# include # include # include # include # include # include "wishart.h" # include "pdflib.h" # include "rnglib.h" /******************************************************************************/ double *bartlett_sample ( int m, int df, double sigma[] ) /******************************************************************************/ /* Purpose: BARTLETT_SAMPLE samples the Bartlett distribution. Discussion: If the matrix T is sampled from the Bartlett distribution, then the matrix W = T' * T is a sample from the Wishart distribution. This function requires functions from the PDFLIB and RNGLIB libraries. The "initialize()" function from RNGLIB must be called before using this function. Licensing: This code is distributed under the MIT license. Modified: 31 July 2013 Author: John Burkardt Reference: Patrick Odell, Alan Feiveson, A numerical procedure to generate a sample covariance matrix, Journal of the American Statistical Association, Volume 61, Number 313, March 1966, pages 199-203. Stanley Sawyer, Wishart Distributions and Inverse-Wishart Sampling, Washington University, 30 April 2007, 12 pages. Parameters: Input, int M, the order of the matrix. Input, int DF, the number of degrees of freedom. M <= DF. Input, double SIGMA[M*M], the covariance matrix, which should be a symmetric positive definite matrix. Output, double BARTLETT_SAMPLE[M*M], the sample matrix from the Bartlett distribution. */ { int flag; double *r; double *t; double *tu; if ( df < m ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BARTLETT_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " DF = %d < M = %d.\n", df, m ); exit ( 1 ); } /* Get the upper triangular Cholesky factor of SIGMA. */ r = r8mat_cholesky_factor_upper ( m, sigma, &flag ); if ( flag != 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BARTLETT_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " Unexpected error return from R8MAT_CHOLESKY_FACTOR_UPPER.\n" ); fprintf ( stderr, " FLAG = %d\n", flag ); exit ( 1 ); } /* Sample the unit Bartlett distribution. */ tu = bartlett_unit_sample ( m, df ); /* Construct the matrix T = TU * R. */ t = r8mat_mm_new ( m, m, m, tu, r ); /* Free memory. */ free ( r ); free ( tu ); return t; } /******************************************************************************/ double *bartlett_unit_sample ( int m, int df ) /******************************************************************************/ /* Purpose: BARTLETT_UNIT_SAMPLE samples the unit Bartlett distribution. Discussion: If the matrix T is sampled from the unit Bartlett distribution, then the matrix W = T' * T is a sample from the unit Wishart distribution. This function requires functions from the PDFLIB and RNGLIB libraries. The "initialize()" function from RNGLIB must be called before using this function. Licensing: This code is distributed under the MIT license. Modified: 11 October 2013 Author: John Burkardt Reference: Patrick Odell, Alan Feiveson, A numerical procedure to generate a sample covariance matrix, Journal of the American Statistical Association, Volume 61, Number 313, March 1966, pages 199-203. Stanley Sawyer, Wishart Distributions and Inverse-Wishart Sampling, Washington University, 30 April 2007, 12 pages. Parameters: Input, int M, the order of the matrix. Input, int DF, the number of degrees of freedom. M <= DF. Output, double BARTLETT_UNIT_SAMPLE[M*M], the sample matrix from the unit Bartlett distribution. */ { double df_chi; int i; int j; double *t; if ( df < m ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "BARTLETT_UNIT_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " DF = %d < M = %d.\n", df, m ); exit ( 1 ); } t = ( double * ) malloc ( m * m * sizeof ( double ) ); for ( i = 0; i < m; i++ ) { for ( j = 0; j < i; j++ ) { t[i+j*m] = 0.0; } df_chi = ( double ) ( df - i ); t[i+i*m] = sqrt ( r8_chi_sample ( df_chi ) ); for ( j = i + 1; j < m; j++ ) { t[i+j*m] = r8_normal_01_sample ( ); } } return t; } /******************************************************************************/ void jacobi_eigenvalue ( int n, double a[], int it_max, double v[], double d[], int *it_num, int *rot_num ) /******************************************************************************/ /* Purpose: JACOBI_EIGENVALUE carries out the Jacobi eigenvalue iteration. Discussion: This function computes the eigenvalues and eigenvectors of a real symmetric matrix, using Rutishauser's modfications of the classical Jacobi rotation method with threshold pivoting. Licensing: This code is distributed under the MIT license. Modified: 15 July 2013 Author: C version by John Burkardt Parameters: Input, int N, the order of the matrix. Input, double A[N*N], the matrix, which must be square, real, and symmetric. Input, int IT_MAX, the maximum number of iterations. Output, double V[N*N], the matrix of eigenvectors. Output, double D[N], the eigenvalues, in descending order. Output, int *IT_NUM, the total number of iterations. Output, int *ROT_NUM, the total number of rotations. */ { double *bw; double c; double g; double gapq; double h; int i; int j; int k; int l; int m; int p; int q; double s; double t; double tau; double term; double termp; double termq; double theta; double thresh; double w; double *zw; r8mat_identity ( n, v ); r8mat_diag_get_vector ( n, a, d ); bw = ( double * ) malloc ( n * sizeof ( double ) ); zw = ( double * ) malloc ( n * sizeof ( double ) ); for ( i = 0; i < n; i++ ) { bw[i] = d[i]; zw[i] = 0.0; } *it_num = 0; *rot_num = 0; while ( *it_num < it_max ) { *it_num = *it_num + 1; /* The convergence threshold is based on the size of the elements in the strict upper triangle of the matrix. */ thresh = 0.0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { thresh = thresh + a[i+j*n] * a[i+j*n]; } } thresh = sqrt ( thresh ) / ( double ) ( 4 * n ); if ( thresh == 0.0 ) { break; } for ( p = 0; p < n; p++ ) { for ( q = p + 1; q < n; q++ ) { gapq = 10.0 * fabs ( a[p+q*n] ); termp = gapq + fabs ( d[p] ); termq = gapq + fabs ( d[q] ); /* Annihilate tiny offdiagonal elements. */ if ( 4 < *it_num && termp == fabs ( d[p] ) && termq == fabs ( d[q] ) ) { a[p+q*n] = 0.0; } /* Otherwise, apply a rotation. */ else if ( thresh <= fabs ( a[p+q*n] ) ) { h = d[q] - d[p]; term = fabs ( h ) + gapq; if ( term == fabs ( h ) ) { t = a[p+q*n] / h; } else { theta = 0.5 * h / a[p+q*n]; t = 1.0 / ( fabs ( theta ) + sqrt ( 1.0 + theta * theta ) ); if ( theta < 0.0 ) { t = - t; } } c = 1.0 / sqrt ( 1.0 + t * t ); s = t * c; tau = s / ( 1.0 + c ); h = t * a[p+q*n]; /* Accumulate corrections to diagonal elements. */ zw[p] = zw[p] - h; zw[q] = zw[q] + h; d[p] = d[p] - h; d[q] = d[q] + h; a[p+q*n] = 0.0; /* Rotate, using information from the upper triangle of A only. */ for ( j = 0; j < p; j++ ) { g = a[j+p*n]; h = a[j+q*n]; a[j+p*n] = g - s * ( h + g * tau ); a[j+q*n] = h + s * ( g - h * tau ); } for ( j = p + 1; j < q; j++ ) { g = a[p+j*n]; h = a[j+q*n]; a[p+j*n] = g - s * ( h + g * tau ); a[j+q*n] = h + s * ( g - h * tau ); } for ( j = q + 1; j < n; j++ ) { g = a[p+j*n]; h = a[q+j*n]; a[p+j*n] = g - s * ( h + g * tau ); a[q+j*n] = h + s * ( g - h * tau ); } /* Accumulate information in the eigenvector matrix. */ for ( j = 0; j < n; j++ ) { g = v[j+p*n]; h = v[j+q*n]; v[j+p*n] = g - s * ( h + g * tau ); v[j+q*n] = h + s * ( g - h * tau ); } *rot_num = *rot_num + 1; } } } for ( i = 0; i < n; i++ ) { bw[i] = bw[i] + zw[i]; d[i] = bw[i]; zw[i] = 0.0; } } /* Restore upper triangle of input matrix. */ for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { a[i+j*n] = a[j+i*n]; } } /* Descending sort the eigenvalues and eigenvectors. */ for ( k = 0; k < n - 1; k++ ) { m = k; for ( l = k + 1; l < n; l++ ) { if ( d[m] < d[l] ) { m = l; } } if ( m != k ) { t = d[m]; d[m] = d[k]; d[k] = t; for ( i = 0; i < n; i++ ) { w = v[i+m*n]; v[i+m*n] = v[i+k*n]; v[i+k*n] = w; } } } free ( bw ); free ( zw ); return; } /******************************************************************************/ void r8mat_add ( int m, int n, double a[], double b[] ) /******************************************************************************/ /* Purpose: R8MAT_ADD adds one R8MAT to another. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 31 July 2013 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns. Input, double A[M*N], the matrix to add. Input/output, double B[M*N], the matrix to be incremented. */ { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { b[i+j*m] = b[i+j*m] + a[i+j*m]; } } return; } /******************************************************************************/ double *r8mat_cholesky_factor_upper ( int n, double a[], int *flag ) /******************************************************************************/ /* Purpose: R8MAT_CHOLESKY_FACTOR_UPPER: upper Cholesky factor of a symmetric R8MAT. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. The matrix must be symmetric and positive semidefinite. For a positive semidefinite symmetric matrix A, the Cholesky factorization is an upper triangular matrix R such that: A = R' * R Note that the usual Cholesky factor is a LOWER triangular matrix L such that A = L * L' Licensing: This code is distributed under the MIT license. Modified: 03 August 2013 Author: John Burkardt Parameters: Input, int N, the number of rows and columns of the matrix A. Input, double A[N*N], the N by N matrix. Output, int *FLAG, an error flag. 0, no error was detected. 1, the matrix was not positive definite. A NULL factor was returned. Output, double R8MAT_CHOLESKY_FACTOR_UPPER[N*N], the N by N upper triangular "Choresky" factor. */ { double *c; int i; int j; int k; double sum2; *flag = 0; c = r8mat_copy_new ( n, n, a ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { c[j+i*n] = 0.0; } for ( i = j; i < n; i++ ) { sum2 = c[i+j*n]; for ( k = 0; k < j; k++ ) { sum2 = sum2 - c[k+j*n] * c[k+i*n]; } if ( i == j ) { if ( sum2 <= 0.0 ) { *flag = 1; return NULL; } c[j+i*n] = sqrt ( sum2 ); } else { if ( c[j+j*n] != 0.0 ) { c[j+i*n] = sum2 / c[j+j*n]; } else { c[j+i*n] = 0.0; } } } } return c; } /******************************************************************************/ double *r8mat_copy_new ( int m, int n, double a1[] ) /******************************************************************************/ /* Purpose: R8MAT_COPY_NEW copies one R8MAT to a "new" R8MAT. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 26 July 2008 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns. Input, double A1[M*N], the matrix to be copied. Output, double R8MAT_COPY_NEW[M*N], the copy of A1. */ { double *a2; int i; int j; a2 = ( double * ) malloc ( m * n * sizeof ( double ) ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a2[i+j*m] = a1[i+j*m]; } } return a2; } /******************************************************************************/ void r8mat_diag_get_vector ( int n, double a[], double v[] ) /******************************************************************************/ /* Purpose: R8MAT_DIAG_GET_VECTOR gets the value of the diagonal of an R8MAT. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 15 July 2013 Author: John Burkardt Parameters: Input, int N, the number of rows and columns of the matrix. Input, double A[N*N], the N by N matrix. Output, double V[N], the diagonal entries of the matrix. */ { int i; for ( i = 0; i < n; i++ ) { v[i] = a[i+i*n]; } return; } /******************************************************************************/ double *r8mat_diagonal_new ( int n, double diag[] ) /******************************************************************************/ /* Purpose: R8MAT_DIAGONAL_NEW returns a diagonal matrix. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 31 July 2013 Author: John Burkardt Parameters: Input, int N, the order of A. Input, double DIAG[N], the diagonal entries. Output, double R8MAT_DIAGONAL_NEW[N*N], the N by N identity matrix. */ { double *a; int i; int j; a = ( double * ) malloc ( n * n * sizeof ( double ) ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = diag[i]; } else { a[i+j*n] = 0.0; } } } return a; } /******************************************************************************/ void r8mat_divide ( int m, int n, double s, double a[] ) /******************************************************************************/ /* Purpose: R8MAT_DIVIDE divides an R8MAT by a scalar. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 31 July 2013 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns. Input, double S, the divisor Input/output, double A[M*N], the matrix to be scaled. */ { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = a[i+j*m] / s; } } return; } /******************************************************************************/ void r8mat_identity ( int n, double a[] ) /******************************************************************************/ /* Purpose: R8MAT_IDENTITY sets an R8MAT to the identity matrix. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 06 September 2005 Author: John Burkardt Parameters: Input, int N, the order of A. Output, double A[N*N], the N by N identity matrix. */ { int i; int j; int k; k = 0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[k] = 1.0; } else { a[k] = 0.0; } k = k + 1; } } return; } /******************************************************************************/ double *r8mat_identity_new ( int n ) /******************************************************************************/ /* Purpose: R8MAT_IDENTITY_NEW returns an identity matrix. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 06 September 2005 Author: John Burkardt Parameters: Input, int N, the order of A. Output, double R8MAT_IDENTITY_NEW[N*N], the N by N identity matrix. */ { double *a; int i; int j; int k; a = ( double * ) malloc ( n * n * sizeof ( double ) ); k = 0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[k] = 1.0; } else { a[k] = 0.0; } k = k + 1; } } return a; } /******************************************************************************/ double *r8mat_mm_new ( int n1, int n2, int n3, double a[], double b[] ) /******************************************************************************/ /* Purpose: R8MAT_MM_NEW multiplies two matrices. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. For this routine, the result is returned as the function value. Licensing: This code is distributed under the MIT license. Modified: 08 April 2009 Author: John Burkardt Parameters: Input, int N1, N2, N3, the order of the matrices. Input, double A[N1*N2], double B[N2*N3], the matrices to multiply. Output, double R8MAT_MM[N1*N3], the product matrix C = A * B. */ { double *c; int i; int j; int k; c = ( double * ) malloc ( n1 * n3 * sizeof ( double ) ); for ( i = 0; i < n1; i++ ) { for ( j = 0; j < n3; j++ ) { c[i+j*n1] = 0.0; for ( k = 0; k < n2; k++ ) { c[i+j*n1] = c[i+j*n1] + a[i+k*n1] * b[k+j*n2]; } } } return c; } /******************************************************************************/ double *r8mat_mmt_new ( int n1, int n2, int n3, double a[], double b[] ) /******************************************************************************/ /* Purpose: R8MAT_MMT_NEW computes C = A * B'. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. For this routine, the result is returned as the function value. Licensing: This code is distributed under the MIT license. Modified: 13 November 2012 Author: John Burkardt Parameters: Input, int N1, N2, N3, the order of the matrices. Input, double A[N1*N2], double B[N3*N2], the matrices to multiply. Output, double R8MAT_MMT[N1*N3], the product matrix C = A * B'. */ { double *c; int i; int j; int k; c = ( double * ) malloc ( n1 * n3 * sizeof ( double ) ); for ( i = 0; i < n1; i++ ) { for ( j = 0; j < n3; j++ ) { c[i+j*n1] = 0.0; for ( k = 0; k < n2; k++ ) { c[i+j*n1] = c[i+j*n1] + a[i+k*n1] * b[j+k*n3]; } } } return c; } /******************************************************************************/ double *r8mat_mtm_new ( int n1, int n2, int n3, double a[], double b[] ) /******************************************************************************/ /* Purpose: R8MAT_MTM_NEW computes C = A' * B. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. For this routine, the result is returned as the function value. Licensing: This code is distributed under the MIT license. Modified: 07 September 2012 Author: John Burkardt Parameters: Input, int N1, N2, N3, the order of the matrices. Input, double A[N2*N1], double B[N2*N3], the matrices to multiply. Output, double R8MAT_MTM_NEW[N1*N3], the product matrix C = A' * B. */ { double *c; int i; int j; int k; c = ( double * ) malloc ( n1 * n3 * sizeof ( double ) ); for ( i = 0; i < n1; i++ ) { for ( j = 0; j < n3; j++ ) { c[i+j*n1] = 0.0; for ( k = 0; k < n2; k++ ) { c[i+j*n1] = c[i+j*n1] + a[k+i*n2] * b[k+j*n2]; } } } return c; } /******************************************************************************/ void r8mat_print ( int m, int n, double a[], char *title ) /******************************************************************************/ /* Purpose: R8MAT_PRINT prints an R8MAT. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Entry A(I,J) is stored as A[I+J*M] Licensing: This code is distributed under the MIT license. Modified: 28 May 2008 Author: John Burkardt Parameters: Input, int M, the number of rows in A. Input, int N, the number of columns in A. Input, double A[M*N], the M by N matrix. Input, char *TITLE, a title. */ { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } /******************************************************************************/ void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, char *title ) /******************************************************************************/ /* Purpose: R8MAT_PRINT_SOME prints some of an R8MAT. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 26 June 2013 Author: John Burkardt Parameters: Input, int M, the number of rows of the matrix. M must be positive. Input, int N, the number of columns of the matrix. N must be positive. Input, double A[M*N], the matrix. Input, int ILO, JLO, IHI, JHI, designate the first row and column, and the last row and column to be printed. Input, char *TITLE, a title. */ { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; fprintf ( stdout, "\n" ); fprintf ( stdout, "%s\n", title ); if ( m <= 0 || n <= 0 ) { fprintf ( stdout, "\n" ); fprintf ( stdout, " (None)\n" ); return; } /* Print the columns of the matrix, in strips of 5. */ for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; if ( n < j2hi ) { j2hi = n; } if ( jhi < j2hi ) { j2hi = jhi; } fprintf ( stdout, "\n" ); /* For each column J in the current range... Write the header. */ fprintf ( stdout, " Col: "); for ( j = j2lo; j <= j2hi; j++ ) { fprintf ( stdout, " %7d ", j - 1 ); } fprintf ( stdout, "\n" ); fprintf ( stdout, " Row\n" ); fprintf ( stdout, "\n" ); /* Determine the range of the rows in this strip. */ if ( 1 < ilo ) { i2lo = ilo; } else { i2lo = 1; } if ( m < ihi ) { i2hi = m; } else { i2hi = ihi; } for ( i = i2lo; i <= i2hi; i++ ) { /* Print out (up to) 5 entries in row I, that lie in the current strip. */ fprintf ( stdout, "%5d:", i - 1 ); for ( j = j2lo; j <= j2hi; j++ ) { fprintf ( stdout, " %14f", a[i-1+(j-1)*m] ); } fprintf ( stdout, "\n" ); } } return; # undef INCX } /******************************************************************************/ double *r8mat_zero_new ( int m, int n ) /******************************************************************************/ /* Purpose: R8MAT_ZERO_NEW returns a new zeroed R8MAT. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 26 September 2008 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns. Output, double R8MAT_ZERO_NEW[M*N], the new zeroed matrix. */ { double *a; int i; int j; a = ( double * ) malloc ( m * n * sizeof ( double ) ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } /******************************************************************************/ double *r8ut_inverse ( int n, double a[] ) /******************************************************************************/ /* Purpose: R8UT_INVERSE computes the inverse of a R8UT matrix. Discussion: The R8UT storage format is used for an M by N upper triangular matrix, and allocates space even for the zero entries. Licensing: This code is distributed under the MIT license. Modified: 18 February 2013 Author: John Burkardt Reference: Albert Nijenhuis, Herbert Wilf, Combinatorial Algorithms, Academic Press, 1978, second edition, ISBN 0-12-519260-6 Parameters: Input, int N, the order of the matrix. Input, double A[N*N], the R8UT matrix. Output, double R8UT_INVERSE[N*N], the inverse of the upper triangular matrix. */ { double *b; int i; int j; int k; /* Check. */ for ( i = 0; i < n; i++ ) { if ( a[i+i*n] == 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8UT_INVERSE - Fatal error!\n" ); fprintf ( stderr, " Zero diagonal element.\n" ); exit ( 1 ); } } b = ( double * ) malloc ( n * n * sizeof ( double ) ); for ( j = n-1; 0 <= j; j-- ) { for ( i = n-1; 0 <= i; i-- ) { if ( j < i ) { b[i+j*n] = 0.0; } else if ( i == j ) { b[i+j*n] = 1.0 / a[i+j*n]; } else if ( i < j ) { b[i+j*n] = 0.0; for ( k = i+1; k <= j; k++ ) { b[i+j*n] = b[i+j*n] - a[i+k*n] * b[k+j*n]; } b[i+j*n] = b[i+j*n] / a[i+i*n]; } } } return b; } /******************************************************************************/ void r8vec_print ( int n, double a[], char *title ) /******************************************************************************/ /* Purpose: R8VEC_PRINT prints an R8VEC. Discussion: An R8VEC is a vector of R8's. Licensing: This code is distributed under the MIT license. Modified: 08 April 2009 Author: John Burkardt Parameters: Input, int N, the number of components of the vector. Input, double A[N], the vector to be printed. Input, char *TITLE, a title. */ { int i; fprintf ( stdout, "\n" ); fprintf ( stdout, "%s\n", title ); fprintf ( stdout, "\n" ); for ( i = 0; i < n; i++ ) { fprintf ( stdout, " %8d: %14f\n", i, a[i] ); } return; } /******************************************************************************/ double *wishart_sample ( int m, int df, double sigma[] ) /******************************************************************************/ /* Purpose: WISHART_SAMPLE samples the Wishart distribution. Discussion: This function requires functions from the PDFLIB and RNGLIB libraries. The "initialize()" function from RNGLIB must be called before using this function. Licensing: This code is distributed under the MIT license. Modified: 31 July 2013 Author: John Burkardt Reference: Patrick Odell, Alan Feiveson, A numerical procedure to generate a sample covariance matrix, Journal of the American Statistical Association, Volume 61, Number 313, March 1966, pages 199-203. Stanley Sawyer, Wishart Distributions and Inverse-Wishart Sampling, Washington University, 30 April 2007, 12 pages. Parameters: Input, int M, the order of the matrix. Input, int DF, the number of degrees of freedom. M <= DF. Input, double SIGMA[M*M], the covariance matrix, which should be a symmetric positive definite matrix. Output, double WISHART_SAMPLE[M*M], the sample matrix from the Wishart distribution. */ { double *a; double *au; double *aur; int flag; double *r; if ( df < m ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WISHART_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " DF = %d < M = %d.\n", df, m ); exit ( 1 ); } /* Get R, the upper triangular Cholesky factor of SIGMA. */ r = r8mat_cholesky_factor_upper ( m, sigma, &flag ); if ( flag != 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WISHART_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " Unexpected error return from R8MAT_CHOLESKY_FACTOR_UPPER.\n" ); fprintf ( stderr, " FLAG = %d\n", flag ); exit ( 1 ); } /* Get AU, a sample from the unit Wishart distribution. */ au = wishart_unit_sample ( m, df ); /* Construct the matrix A = R' * AU * R. */ aur = r8mat_mm_new ( m, m, m, au, r ); a = r8mat_mtm_new ( m, m, m, r, aur ); /* Free memory. */ free ( au ); free ( aur ); free ( r ); return a; } /******************************************************************************/ double *wishart_sample_inverse ( int m, int df, double sigma[] ) /******************************************************************************/ /* Purpose: WISHART_SAMPLE_INVERSE returns the inverse of a sample Wishart matrix. Discussion: This function requires functions from the PDFLIB and RNGLIB libraries. The "initialize()" function from RNGLIB must be called before using this function. Licensing: This code is distributed under the MIT license. Modified: 11 October 2013 Author: John Burkardt Reference: Patrick Odell, Alan Feiveson, A numerical procedure to generate a sample covariance matrix, Journal of the American Statistical Association, Volume 61, Number 313, March 1966, pages 199-203. Stanley Sawyer, Wishart Distributions and Inverse-Wishart Sampling, Washington University, 30 April 2007, 12 pages. Parameters: Input, int M, the order of the matrix. Input, int DF, the number of degrees of freedom. M <= DF. Input, double SIGMA[M*M], the covariance matrix, which should be a symmetric positive definite matrix. Output, double WISHART_SAMPLE[M*M], the inverse of a sample matrix from the Wishart distribution. */ { double *a; int flag; double *r; double *s; double *ua; double *uas; if ( df < m ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WISHART_SAMPLE_INVERSE - Fatal error!\n" ); fprintf ( stderr, " DF = %d < M = %d.\n", df, m ); exit ( 1 ); } /* Get R, the upper triangular Cholesky factor of SIGMA. */ r = r8mat_cholesky_factor_upper ( m, sigma, &flag ); if ( flag != 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WISHART_SAMPLE_INVERSE - Fatal error!\n" ); fprintf ( stderr, " Unexpected error return from R8MAT_CHOLESKY_FACTOR_UPPER.\n" ); fprintf ( stderr, " FLAG = %d\n", flag ); exit ( 1 ); } /* Get S, the inverse of R. */ s = r8ut_inverse ( m, r ); /* Get UA, the inverse of a sample from the unit Wishart distribution. */ ua = wishart_unit_sample_inverse ( m, df ); /* Construct the matrix A = S * UA * S'. */ uas = r8mat_mmt_new ( m, m, m, ua, s ); a = r8mat_mm_new ( m, m, m, s, uas ); /* Free memory. */ free ( r ); free ( s ); free ( ua ); free ( uas ); return a; } /******************************************************************************/ double *wishart_unit_sample ( int m, int df ) /******************************************************************************/ /* Purpose: WISHART_UNIT_SAMPLE samples the unit Wishart distribution. Discussion: This function requires functions from the PDFLIB and RNGLIB libraries. The "initialize()" function from RNGLIB must be called before using this function. Licensing: This code is distributed under the MIT license. Modified: 11 October 2013 Author: John Burkardt Reference: Patrick Odell, Alan Feiveson, A numerical procedure to generate a sample covariance matrix, Journal of the American Statistical Association, Volume 61, Number 313, March 1966, pages 199-203. Stanley Sawyer, Wishart Distributions and Inverse-Wishart Sampling, Washington University, 30 April 2007, 12 pages. Parameters: Input, int M, the order of the matrix. Input, int DF, the number of degrees of freedom. M <= DF. Output, double WISHART_UNIT_SAMPLE[M*M], the sample matrix from the unit Wishart distribution. */ { double *a; double *c; double df_chi; int i; int j; if ( df < m ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WISHART_UNIT_SAMPLE - Fatal error!\n" ); fprintf ( stderr, " DF = %d < M = %d.\n", df, m ); exit ( 1 ); } c = ( double * ) malloc ( m * m * sizeof ( double ) ); for ( i = 0; i < m; i++ ) { for ( j = 0; j < i; j++ ) { c[i+j*m] = 0.0; } df_chi = ( double ) ( df - i ); c[i+i*m] = sqrt ( r8_chi_sample ( df_chi ) ); for ( j = i + 1; j < m; j++ ) { c[i+j*m] = r8_normal_01_sample ( ); } } a = r8mat_mtm_new ( m, m, m, c, c ); /* Free memory. */ free ( c ); return a; } /******************************************************************************/ double *wishart_unit_sample_inverse ( int m, int df ) /******************************************************************************/ /* Purpose: WISHART_UNIT_SAMPLE_INVERSE inverts a unit Wishart sample matrix. Discussion: This function requires functions from the PDFLIB and RNGLIB libraries. The "initialize()" function from RNGLIB must be called before using this function. Licensing: This code is distributed under the MIT license. Modified: 11 October 2013 Author: John Burkardt Reference: Patrick Odell, Alan Feiveson, A numerical procedure to generate a sample covariance matrix, Journal of the American Statistical Association, Volume 61, Number 313, March 1966, pages 199-203. Stanley Sawyer, Wishart Distributions and Inverse-Wishart Sampling, Washington University, 30 April 2007, 12 pages. Parameters: Input, int M, the order of the matrix. Input, int DF, the number of degrees of freedom. M <= DF. Output, double WISHART_UNIT_SAMPLE_INVERSE[M*M], the inverse of a sample matrix from the unit Wishart distribution. */ { double *a; double *b; double *c; double df_chi; int i; int j; if ( df < m ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "WISHART_UNIT_SAMPLE_INVERSE - Fatal error!\n" ); fprintf ( stderr, " DF = %d < M = %d.\n", df, m ); exit ( 1 ); } c = ( double * ) malloc ( m * m * sizeof ( double ) ); for ( i = 0; i < m; i++ ) { for ( j = 0; j < i; j++ ) { c[i+j*m] = 0.0; } df_chi = ( double ) ( df - i ); c[i+i*m] = sqrt ( r8_chi_sample ( df_chi ) ); for ( j = i + 1; j < m; j++ ) { c[i+j*m] = r8_normal_01_sample ( ); } } /* Compute B, the inverse of C. */ b = r8ut_inverse ( m, c ); /* The inverse of the Wishart sample matrix C'*C is inv(C) * C'. */ a = r8mat_mmt_new ( m, m, m, b, b ); /* Free memory. */ free ( b ); free ( c ); return a; }