 2011 ($8 billion in damage)
mean accurate weather prediction is worth paying for. (New York
City shut the entire transportation system; but the real damage
was in New England and Pennsylvania, where no one predicted the
massive rainstorms and floods that followed.)

4 / 1

MPI: Big Problems Can Be Solved

5 / 1

MPI: For Years, Speeding Up the Clock was Enough

For many years, computer designers could keep up with the need
for faster machines by improving current methods - shrinking
circuits and making the electronic clock faster.

But in the 1990’s, the cost of designing and building
supercomputers of the traditional kind exploded.

A real upper bound on performance was coming into view.

It was not possible to make the clock much faster, or the circuits
much smaller.

6 / 1

MPI: Sequential Computing Has Hit a Ceiling

CPU clock speeds have stopped at the 4 GigaHertz ceiling.

7 / 1

MPI: Networking Has Speeded Up

Inter-computer communication has gotten faster and cheaper.

It seemed possible to imagine that an “orchestra” of low-cost
machines could work together and outperform supercomputers, in
speed and cost.

That is, each computer could work on part of the problem, and
occasionally send data to others. At the end, one computer could
gather up the results.

If this was true, then the quest for speed would simply require
connecting more machines.

But where was the conductor for this orchestra?
And who would write the score?

8 / 1

MPI: Early Clusters Were Ugly, but Worked

9 / 1

MPI: Cluster Computing Can Use MPI

MPI (the Message Passing Interface) manages a parallel
computation on a distributed memory system.

The user arranges an algorithm so that pieces of work can be
carried out as simultaneous but separate processes, and expresses
this in a C or FORTRAN program that includes calls to MPI
functions.

At runtime, MPI:

distributes a copy of the program to each processor;

assigns each process a distinct ID;

synchronizes the start of the programs;

transfers messages between the processes;

manages an orderly shutdown of the programs at the end.

10 / 1

MPI: Compilation of an MPI Program

Suppose a user has written a C program myprog.c that includes
the MPI calls necessary for it to run in parallel on a cluster.

The program invokes a new include file, accesses some newly
defined symbolic values, and calls a few functions... but it is still
just a recognizable and compilable C program.

The program must be compiled and loaded into an executable
program. This is usually done on a special compile node of the
cluster, which is available for just this kind of interactive use.

mpicc -o myprog myprog.c

A command like mpicc is a customized call to the regular
compiler (gcc or icc, for instance) which adds information
about MPI include files and libraries.

11 / 1

MPI: Interactive Execution

On some systems, the user’s executable program can be run
interactively, with the mpirun command.

Here, we request that 4 processors be used in the execution:

mpirun -np 4 myprog > output.txt

This is useful for a quick check of a small program, but it does tie
up the login node - other users will get mad if you try to run a big
job this way!

The right place for your big MPI program to run is on the cluster
itself, after being placed in a batch queue and scheduled by a job
manager.

12 / 1

MPI: Batch Execution

To execute on the cluster, your job must “stand in line” until the
queueing system can arrange access to the number of processors
you requested.

You talk to the queueing system using a “batch script”, a simple
shell script that gives the characteristics of the job you want to
run, and the sequence of commands you want to execute.

You submit the job to a batch system, perhaps like this:

msub myprog.sh

When your job is completed, two files are returned:

an output file, such as myprog.o6501

an error file, such as myprog.e6501

(For convenience, I always ask that these two files be combined.)

13 / 1

MPI: Frequently Asked Questions

Mr Garrison: ”Please don’t be afraid to ask any question you
want in this class. Remember, there is no such thing as a stupid
question, only stupid people.”

Running one program on N computers suggests some questions:

Q: Do I need to learn a new computer language?

A: No, there is an MPI interface to C/C++/FORTRAN.

Q: Do I have to copy my program to many machines?

A: No, MPI makes copies and starts them together.

Q: How do we avoid doing the exact same thing N times?

A: MPI gives each computer a unique ID, and that’s enough.

Q: Do we end up with N separate output files?

A: No, MPI collects them all together for you.

Q: So what’s the hard part, then?

A: Rewriting your algorithm to work as cooperating processes.

14 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
15 / 1

OVERVIEW: Independent Cooperating Processes

Suppose that solving your problem can be thought of as solving N
smaller problems simultaneously.

It’s OK if the solution of these smaller problems is not completely
independent; that is, from time to time, the program solving
subproblem 17 might want to “talk” to the solvers of subproblems
16 and 18.

Then we may be able to use the original algorithm for the big
problem, with some small changes that add communication, which
might be thought of as filling in missing boundary information.

As long as the communication is limited, we can get a substantial
speedup through parallel execution.

16 / 1

OVERVIEW: The Heat Equation

We’ll begin with a discussion of MPI computation “without MPI”.

That is, we’ll hold off on the details of the MPI language, but we
will go through the motions of re-implementing a sequential
algorithm using the capabilities of MPI.

The algorithm we have chosen is a simple example of domain
decomposition, the time dependent heat equation on a wire (a
one dimensional region).

17 / 1

OVERVIEW: Statement of the Problem

Determine the values of H(x , t) over a range t0 <= t <= t1 and
space x0 <= x <= x1, given an initial value H(x , t0), boundary
conditions, a heat source function f (x , t), and a partial differential
equation

∂H

∂t
− k

∂2H

∂x2
= f (x , t)

18 / 1

OVERVIEW: Discretized Heat Equation

The discrete version of the differential equation is:

h(i , j + 1) − h(i , j)

dt
− k

h(i − 1, j) − 2h(i , j) + h(i + 1, j)

dx2
= f (i , j)

We have the values of h(i , j) for 0 <= i <= N and a particular
“time” j . We seek value of h at the “next time”, j + 1.

Boundary conditions give us h(0, j + 1) and h(N, j + 1), and we
use the discrete equation to get the values of h for the remaining
spatial indices 0 < i < N.

19 / 1

OVERVIEW: Red, Green and Blue Processes Cooperating

20 / 1

OVERVIEW: What Messages Are Needed?

At a high level of abstraction, it’s easy to see how this
computation could be done by three processes, which we can call
red, green and blue, or perhaps “0”, “1”, and “2”.

Each process has a part of the h array.

The red process, for instance, updates h(0) using boundary
conditions, and h(1) through h(6) using the differential equation.

Because red and green are neighbors, they will also need to
exchange messages containing the values of h(6) and h(7) at the
nodes that are touching.

C, C++, FORTRAN77 and FORTRAN90 versions of an MPI program for this 1D heat program are available.

See, for example http://people.sc.fsu.edu/∼jburkardt/c src/heat mpi/heat mpi.html

21 / 1

OVERVIEW: Can This Work For A Hairier Problem?

In more realistic examples, it’s actually difficult just to figure out
what parts of the problem are neighbors, and to figure out what
data they must share in order to do the computation.

In a finite element calculation, in general geometry, the boundaries
between the computational regions can be complicated.

But we can still break big problems into smaller ones if we can:

create smaller, reasonably shaped geometries;

identify the boundary elements;

locate the neighbors across the boundaries;

communicate data across those boundaries.

22 / 1

OVERVIEW: A Complicated Domain Can Be Decomposed

A region of 6,770 elements, subdivided into 5 regions of similar
size and small boundary by the ParMETIS partitioning program.

ParMETIS is available from http://glaros.dtc.umn.edu/gkhome/

23 / 1

OVERVIEW: Decomposition is a Common MPI Technique

So why does domain decomposition work for us?

Domain decomposition is one simple way to break a big problem
into smaller ones.

Because the decomposition involves geometry, it’s often easy to
see a good way to break the problem up, and to understand the
structure of the boundaries.

Each computer sees the small problem and can solve it quickly.

The artificial boundaries we created by subdivision must be
“healed” by trading data with the appropriate neighbors.

To keep our communication costs down, we want the boundaries
between regions to be as compact as possible.

24 / 1

OVERVIEW: Many Ways to Parallelize

Many problems are parallelizable, although the method of getting
there depends on what you are doing.

To sort a large array, you think of doing it in parallel by sorting
smaller arrays - and then exchanging some results.

To solve a linear system, you might break the matrix up into
square sub-blocks, or strips of rows, and think of the related linear
problem.

To approximate an integral, divide the range and sum up the result
at the end.

To compare a protein to all the proteins in a database,
have each process work with a portion of the database.

25 / 1

OVERVIEW: One Program Binds Them All

Now we need to start thinking about how to write a single program
that will still tell each process what is particular job is to be.

If we think of this from the process’s point of view, it sounds like a
Twilight Zone episode.

Your phone rings, and a voice tells you to wake up.

It rings again, and tells you that you are on a job involving P.

It rings again to tell you your ID number is ID (ID numbers run
from 0 to P-1.

You go to your mailbox and open a program which contains your
instructions.

Is this any way to solve the HEAT problem?

26 / 1

OVERVIEW: One Process’s View of the Heat Equation

You are responsible for K = N/P of the heat values. You’re given
the starting values, and must compute estimates of their changing
values over M time steps.

If you have the current values of your K numbers, you have enough
information to update K-2 of them.

But to update your first value, you need to:

use a boundary rule if your ID is 0

or call process ID-1 to get his K-th value.

Similarly, updating your K-th value requires you to:

use a boundary rule if your ID is P-1

or call process ID+1 to get his first value.

Obviously, your neighbors will also be calling you!

27 / 1

OVERVIEW: A Process Communicates with Its Neighbors

We assume here that each process is responsible for K nodes, and
that each process stores the heat values in an array called H. Since
each process has separate memory, each process uses the same
indexing scheme, H[1] through H[K], even though these values
are associated with different subintervals of [0,1].

The X interval associated with process ID is [ID∗N
P∗N−1 ,

(ID+1)∗N−1
P∗N−1];

Include two locations, H[0] and H[K+1], for values copied from
neighbors. These are sometimes called “ghost values”.

It’s easy to update H[2] through H[K-1].

To update H[1], we’ll need H[0], copied from our lefthand
neighbor (where this same number is stored as H[K]!).

To update H[K], we’ll need H[K+1] copied from
our righthand neighbor.

28 / 1

OVERVIEW: It Looks Like This Might Work

This program would be considered a good use of MPI, since the
problem is easy to break up into cooperating processes.

The amount of communication between processes is small, and the
pattern of communication is very regular.

The data for this problem is truly distributed. No single process
has access to the whole solution.

The individual program that runs on one computer looks a lot like
the sequential program that would solve the whole problem.

It’s not too hard to see how this idea could be extended to a
similar time-dependent heat problem in a 2D rectangle.

29 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
30 / 1

DESIGN: Initialize and Finalize

include <stdlib.h>

include <stdio.h>

include "mpi.h"

int main (int argc, char *argv[])

{

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &id);

MPI_Comm_size (MPI_COMM_WORLD, &p);

The “good stuff” goes here in the middle!

MPI_Finalize ();

return 0;

}

31 / 1

DESIGN: What Needs to Be Communicated?

As we begin our calculation, processes 1 through P-1 must send
what they call h[1] to their “left neighbor”.

Processes 0 through P-2 must receive these values, storing them in
the ghost value slot h[k+1].

Similarly, processes 0 through P-2 send h[k] to their “right
neighbor”, which stores that value into the ghost slot h[0].

Sending this data is done with matching calls to MPI Send and
MPI Recv. The details of the call are more complicated than I am
showing here!

32 / 1

DESIGN: Pseudo Code for Communication

if (0 < id)

MPI_Send (h[1] => id-1)

if (id < p-1)

MPI_Recv (h[k+1] <= id+1)

if (id < p-1)

MPI_Send (h[k] => id+1)

if (0 < id)

MPI_Recv (h[0] <= id-1)

33 / 1

DESIGN: Actually, This is a Bad Idea

Our communication scheme is defective however. It comes very
close to deadlock.

Deadlock is when a process is waiting for access to a device, or
data or a message that we know will never actually arrive.

The problem here is that by default, an MPI process that sends a
message won’t continue until that message has been received.

If you think about the implications, it’s almost surprising that the
code I have describe will work at all.

It will, but more slowly than it should!

Don’t worry about this right now, but realize that
with MPI you must also consider these communication issues.

34 / 1

DESIGN: Once Data is Transmitted, Compute!

Once each process has received the necessary boundary
information in h[0] and h[k+1], it can use the four node stencil to
compute the updated value of h at nodes 1 through k.

Actually, hnew[1] in the first process, and hnew[k] in the last
one, need to be computed by boundary conditions.

But it’s easier to treat them all the same way, and then correct the
two special cases afterwards.

35 / 1

DESIGN: The Time Update Step

for (i = 1; i <= k; i++)

{

hnew[i] = h[i] + dt * (

+ k * (h[i-1] - 2 * h[i] + h[i+1]) /dx/dx

+ f (x[i], t));

}

/*

Process 0 sets left node by BC

Process P-1 sets right node by BC

*/

if (id == 0)

{

hnew[1] = bc (0.0, t);

}

if (id == p-1)

{

hnew[k] = bc (1.0, t);

}

/*

Replace old H by new.

*/

for (i = 1; i <= k; i++)

{

h[i] = hnew[i];

}

36 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
37 / 1

HEAT: The Brutal Details

Here is almost all the source code for a working version of the heat
equation solver.

I’ve chopped it up a bit and compressed it, but I wanted you to see
how things really look.

This example is also available in a FORTRAN77 version. We will
be able to send copies of these examples to an MPI machine for
processing later.

38 / 1

HEAT: Main program

include <stdlib.h>

include <stdio.h>

include <math.h>

include "mpi.h" <-- MPI Include file

int main (int argc, char *argv[])

{

int id, p;

double wtime;

MPI_Init (&argc, &argv); <-- Start MPI
MPI_Comm_rank (MPI_COMM_WORLD, &id); <-- Assign ID
MPI_Comm_size (MPI_COMM_WORLD, &p); <-- Report number of processes.
wtime = MPI_Wtime(); <-- Start timer.

update (id, p); <-- Execute subprogram.

wtime = MPI_Wtime() - wtime; <-- Stop timer.
MPI_Finalize (); <-- Terminate.

return 0;

}

39 / 1

HEAT: Auxilliary Functions

double boundary_condition (double x, double time)

/* BOUNDARY_CONDITION returns H(0,T) or H(1,T), any time. */

{

if (x < 0.5)

{

return (100.0 + 10.0 * sin (time));

}

else

{

return (75.0);

}

}

double initial_condition (double x, double time)

/* INITIAL_CONDITION returns H(X,T) for initial time. */

{

return 95.0;

}

double rhs (double x, double time)

/* RHS returns right hand side function f(x,t). */

{

return 0.0;

}

40 / 1

HEAT: UPDATE Initialization

void update (int id, int p)

{

Omitting declarations...
k = n / p;

/* Set the X coordinates of the K nodes. */

x = (double *) malloc ((k + 2) * sizeof (double));

for (i = 0; i <= k + 1; i++)

{

x[i] = ((double) (id * k + i - 1) * x_max

+ (double) (p * k - id * k - i) * x_min)

/ (double) (p * k - 1);

}

/* Set the values of H at the initial time. */

time = time_min;

h = (double *) malloc ((k + 2) * sizeof (double));

h_new = (double *) malloc ((k + 2) * sizeof (double));

h[0] = 0.0;

for (i = 1; i <= k; i++)

{

h[i] = initial_condition (x[i], time);

}

h[k+1] = 0.0;

time_delta = (time_max - time_min) / (double) (j_max - j_min);

x_delta = (x_max - x_min) / (double) (p * n - 1);

41 / 1

HEAT: Set H[0] and H[K+1]

for (j = 1; j <= j_max; j++)

{

time_new = j * time_delta;

/* Send H[1] to ID-1. */

if (0 < id) {

tag = 1;

MPI_Send (&h[1], 1, MPI_DOUBLE, id-1, tag, MPI_COMM_WORLD);

}

/* Receive H[K+1] from ID+1. */

if (id < p-1) {

tag = 1;

MPI_Recv (&h[k+1], 1, MPI_DOUBLE, id+1, tag, MPI_COMM_WORLD, &status);

}

/* Send H[K] to ID+1. */

if (id < p-1) {

tag = 2;

MPI_Send (&h[k], 1, MPI_DOUBLE, id+1, tag, MPI_COMM_WORLD);

}

/* Receive H[0] from ID-1. */

if (0 < id) {

tag = 2;

MPI_Recv (&h[0], 1, MPI_DOUBLE, id-1, tag, MPI_COMM_WORLD, &status);

}

}

42 / 1

HEAT: Update the Temperatures

/* Update the temperature based on the four point stencil. */

for (i = 1; i <= k; i++)

{

h_new[i] = h[i]

+ (time_delta * k / x_delta / x_delta) * (h[i-1] - 2.0 * h[i] + h[i+1])

+ time_delta * rhs (x[i], time);

}

/* Correct settings of first H in first interval, last H in last interval. */

if (0 == id) {

h_new[1] = boundary_condition (0.0, time_new);

}

if (id == p - 1) {

h_new[k] = boundary_condition (1.0, time_new);

}

/* Update time and temperature. */

time = time_new;

for (i = 1; i <= k; i++) {

h[i] = h_new[i];

}

} <-- End of time loop

} <-- End of UPDATE function

43 / 1

HEAT: Where is the Solution

Since each of the P processes has computed the solution at K
nodes, our solution is “scattered” across the machines.

If we needed to print out the solution at the final time as a single
list, we could do that by having each process print its part (can be
chaotic!) or they can each send their partial results to process 0,
which can create and print a single unified result.

44 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
45 / 1

RUN: Compiling, Perhaps on Your Laptop

The first step is to compile the program. An MPI program is
written in a standard language, so if you are just checking for
errors, you can do that on any machine - even your laptop.

gcc -c myprog.c

However:

Your compiler needs the appropriate INCLUDE file.

The resulting object code can’t be used on another machine

You can’t check for linking errors without the MPI library

Compiling on your laptop can be a great way to check for
syntax errors and quickly correct them. Sometimes editing
directly on the HPC machine can be an awkward experience.

46 / 1

RUN: Loading On a Laptop

In some cases, you may be able to go further on your laptop or
desktop machine if you install a version of OpenMPI or MPICH.

In that case, the installation will automatically include the
necessary libraries and include files. It will also mostly likely create
customized scripts to be called for compilation and loading, which
will typically be called mpicc and so on.

In that case, you could compile-only your file with a command like

mpicc -c myprog.c

or go straight to an executable with the command

mpicc myprog.c

OpenMPI: http://www.open-mpi.org

MPICH: http://www.mcs.anl.gov/mpi/mpich2

47 / 1

RUN: Running On a Laptop

Again, assuming you have installed OpenMPI or MPICH, if your
local system has multiple processors or cores, you may be able to
run small MPI jobs immediately.

The typical way to do this involves the command mpirun.

For instance, if we renamed our executable program to myprog,
and our local system had 4 processors, we could try to run it under
MPI with the command

mpirun -np 4 ./myprog

Here, the -np 4 switch is specifying the number of processors on
which MPI should run the program.

48 / 1

RUN: The FSU HPC

However, the whole point of writing a program in MPI is to get
a huge amount of memory and a huge number of processors, and
you do that by getting access to a computer cluster.

Any researcher in the FSU community can get such access,
although students will require sponsorship by a faculty member.

While some parts of the cluster are reserved for users who have
contributed to support the system, there is always time and space
available for general users.

FSU HPC Cluster Accounts: http://hpc.fsu.edu, ”Your HPC Account: Apply for an Account”

49 / 1

RUN: Compiling on the FSU HPC

To compile on the HPC machine, transfer all necessary files to
sc.hpc.fsu.edu using sftp, and then log in using ssh or some other
terminal program.

On the HPC machine, there are several MPI environments. We’ll
setup the Gnu OpenMPI environment. For every interactive or
batch session using OpenMPI, we will need to issue the following
command first:

module load gnu-openmpi

Now, to compile a program, we type one of the following:

mpicc -c myprog.c

mpic++ -c myprog.cc

mpif77 -c myprog.f

mpif90 -c myprog.f90

50 / 1

RUN: Link/Load on the FSU HPC

Linking combines your compiled code, the MPI libraries, and other
system software. Loading creates an executable out of all that.

To link and load a C code you have already compiled:

mpicc myprog.o

or, to compile, link and load in just one step:

mpicc myprog.c

Either command creates the executable a.out. You should rename
the executable to something meaningful:

mv a.out myprog

The libraries you need for MPI are complicated.
The mpicc script hides all these details.

51 / 1

RUN: Interactive Running on FSU HPC

You should not make a practice of running MPI programs
interactively on the cluster. The login node is being shared with
other users, who are also trying to work.

However, for sanity checks, for small programs that run a short
time (10, 20 seconds), it is reasonable.

Assuming

our executable program is named myprog,

we are working in the directory containing that program,

we have set up OpenMPI using the source... command

then we can run the program interactively with (say) 4 processors
using the same mpirun command we mentioned for a laptop:

mpirun -np 4 ./myprog

If the program goes crazy, or runs too long, kill it by typing
Control-C, or CTRL-C.

52 / 1

RUN: Executing in Batch on the FSU HPC

Most jobs on an MPI system go through a batch system.

That means you copy a script file, change a few parameters
including the name of the program, and submit it.

In exchange for being willing to wait, you get exclusive access to a
given number of processors so that your program does not have to
compete with other users for memory or CPU time.

To run your program, you prepare a batch script file. Some of the
commands in the script “talk” to MOAB, which decides where to
run and how to run the job. Other commands are essentially the
same as you would type if you were running the job interactively.

One command will be the same source... command we needed
earlier to set up OpenMPI.

53 / 1

RUN: A Batch Script for the FSU HPC

#!/bin/bash

Commands to MOAB:

#MOAB -N myprog <-- Name is "myprog"

#MOAB -q classroom <-- Queue is "classroom"

#MOAB -l nodes=1:ppn=4 <-- Limit to 4 processors

#MOAB -l walltime=00:00:30 <-- Limit to 30 seconds

#MOAB -j oe <-- Join output and error

Define OpenMPI:

module load gnu-openmpi

Set up and run the job using ordinary interactive commands:

cd $PBS_O_WORKDIR <-- move to directory

mpirun -np 4 ./myprog <-- run with 4 processes

54 / 1

RUN: Submitting the Job

The command -l nodes=1:ppn=4 says we want to get 4
processors. For the classroom queue, there is a limit on the
maximum number of processors you can ask for, and that limit is
currently 32.

The msub command will submit your batch script to MOAB. If
your script was called myprog.sh, the command would be:

msub myprog.sh

The system will accept your job, and immediately print a job id,
just as 65057. This number is used to track your job, and when
the job is completed, the output file will include this number in its
name.

55 / 1

RUN: The Job Waits For its Chance

The command showq lists all the jobs in the queue, with jobid,
“owner”, status, processors, time limit, and date of submission.
The job we just submitted had jobid 65057.

44006 tomek Idle 64 14:00:00:00 Mon Aug 25 12:11:12

64326 harianto Idle 16 99:23:59:59 Fri Aug 29 11:51:05

64871 bazavov Idle 1 99:23:59:59 Fri Aug 29 21:04:35

65059 ptaylor Idle 1 4:00:00:00 Sat Aug 30 15:11:11

65057 jburkardt Idle 4 00:02:00 Sat Aug 30 14:41:39

To only show the lines of text with your name in it, type

showq | grep jburkardt

...assuming your name is jburkardt, of course!

56 / 1

RUN: All Done!

At some point, the ”idle” job will switch to ”Run” mode. Some
time after that, it will be completed. At that point, MOAB will
create an output file, which in this case will be called
myprog.o65057, containing the output that would have shown up
on the screen. We can now examine the output and decide if we
are satisfied, or need to modify our program and try again!

I often submit a job several times, trying to work out bugs. I hate
having to remember the job number each time. Instead, I usually
have the program write the “interesting” output to a file whose
name I can remember:

mpirun -np 4 ./myprog > myprog_output.txt

57 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
58 / 1

MC: Integral Estimate by Random Sampling

As a classroom exercise, we will try to put together a SIMPLE
program to do numerical quadrature. To keep it even simpler, we’ll
do a Monte Carlo estimation, so there’s little need to coordinate
the efforts of multiple processes.

Here’s the problem:

Estimate the integral of 3 ∗ x2 between 0 and 1.

Start by writing a sequential program, in which the computation is
all in a separate function.

59 / 1

MC: Program Outline

Choose a value for N

Pick a seed for random number generator.

Set Q to 0

Loop N times:

Pick a random X in [0,1].

Q = Q + 3 X^2

End loop

Integral estimate is Q / N
60 / 1

MC: FORTRAN77 Program Segment

seed = 123456789

sample_num = 100000

q_exact = 1.0

q = 0.0

do sample = 1, sample_num

x = r8_uniform_01 (seed) <-- Generate random x in [0,1]
q = q + 3.0 * x * x

end do

q = q / sample_num

write (*, *) sample_num, q, abs (q - q_exact)

61 / 1

MC: Simple Parallelism

Once the sequential program is written, running, and running
correctly, how much work do we need to do to turn it into a
parallel program using MPI?

If we use the master-worker model, the master can collect all the
estimates and average them for a final estimate. We can let the
master participate in the computation, as well.

In the main program, we isolate ALL the MPI work of initialization,
communication (send N, return partial estimate of Q) and wrapup.

We can think of an MPI program as a sequential program...
...that can communicate with other sequential programs.

62 / 1

MC: Initialization

program main

include ’mpif.h’

double precision f

integer id, ierr, p

double precision q, q_error, q_exact, q_total

integer sample, sample_num, sample_total, seed

double precision wtime, x

q_exact = 1.0

sample_num = 100000

c

c Initialize, get ID, number of processes, current time.

c

call MPI_Init (ierr)

call MPI_Comm_rank (MPI_COMM_WORLD, id, ierr)

call MPI_Comm_size (MPI_COMM_WORLD, p, ierr)

if (id .eq. 0) then

wtime = MPI_Wtime ()

end if

63 / 1

MC: Each Process Calculates Q

c

c Each process, from ID=0 to P-1, uses a different seed.

c

seed = 123456789 + id

c

c This part looks the same as the sequential code

c (but runs with a different SEED).

c

q = 0.0

do sample = 1, sample_num

x = r8_uniform_01 (seed)

q = q + 3.0 * x * x

end do

q = q / sample_num

write (*, *) sample_num, q, abs (q - q_exact)

c

c Have each process sent results to process MASTER for reduction

c to final result.

c

call MPI_Reduce (q, q_total, 1, MPI_DOUBLE_PRECISION, MPI_SUM,

& 0, MPI_COMM_WORLD, ierr)

64 / 1

MC: The Master Process Reports Q TOTAL

c

c "Clean up" the result.

c

if (id .eq. 0) then

q_total = q_total / dble (p)

q_error = abs (q_total - q_exact)

write (*, *) q_total, q_error

wtime = MPI_Wtime () - wtime

write (*, *) ’ Elapsed seconds = ’, wtime

end if

c

c Shut down MPI.

c

call MPI_Finalize (ierr)

stop

end

C, C++, FORTRAN77 and FORTRAN90 versions of an MPI version are available.

See, for example http://people.sc.fsu.edu/∼jburkardt/f77 src/quad mpi/quad mpi.html

65 / 1

MC: The Mysterious “Reduction” Operation

In the main part of this program, you almost wouldn’t know that
MPI was involved. Each process churns out a bunch of random
numbers, using them to compute an estimate q of the integral.

The MPI stuff happens when we need to collect all those q values
and average them to get a super-accurate estimate for the integral.

We could do that using MPI Send() and MPI Recv(), but in this
example, we have another example of a reduction operation:
multiple pieces of data need to be summed to form a single result.

The function MPI Reduce() collects the value of q from each
process and sums them to make q total. We will come back and
talk about this reduction operation in more detail later.

66 / 1

MC: Summary

Monte Carlo calculations are often quite easy to do in MPI.

Many people are interested in Monte Carlo calculations, or similar
computations in which the the same procedure is carried out many
times, with different inputs, and at the end of the computation a
small amount of summarizing is necessary to produce the output.

If the computations need to use random numbers, then one issue
to be careful of is to ensure that each MPI process generates a
distinct sequence of random numbers. If you understand your
system random number generator well enough, you may be able to
guarantee this by accessing an internal “seed” value.

Another possibility is to look into the SPRNG package.

http://sprng.fsu.edu, ”The Scalable Parallel Random Number Generators Library”

67 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
68 / 1

SIX WORDS: Here They Are

You can go far in MPI if you start by learning six fundamental
functions:

MPI Init()

MPI Finalize()

MPI Comm Rank()

MPI Comm Size()

MPI Send()

MPI Recv()

We will start by looking at their C implementations.

69 / 1

SIX WORDS: MPI Init

error = MPI Init (&argc, &argv);

Input, int &argc, address of the program argument counter;

Input, char &argv, the address of the program argument list;

Output, int error, is 1 if an error occurred;

Must be the first MPI routine called.

70 / 1

SIX WORDS: MPI Finalize

error = MPI Finalize ();

Output, int error, is 1 if an error occurred;

Must be the last MPI routine called.

71 / 1

SIX WORDS: MPI Comm Rank

error = MPI Comm Rank (communicator, &id);

Input, int communicator, usually MPI COMM WORLD;

Output, int &id, returns the ID of this process.

Output, int error, is 1 if an error occurred;

How a process figures out its ID.

0 ≤ ID ≤ P-1.

72 / 1

SIX WORDS: MPI Comm Size

error = MPI Comm Size (communicator, &p);

Input, int communicator, usually MPI COMM WORLD;

Output, int &p, returns the number of processes available;

Output, int error, is 1 if an error occurred;

How a process finds out how many other processes there are.

73 / 1

SIX WORDS: MPI Send

error = MPI Send (&data, count, type, to, tag, communicator);

Input, (any type) &data, the address of the data;

Input, int count, the number of data items;

Input, int type, the data type (MPI INT, MPI FLOAT...);

Input, int to, the process ID to which data is sent;

Input, int tag, a message identifier, (0, 1, 1492 etc);

Input, int communicator, usually MPI COMM WORLD;

Output, int error, is 1 if an error occurred;

This call sends data from one process to another.

74 / 1

SIX WORDS: MPI Recv

error = MPI Recv (&data, count, type, from, tag, communicator,
status);

Input, (any type) &data, the address of the data;

Input, int count, number of data items;

Input, int type, the data type (must match what is sent);

Input, int from, the process ID you expect the message from,
or if don’t care, MPI ANY SOURCE;

Input, int tag, the message identifier you expect, or, if don’t
care, MPI ANY TAG;

Input, int communicator, usually MPI COMM WORLD;

Input, MPI Status status, (auxiliary diagnostic information).

Output, int error, is 1 if an error occurred;

This call receives data sent from another process.

75 / 1

SIX WORDS: C++ Functions Versions

A C++ program can get away with calling the C form of the MPI
functions. But there is a whole object-oriented version of MPI.
The functions and symbols specify MPI:: as their namespace:

MPI::Init(argc, argv)

MPI::Finalize()

id = MPI::COMM WORLD.Get rank()

p = MPI::COMM WORLD.Get Size()

MPI::COMM WORLD.Send()

MPI::COMM WORLD.Recv()

Notice that the “communicator”, which we’ll always assume is
COMM WORLD, shows up as the object name in most of the
function calls.

76 / 1

SIX WORDS: C++ Symbols

The C++ symbolic constants use MPI:: as their namespace:

MPI::FLOAT, MPI::DOUBLE, MPI::INT, MPI::BOOL
(data types)

MPI::SUM, MPI::PROD, MPI::MAX, MPI::MIN (for
reduction operations)

MPI::ANY TAG, MPI::ANY SOURCE (“wildcards” for
message receipt

77 / 1

SIX WORDS: The “status” variable

Sometimes a process is willing to receive any message from any
sender. In that case, the Recv() function replaces the tag and
source fields by MPI::ANY TAG and MPI::ANY SOURCE.
Once you have actually received a message, you want to know who
sent it, and what it was, and that’s what the status variable does.

In C++, a variable used for status information is declared as:

MPI::Status status;

Since status stores the source and tag of a message that has been
received, these can be queried by

source = status.Get_source();

tag = status.Get_tag();

78 / 1

SIX WORDS: FORTRAN Versions

Differences between the C and FORTRAN versions of MPI:

Most C functions return an integer error code ierr. Instead,
the corresponding FORTRAN function has one additional
subroutine argument called ierr;

the C function MPI Init() accepts argv and argc as input
arguments; the FORTRAN function does not, and so it has
the single argument ierr;

in C, the status variable is a structure; in FORTRAN, it is
declared as integer status(MPI STATUS SIZE); the tag
and source values are stored in entries MPI TAG and
MPI SOURCE of this array.

79 / 1

SIX WORDS: FORTRAN Versions

There are no interesting differences between the FORTRAN77
and FORTRAN90 versions of MPI, except that

FORTRAN77 uses include ”mpif.h” to include MPI
definitions;

FORTRAN90 can use the same include statement, or a use
mpi module statement;

If all this is clear, I think, we can now skip explicit descriptions of
the corresponding FORTRAN MPI functions!

80 / 1

SIX WORDS: MPI Init

call MPI Init (error)

Output, integer error, is 1 if an error occurred;

Must be the first MPI routine called.

81 / 1

SIX WORDS: MPI Finalize

call MPI Finalize (error)

Output, integer error, is 1 if an error occurred;

Must be the last MPI routine called.

82 / 1

SIX WORDS: MPI Comm Rank

call MPI Comm Rank (communicator, id, error)

Input, integer communicator, set this to
MPI COMM WORLD;

Output, integer id, returns the ID of this process.

Output, integer error, is 1 if an error occurred;

This is how a process figures out its ID.

83 / 1

SIX WORDS: MPI Comm Size

call MPI Comm Size (communicator, p, error)

Input, integer communicator, set this to
MPI COMM WORLD;

Output, integer p, returns the number of processes available;

Output, integer error, is 1 if an error occurred;

How a process finds out how many other processes there are.

84 / 1

SIX WORDS: MPI Send

call MPI Send (data, count, type, to, tag, communicator, error)

Input, (any type) data(*), the data;

Input, integer count, the number of data items;

Input, integer type, the data type (MPI INTEGER,
MPI REAL...);

Input, integer to, the process ID to which data is sent;

Input, integer tag, a message identifier, that is, some numeric
identifier, such as 0, 1, 1492, etc;

Input, integer communicator, set this to
MPI COMM WORLD;

Output, integer error, is 1 if an error occurred;

This call sends data from one process to another.

85 / 1

SIX WORDS: MPI Recv

call MPI Recv (data, count, type, from, tag, communicator,
status, error)

Output, (any type) data(*), the data;

Input, integer count, number of data items expected;

Input, integer type, the data type (must match what is sent);

Input, integer from, the process ID from which data is
received (must match the sender, or if don’t care,
MPI ANY SOURCE);

Input, integer tag, the message identifier (must match what is
sent, or, if don’t care, MPI ANY TAG);

Input, integer communicator, (must match what is sent);

Input, integer status(MPI STATUS SIZE), (auxiliary
diagnostic information in an array).

Output, integer error, is 1 if an error occurred;

This call receives data sent from another process.
86 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
87 / 1

MESSAGES: Requires a Sender and a Receiver

The main feature of MPI is the use of messages to send data
between processes.

There is a family of routines for sending messages, but the simplest
is the pair MPI Send and MPI Recv.

Two processes must be in a common ”communicator group” in
order to communicate. This is simply a way for the user to
organize processes into sub-groups. All processes can communicate
in the shared group known as MP COMM WORLD.

In order for data to be transferred by a message, there must be a
sending process that wants to send the data, and a receiving
process that expects to receive it.

88 / 1

MESSAGES: The Message Is Transferred

The sender calls MPI Send, specifying the data, size, type, tag,
and communicator.

The sending process pauses, the data is transferred to a buffer on
the receiving computer and MPI prepares to deliver it to the
receiving process.

The receiving process must be expecting to receive a message, that
is, it must execute a call to MPI Recv and be waiting for a
message. The message it receives must correspond in size, type,
tag, and communicator.

If so, the information is copied from the buffer into a designated
memory location. The message has made it, and the receiver can
move to the next instruction.

The sending process, still waiting, receives a confirmation of
delivery, and it can proceed as well. 89 / 1

MESSAGES: Information in Error and Status Variables

If an error occurs during the message transfer, both the sender and
receiver return a nonzero flag value, either as the function value (in
C and C++) or in the final ierr argument in the FORTRAN
version of the MPI routines.

When the receiving process finishes the call to MPI Recv, the
extra parameter status includes information about the message
transfer.

The status variable is not usually of interest with simple
Send/Recv pairs, but for other kinds of message transfers, it can
contain important information

90 / 1

MESSAGES: Communication = Synchronization

1 The sender process pauses at MPI SEND;
2 The message goes into a buffer on the receiver machine;
3 The receiver process does not receive the message until it

reaches the corresponding MPI RECV.
4 The receiver process pauses at MPI RECV until the message

has arrived.
5 Once the message has been received, the sender and receiver

resume execution

Excessive idle time, waiting to receive a message, or to get
confirmation that the message was received, can strongly
affect the performance of an MPI program.

Good MPI programmers limit the number of messages sent.
Also, 1 big message is better than 20 small ones.

91 / 1

MESSAGES: The Buffer Can Fill Up

The simplest message transmissions involve a buffer, an area of
memory for storing messages that have not yet been accepted.

MPI is just another piece of software, written by human beings,
and is full of choices and compromises. One choice is the size of
the buffer, and what happens if it fills up.

By default, if the buffer fills with messages that have not been
received, nothing more can happen. No more messages can be sent
that require the buffer. A process trying to send a message
requiring the buffer will pause - waiting for the buffer to empty.

It is possible that all the processes pause because they are trying to
send messages to a full buffer, in which case the whole program
dies - well, worse, it doesn’t die, it becomes a zombie, eating up
computer time without any result.

You will not write such programs! 92 / 1

MESSAGES: How SEND and RECV Must Match

MPI_Send (data, count, type, to, tag, comm)

| | V | |

MPI_Recv (data, count, type, from, tag, comm, status)

The MPI SEND and MPI RECV must match:

1 count, the number of data items, must match;
2 type, the type of the data, must match;
3 to, must be the ID of the receiver.
4 from, must be the ID of the sender, or the receiver may

specify MPI ANY SOURCE.
5 tag, a user-chosen tag for the message, must match,

or the receiver may specify MPI ANY TAG.
6 comm, the name of the communicator, must match

(for us, always MPI COMM WORLD
93 / 1

MESSAGES: How STATUS Can Be Useful

By the way, if the MPI RECV allows a “wildcard” source by
specifying MPI ANY SOURCE or a wildcard tab by specifying
MPI ANY TAG, then the actual value of the tag or source is
included in the status variable, and can be retrieved there.

source = status(MPI_SOURCE) FORTRAN

tag = status(MPI_TAG)

source = status.(MPI_SOURCE); C

tag = status.MPI_TAG);

source = status.Get_source (); C++

tag = status.Get_tag ();

94 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
95 / 1

PRIME: Add the Primes in Parallel

Let’s do the PRIME SUM problem in MPI. Here we want to add
up the prime numbers from 2 to N.

Each of P processes will simply take about 1/P of the range of
numbers to check, and add up the primes it finds locally.

When it’s done, it will send the partial result to process 0.

So processes 1 to P send a single message (simple) and process 0
has to expect any of P-1 messages total.

96 / 1

PRIME: Initialization

include <stdio.h>

include <stdlib.h>

include "mpi.h"

int main (int argc, char *argv[])

{

int i, id, j, n = 1000, n_hi, n_lo;

int p, prime, total, total_local;

MPI_Status status;

double wtime;

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &p);

MPI_Comm_rank (MPI_COMM_WORLD, &id);

97 / 1

PRIME: Individual Computation

/*

Determine the subrange [N_LO, N_HI] to be checked by this process.

*/

n_lo = ((p - id) * 1 + (id) * n) / p + 1;

n_hi = ((p - id - 1) * 1 + (id + 1) * n) / p;

total_local = 0.0;

for (i = n_lo; i <= n_hi; i++)

{

/*

Find out if I is prime.

*/

prime = 1;

for (j = 2; j < i; j++)

{

if (i % j == 0)

{

prime = 0;

break;

}

}

/*

If I is prime, add it to the total.

*/

if (prime == 1)

{

total_local = total_local + i;

}

}

98 / 1

PRIME: Combine Results

/*

Workers send their partial result to process 0.

*/

if (id != 0)

{

MPI_Send (&total_local, 1, MPI_INT, 0, 1,

MPI_COMM_WORLD);

}

/*

Process 0 expects to receive P-1 partial results to sum.

*/

else

{

total = total_local;

for (i = 1; i < p; i++)

{

MPI_Recv (&total_local, 1, MPI_INT, MPI_ANY_SOURCE,

1, MPI_COMM_WORLD, &status);

total = total + total_local;

}

}

/*

Print the total.

*/

if (id == 0)

{

printf (" Total is %d\n", total);

}

MPI_Finalize ();

return 0;

}
99 / 1

PRIME: Output

PRIME_SUM - Master process:

Add up the prime numbers from 2 to 1000.

Compiled on Apr 21 2008 at 14:44:07.

The number of processes available is 4.

P0 [2, 250] Total = 5830 Time = 0.000137

P2 [501, 750] Total = 23147 Time = 0.000507

P3 [751, 1000] Total = 31444 Time = 0.000708

P1 [251, 500] Total = 15706 Time = 0.000367

The total sum is 76127

100 / 1

PRIME: An Example of a Reduction Operation

Having all the processes compute partial results, which then have
to be collected together is another example of a reduction
operation.

Just as with OpenMP, MPI recognizes this common operation, and
has a special function call which can replace all the sending and
receiving code we just saw.

101 / 1

PRIME: Rewrite using MPI Reduce

MPI_Reduce (&total_local, &total, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

if (id == master)

{

printf (" Total is %d\n", total);

}

MPI_Finalize ();

return 0;

total local is where it’s stored on the sending process;

total is where it is to be added on the receiving process;

1 is how many items are stored in total local;

MPI INT is the data type;

MPI SUM is the reduction operation;

0 is the id of the receiving process;

102 / 1

PRIME: Syntax for MPI REDUCE

MPI Reduce (local data, reduced value, count, type, operation,
to, communicator)

Input, (any type) local data, the local data;

Output, (any type) reduced value, the variable to hold the
result;

Input, int count, number of data items;

Input, int type, the data type;

Input, int operation, the reduction operation MPI SUM,
MPI PROD, MPI MAX...;

Input, int to, the process ID which collects the local data into
the reduced data;

Input, int communicator, MPI COMM WORLD;

103 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
104 / 1

STYLES:

We’ve seen two common styles of organizing an MPI program:

Master/Worker - process 0 is in charge

Helpful Master, also helps in work

Lazy Master, only gives order, collects results

Symmetric - no process is special (except, perhaps, for minor
I/O or data collection)

Embarrassingly Parallel, almost no communication

Coupled Parallel, the processes communicate during the
computation, not just at beginning and end

105 / 1

STYLES:

The Master/Worker style of programming is a natural way to begin
writing parallel programs.

It can be helpful, as an organizational device, to think of one
process as being in charge.

Although the data is spread out over all the processes, the Master
can take care of collecting results and printing them, of talking to
the user, of controlling iterations and so on.

In the PRIME SUM program, we allowed process 0 to be in
charge, and it was a lazy master!

106 / 1

STYLES:

Another advantage of the Master/Worker style of programming is
that is easier to think of data communication this way.

In the beginning, the master sends data to the workers. At the
end, the master collects data from the workers. So the MPI Send
and MPI Recv commands are very easy to comprehend.

This may not be the most efficient way to organize communication

all the processes have to wait for a turn to talk to the master

it’s easier for the master to collect data from the processes in
order of ID number, but they might be ready in any order.

107 / 1

STYLES:

The Symmetric style of programming has a better chance of
exploiting the parallelism in a problem, once we are comfortable
with the parallel framework.

For instance, it is common to use a master/worker model to do
quadrature. It makes sense: the master is there, in part, to decide
which subinterval each worker should handle.

But each worker can figure out its subinterval without any help,
just based on its own ID.

In the heat equation, there was no special process. In fact, the
solution to the problem was never collected into one place;
it was always distributed among the processes.

108 / 1

STYLES:

One reason that the symmetric style of programming takes some
practice is that symmetry has some strange effects.

In the symmetric style, as soon as you call MPI Send, to send
some data to another process, you are also essentially telling some
other process to send data to you!

Aside from being confusing, this sort of communication pattern
can set up the deadlock problem we saw in the heat equation.

One way to handle this is to let the odd processes send to the even
ones, and then vice versa. It is a simple way to guarantee that
there is always both a talker and a listener!

109 / 1

STYLES:

Another feature that is common to master/worker programming is
the assignment of all the work at the beginning.

This means that there are two waves of communication, first the
work assignments, and then later, the results.

If the computation involves many tasks, and they vary in difficulty
in an irregular way, this method of task assignment might end up
in a load imbalance, with one process getting all the hard work.

(This same issue can show up in OpenMP programs as well.)

110 / 1

STYLES:

A dynamic scheduling scheme makes the master/worker
communication more flexible.

The master divides the computation into many tasks, but initially
only assigns part of the work, then enters a listening loop in which
it waits for a message from any worker.

The result from the worker is collected. If there is more work, the
master gives the worker the next task. Otherwise, the master tells
the worker to shut down.

When all the tasks have been completed, all the workers have been
shut down, and the master shuts down.

Our next example will include an example of
dynamic scheduling.

111 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
112 / 1

M*v: A matrix-vector multiplication problem

We will now consider an example in which matrix-vector
multiplication is carried out using MPI.

This is an artificial example, so don’t worry about why we’re going
to divide the task up. Concentrate on how we do it.

We are going to compute A ∗ x = b.

We start with the entire matrix A and vector x sitting on the
“master process” (whichever process has lucky number 0).

We need to send some of this data to other processes, they carry
out their part of the task, and process 0 collects
the results back.

113 / 1

M*v:

Because one process will be special, directing the work, this
program will be an example of the “master-workers” model.

Entry bi is the dot product of row i of the matrix with x :

bi =
N∑

j=1

Aij xj

If there were N workers, each could do one entry of b.

There are only P << N processes available, and only P-1 can be
workers, (our master is “lazy”) so we’ll do the job in batches.

114 / 1

M*v:

Give all the workers a copy of x .

Then send row i of A to process i .

When process i returns bi , send the next available row of A,

The way we are setting up this algorithm allows processes to finish
their work in any order. This approach is flexible.

In consequence, the master process doesn’t know which process
will be sending a response. It has to keep careful track of what
data comes in, and when everything is done.

115 / 1

M*v: A Loose Master/Worker Model

In a master-worker model, you can really see how an MPI program,
which is supposed to be a single program running on all machines,
can end up looking more like two programs.

We divide the work up based entirely on the ID number.

This is also an unusual example because of the way the master
program doesn’t know when the next part of the answer will be
computed, or who will compute it. How the master figures out who
sent the latest message involves the mysterious status vector.

116 / 1

M*v: Master Pseudocode

If I am the master:

SEND N to all workers.

SEND X to all workers.

SEND out first batch of rows.

While (any entries of B not returned)

RECEIVE message, entry ? of B, from process ?.

If (any rows of A not sent)

SEND row ? of A to process ?.

else

SEND "FINALIZE" message to process ?.

end

end

FINALIZE

117 / 1

M*v: Worker Pseudocode

else if I am a worker

RECEIVE N.

RECEIVE X.

do

RECEIVE message.

if (message is "FINALIZE") then

FINALIZE

else

it’s a row of A, so compute dot product with X.

SEND result to master.

end

end

end

118 / 1

M*v: Using BROADCAST

In some cases, the communication that is to be carried out doesn’t
involve a pair of processes talking to each other, but rather one
process “announcing” some information to all the others.

This is often the case when the program is written using the
master/worker model, in which case one process, (usually the one
with ID 0) is put in charge. It takes care of interacting with the
user, doing I/O, collecting results from the other processes,
handling reduction operations and so on.

There is a “broadcast” function in MPI that makes it easy for the
master process to send information to all other processes.

The single function does both sending and receiving!

119 / 1

M*v: C++ version of MPI Bcast

error = MPI Bcast (data, count, type, from, communicator);

Input on sender, Output on receivers, data, address of data;

Input, int count, number of data items;

Input, type, the data type;

Input, int from, the process ID which sends the data;

Input, communicator, usually MPI COMM WORLD;

Output, int error, is 1 if an error occurred.

The values in the data array on process from are copied into the
data arrays on all other processes (within the same
communicator).

120 / 1

M*v: FORTRAN version of MPI Bcast

call MPI Bcast (data, count, type, from, communicator, error)

Input on sender, Output on receivers, data, address of data;

Input, integer count, number of data items;

Input, type, the data type;

Input, integer from, the process ID which sends the data;

Input, communicator, usually MPI COMM WORLD;

Output, integer error, is 1 if an error occurred.

The values in the data array on process from are copied into the
data arrays on all other processes (within the same
communicator).

121 / 1

M*v: An example algorithm

Compute A ∗ x = b.

a ”task” is to multiply one row of A times x ;

we can assign one task to each process. Whenever a process
is done, give it another task.

each process needs a copy of x at all times; for each task, it
needs a copy of the corresponding row of A.

process 0 will do no tasks; instead, it will pass out tasks and
accept results.

122 / 1

M*v: Initial Send of Data

if (id == 0)

numsent = 0

c

c BROADCAST X to all the workers.

c

call MPI_BCAST (x, cols, MPI_DOUBLE_PRECISION, 0,

& MPI_COMM_WORLD, ierr)

c

c SEND row I to process I with message tag I.

c

do i = 1, min (num_procs-1, rows)

do j = 1, cols

buffer(j) = a(i,j)

end do

call MPI_SEND (buffer, cols, MPI_DOUBLE_PRECISION, i,

& i, MPI_COMM_WORLD, ierr)

numsent = numsent + 1

end do

123 / 1

M*v: Receive Results, Send More Work

c

c Wait to receive a result back from any processor;

c If more rows to do, send the next one back to that processor.

c

do i = 1, rows

call MPI_RECV (ans, 1, MPI_DOUBLE_PRECISION,

& MPI_ANY_SOURCE, MPI_ANY_TAG,

& MPI_COMM_WORLD, status, ierr)

sender = status(MPI_SOURCE)

row = status(MPI_TAG)

b(row) = ans

c

c Tell the worker the next row to work on.

c

if (numsent .lt. rows) then

numsent = numsent + 1

do j = 1, cols

buffer(j) = a(numsent,j)

end do

call MPI_SEND (buffer, cols, MPI_DOUBLE_PRECISION,

& sender, numsent, MPI_COMM_WORLD, ierr)

c

c But if no more rows, send a dummy message with tag = "0"

c to tell the worker to shut down.

c

else

call MPI_SEND (0.0, 0, MPI_DOUBLE_PRECISION,

& sender, 0, MPI_COMM_WORLD, ierr)

end if

end do

124 / 1

M*v: Workers Compute Results until Shut Down

c

c Workers receive X, then compute dot products until

c done message received

c

else

call MPI_BCAST (x, cols, MPI_DOUBLE_PRECISION, 0,

& MPI_COMM_WORLD, ierr)

90 continue

call MPI_RECV (buffer, cols, MPI_DOUBLE_PRECISION, 0,

& MPI_ANY_TAG, MPI_COMM_WORLD, status, ierr)

if (status(MPI_TAG) .eq. 0) then

go to 200

end if

row = status(MPI_TAG)

ans = 0.0

do i = 1, cols

ans = ans + buffer(i) * x(i)

end do

call MPI_SEND (ans, 1, MPI_DOUBLE_PRECISION, 0,

& row, MPI_COMM_WORLD, ierr)

go to 90

200 continue

end if

125 / 1

M*v: Comments

This example showed how one could distribute assignments to
workers, keeping them busy until all the work was done.

Such an approach might be appropriate if the individual tasks
varied a lot in difficulty, or if the processes varied in speed, or if for
any other reason it was wise to work on the problem in small
sections.

126 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
127 / 1

MC/C++: Initialization

Omitted some stuff here
include "mpi.h"

int main (int argc, char *argv[])

{

int id, p

double q, q_error, q_exact, q_total;

int sample, sample_num, sample_total, seed

double wtime, x;

q_exact = 1.0

sample_num = 100000

//

// Initialize MPI.

//

MPI::Init (argc, argv);

//

// Get this processor’s ID.

//

id = MPI::COMM_WORLD.Get_rank ();

//

// Get the number of processors.

//

p = MPI::COMM_WORLD.Get_size ();

wtime = MPI::Wtime ();

128 / 1

MC/C++: Each Process Calculates Q

//

// Each process, from ID=0 to P-1, uses a different seed.

//

seed = 123456789 + id;

//

// This part looks the same as the sequential code

// (but runs with a different SEED).

//

q = 0.0;

for (sample = 1; sample <= sample_num; sample++)

{

x = r8_uniform_01 (&seed);

q = q + 3.0 * x * x;

}

q = q / sample_num;

cout << " " << sample_num << " " << q << " " << q - q_exact << "\n";

//

// Have each process sent results to process 0 for reduction to final result.

//

MPI::COMM_WORLD.Reduce (&q, &q_total, 1, MPI::DOUBLE, MPI::SUM, 0);

129 / 1

MC/C++: The Master Process Reports Q TOTAL

//

// "Clean up" the result.

//

if (id == 0)

{

q_total = q_total / (double) (p);

q_error = q_total - q_exact;

cout << " " << q_total << " " << q_error << "\n";

wtime = MPI::Wtime () - wtime;

cout << " Elapsed seconds = " << wtime << "\n";

}

//

// Shut down MPI.

//

MPI::Finalize ();

return 0;

}

130 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
131 / 1

OPTIONS: Avoiding Simple Deadlock

In the heat equation example, pairs of processes exchange data.

For instance, process 6 wants to send its H[N] to process 7 (which
will store it locally as H[0]).

At the same time, process 7 wants to send its H[1] to process 6
(which will store it locally as H[N+1]).

So processes 0 through P-2 send H[N] to their right, while
processes 1 through P-2 receive H[0] from their left.

Processes 1 through P-2 send H[0] to their left, while processes 0
through P-2 receive H[N+1] from their right.

132 / 1

OPTIONS: Avoiding Simple Deadlock

for (j = 1; j <= j_max; j++)

{

time_new = j * time_delta;

/* Send H[1] to ID-1. */

if (0 < id) {

tag = 1;

MPI_Send (&h[1], 1, MPI_DOUBLE, id-1, tag, MPI_COMM_WORLD);

}

/* Receive H[K+1] from ID+1. */

if (id < p-1) {

tag = 1;

MPI_Recv (&h[k+1], 1, MPI_DOUBLE, id+1, tag, MPI_COMM_WORLD, &status);

}

/* Send H[K] to ID+1. */

if (id < p-1) {

tag = 2;

MPI_Send (&h[k], 1, MPI_DOUBLE, id+1, tag, MPI_COMM_WORLD);

}

/* Receive H[0] from ID-1. */

if (0 < id) {

tag = 2;

MPI_Recv (&h[0], 1, MPI_DOUBLE, id-1, tag, MPI_COMM_WORLD, &status);

}

}

133 / 1

OPTIONS: Avoiding Simple Deadlock

Although this is a natural way to write this exchange, it comes
very close to causing deadlock, and is sure to cause delays.

And if you increase the number of processes, the delays will get
worse!

The first MPI Send command puts processes 1 through P-1 in
the ”send” state. They can’t do anything until their messages have
been received.

In particular, they can’t receive messages. Luckily, process 0
doesn’t have a neighbor to the left, so didn’t send a message,
and so can receive one.

134 / 1

OPTIONS: Avoiding Simple Deadlock

Hence, instead of all the messages being sent simultaneously, we
have the following sequential activity:

Process 0 acknowledges message from process 1,

THEN process 1 acknowledges message from process 2.

THEN ...

THEN process P-1 acknowledges message from process P.

Each acknowledgement must wait its turn, and as the number of
processes increases, the wait grows as well.

135 / 1

OPTIONS: Avoiding Simple Deadlock

As a programmer, you already have the tools to fix this problem.
Have the even processes send to the odd processes, and then the
other way around.

However, MPI provides a way to carry out this common exchange
operation in a way that automatically avoids deadlock, using
MPI Sendrecv.

The function is useful in the general case when pairs of processes
have data to exchange.

136 / 1

OPTIONS: Use MPI SendRecv()

/*

Message 1:

Process ID sends H[N] to Process ID+1 which stores it as H[0];

*/

if (id < p - 1)

{

MPI_Sendrecv (&h[n], 1, MPI_DOUBLE, id, 1,

&h[0], 1, MPI_DOUBLE, id+1, 1,

MPI_COMM_WORLD, status);

/*

Message 2:

Process ID+1 sends H[1] to process ID which stores it as H[N+1];

*/

MPI_Sendrecv (&h[n+1], 1, MPI_DOUBLE, id+1, 2,

&h[1], 1, MPI_DOUBLE, id, 2,

MPI_COMM_WORLD, status);

}

137 / 1

OPTIONS: MPI Sendrecv

MPI Sendrecv (send data, send count, send type, send to,
send tag, recv data, recv count, recv type, recv from, recv tag,
communicator, status)

send data, the data to send;

send count, the number of data items to send.

send type, the type of the data sent;

send to, the process to which the data is sent.

send tag, a tag for the sent data.

recv data, the data to receive;

recv count, the number of data items to receive.

recv type, the type of the data received;

recv to, the process from which the data is received.

recv tag, a tag for the received data.

communicator, the communicator;

status, the status of the transmission.
138 / 1

OPTIONS: Non-Blocking Messages

Using MPI Send and MPI Recv forces the sender and receiver to
pause until the message has been sent and received.

In some cases, you may be able to improve efficiency by letting the
sender send the message and proceed immediately to more
computations.

On the receiver side, you might also want to declare the receiver
ready, but then go immediately to computation while waiting to
actually receive.

The non-blocking MPI Isend and MPI Irecv allow you to do this.
However, the sending routine must not change the data in the
array being sent until the data has actually been successfully
transmitted. The receiver cannot try to use the data until
it has been received.

This is done by calling MPI Test or MPI Wait. 139 / 1

OPTIONS: Nonblocking Pseudocode

if I am the boss

{

Isend (X(1:100) to worker 1, req1)

Isend (X(101:200) to worker 2, req2)

Isend (X(201:300) to worker 3, req3)

Irecv (fx1 from worker1, req4)

Irecv (fx2 from worker2, req5)

Irecv (fx3 from worker3, req6)

while (1) {

if (Test (req1) && Test (req2) &&

Test (req3) && Test (req4) &&

Test (req5) && Test (req6))

break

}

} 140 / 1

OPTIONS: Nonblocking Pseudocode

else if I am a worker

{

Irecv (X, from boss, req) <-- Ready to receive

set up tables <-- work while waiting

Wait (req) <-- pause til data here.

Compute fx = fun(X) <-- X here, go to it.

Isend (fx to boss, req)

}

141 / 1

OPTIONS: MPI Irecv

MPI Irecv (data, count, type, from, tag, comm, req)

data, the address of the data;

count, number of data items;

type, the data type;

from, the process ID from which data is received;

tag, the message identifier;

comm, the communicator;

req, the request array or structure.

142 / 1

OPTIONS: MPI Test

MPI Test (req, flag, status)

MPI Test reports whether the message associated with req has
been sent and received.

req, the address of the data;

flag, is returned as TRUE if the sent message was received;

status, the status array or structure.

143 / 1

OPTIONS: MPI Wait

MPI Wait (req, status)

MPI Wait waits until the message associated with req has been
sent and received.

req, the address of the data;

status, the status array or structure.

144 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Heat Equation in C

Compiling, Linking, Running.

Monte Carlo Integration in Fortran77

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C

Communication Styles

Matrix*Vector in Fortran77

Monte Carlo Integration in C++

Message Passing Options

Conclusion
145 / 1

CONCLUSION: MPI Features

One of MPI’s strongest features is that it is well suited to modern
clusters of 100 or 1,000 or 10,000 processors.

A huge amount of memory can be requested, as long as it is
distributed.

The main cost of MPI is that you need to rethink your algorithm
so that it can be implemented as a collection of almost
independent subprograms with limited communication.

In MPI, you are in complete control of what part of your program
occurs in what process, and it is your responsibility to transmit any
data needed by another process.

146 / 1

Conclusion: Recall OpenMP

OpenMP is limited by the number of cores on a shared memory
processor. The value of 48 on our HPC cluster is a relatively high
number right now, although each year this number grows.

OpenMP does not usually require rewriting your code. Instead, you
gradually “discover” loops that can be parallelized, mark them
with directives, and turn them on with a compiler switch.

OpenMP has the opposite of MPI’s communication problem.
OpenMP must be careful that two processes don’t overwrite the
same data item with different values. This is why some OpenMP
variables become “private”, a little like MPI’s distributed memory.

In OpenMP, parallelism only occurs at the low level of in loops and
sections. In MPI, parallelism occurs at the program level.

MPI and OpenMP can be used together; for instance,
if each MPI process is running on a separate multicore processor. 147 / 1

CONCLUSION: Web References

http://www-unix.mcs.anl.gov/mpi/, Argonne Labs;

http://www.mpi-forum.org, the MPI Forum

http://www.netlib.org/mpi/, reports, tests, software;

http://www.open-mpi.org , an open source version of MPI;

http://www.nersc.gov/nusers/help/tutorials/mpi/intro, a tutorial

http://people.sc.fsu.edu/∼jburkardt/pdf/mpi course.pdf, a tutorial

http://people.sc.fsu.edu/∼jburkardt/presentations/fsu mpi 2011.pdf, these slides

http://people.sc.fsu.edu/∼jburkardt/presentations/fsu mpi exercises 2011.pdf, related exercises

148 / 1

CONCLUSION: Reference Books

Gropp, Using MPI;

Mascagni, Srinavasan, Algorithm 806: SPRNG: a scalable
library for pseudorandom number generation, ACM
Transactions on Mathematical Software

Openshaw, High Performance Computing;

Pacheco, Parallel Programming with MPI ;

Petersen, Introduction to Parallel Computing;

Quinn, Parallel Programming in C with MPI and
OpenMP;

Snir, MPI: The Complete Reference;

149 / 1

