# include # include # include # include # include # include int main ( int argc, char *argv[] ); char ch_cap ( char ch ); int ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); int file_column_count ( char *filename ); int file_row_count ( char *filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int i4_modp ( int i, int j ); int i4_wrap ( int ival, int ilo, int ihi ); int *i4mat_data_read ( char *input_filename, int m, int n ); void i4mat_header_read ( char *input_filename, int *m, int *n ); void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, char *title ); void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ); int r8_nint ( double x ); int r8_to_i4 ( double xmin, double xmax, double x, int ixmin, int ixmax ); double *r8mat_data_read ( char *input_filename, int m, int n ); void r8mat_header_read ( char *input_filename, int *m, int *n ); void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, char *title ); void s_blank_delete ( char *s ); int s_len_trim ( char *s ); int s_to_i4 ( char *s, int *last, int *error ); int s_to_i4vec ( char *s, int n, int ivec[] ); double s_to_r8 ( char *s, int *lchar, int *error ); int s_to_r8vec ( char *s, int n, double rvec[] ); int s_word_count ( char *s ); void timestamp ( ); void triangulation_plot ( char *filename, int node_num, double node_xy[], int element_order, int element_num, int element_node[] ); /******************************************************************************/ int main ( int argc, char *argv[] ) /******************************************************************************/ /* Purpose: triangulation_svg() plots a triangulated set of nodes. Usage: triangulation_svg prefix where: 'prefix' is the common prefix for the node and element files: * prefix_nodes.txt, the node coordinates. * prefix_elements.txt, the nodes that make up each element. * prefix.svg, the plot of the triangulation (output). Licensing: This code is distributed under the MIT license. Modified: 07 April 2014 Author: John Burkardt */ { int dim_num; char element_filename[255]; int *element_node; int element_num; int element_order; char node_filename[255]; int node_num; double *node_xy; char plot_filename[255]; char prefix[255]; timestamp ( ); printf ( "\n" ); printf ( "TRIANGULATION_SVG\n" ); printf ( " C version:\n" ); printf ( " Make an SVG plot of triangulated data.\n" ); printf ( "\n" ); printf ( " This program expects two files:\n" ); printf ( " * prefix_nodes.txt, node coordinates,\n" ); printf ( " * prefix_elements.txt, indices of nodes forming elements,\n" ); printf ( " and creates:\n" ); printf ( " * prefix.svg, an SVG image of the triangulation.\n" ); /* Get the filename prefix. */ if ( argc <= 1 ) { printf ( "\n" ); printf ( "TRIANGULATION_SVG:\n" ); printf ( " Please enter the filename prefix.\n" ); scanf ( "%s", prefix ); } else { strcpy ( prefix, argv[1] ); } /* Create the filenames. */ strcpy ( node_filename, prefix ); strcat ( node_filename, "_nodes.txt" ); strcpy ( element_filename, prefix ); strcat ( element_filename, "_elements.txt" ); strcpy ( plot_filename, prefix ); strcat ( plot_filename, ".svg" ); /* Read the node data. */ r8mat_header_read ( node_filename, &dim_num, &node_num ); printf ( "\n" ); printf ( " Read the header of \"%s\".\n", node_filename ); printf ( "\n" ); printf ( " Spatial dimension DIM_NUM = %d\n", dim_num ); printf ( " Number of nodes NODE_NUM = %d\n", node_num ); node_xy = r8mat_data_read ( node_filename, dim_num, node_num ); printf ( "\n" ); printf ( " Read the data in \"%s\".\n", node_filename ); r8mat_transpose_print_some ( dim_num, node_num, node_xy, 1, 1, dim_num, 5, " Portion of coordinate data from file:" ); /* Read the element data. */ i4mat_header_read ( element_filename, &element_order, &element_num ); printf ( "\n" ); printf ( " Read the header of \"%s\".\n", element_filename ); printf ( "\n" ); printf ( " Element order ELEMENT_ORDER = %d\n", element_order ); printf ( " Number of elements ELEMENT_NUM = %d\n", element_num ); element_node = i4mat_data_read ( element_filename, element_order, element_num ); printf ( "\n" ); printf ( " Read the data in \"%s\".\n", element_filename ); i4mat_transpose_print_some ( element_order, element_num, element_node, 1, 1, element_order, 5, " Portion of data read from file:" ); /* Detect and correct 1-based node indexing. */ mesh_base_zero ( node_num, element_order, element_num, element_node ); /* Create the output file. */ triangulation_plot ( plot_filename, node_num, node_xy, element_order, element_num, element_node ); /* Free memory. */ free ( element_node ); free ( node_xy ); /* Terminate. */ printf ( "\n" ); printf ( "TRIANGULATION_SVG:\n" ); printf ( " Normal end of execution.\n" ); printf ( "\n" ); timestamp ( ); return 0; } /******************************************************************************/ char ch_cap ( char ch ) /******************************************************************************/ /* Purpose: CH_CAP capitalizes a single character. Discussion: This routine should be equivalent to the library "toupper" function. Licensing: This code is distributed under the MIT license. Modified: 19 July 1998 Author: John Burkardt Parameters: Input, char CH, the character to capitalize. Output, char CH_CAP, the capitalized character. */ { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } /******************************************************************************/ int ch_eqi ( char ch1, char ch2 ) /******************************************************************************/ /* Purpose: CH_EQI is TRUE (1) if two characters are equal, disregarding case. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char CH1, CH2, the characters to compare. Output, int CH_EQI, is TRUE (1) if the two characters are equal, disregarding case and FALSE (0) otherwise. */ { int value; if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } if ( ch1 == ch2 ) { value = 1; } else { value = 0; } return value; } /******************************************************************************/ int ch_to_digit ( char ch ) /******************************************************************************/ /* Purpose: CH_TO_DIGIT returns the integer value of a base 10 digit. Example: CH DIGIT --- ----- '0' 0 '1' 1 ... ... '9' 9 ' ' 0 'X' -1 Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char CH, the decimal digit, '0' through '9' or blank are legal. Output, int CH_TO_DIGIT, the corresponding integer value. If the character was 'illegal', then DIGIT is -1. */ { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } /******************************************************************************/ int file_column_count ( char *input_filename ) /******************************************************************************/ /* Purpose: FILE_COLUMN_COUNT counts the number of columns in the first line of a file. Discussion: The file is assumed to be a simple text file. Most lines of the file is presumed to consist of COLUMN_NUM words, separated by spaces. There may also be some blank lines, and some comment lines, which have a "#" in column 1. The routine tries to find the first non-comment non-blank line and counts the number of words in that line. If all lines are blanks or comments, it goes back and tries to analyze a comment line. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the file. Output, int FILE_COLUMN_COUNT, the number of columns assumed to be in the file. */ { # define LINE_MAX 255 int column_num; char *error; FILE *input; int got_one; char line[LINE_MAX]; /* Open the file. */ input = fopen ( input_filename, "r" ); if ( !input ) { column_num = -1; printf ( "\n" ); printf ( "FILE_COLUMN_COUNT - Fatal error!\n" ); printf ( " Could not open the input file: \"%s\"\n", input_filename ); return column_num; } /* Read one line, but skip blank lines and comment lines. */ got_one = 0; for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } if ( line[0] == '#' ) { continue; } got_one = 1; break; } if ( got_one == 0 ) { fclose ( input ); input = fopen ( input_filename, "r" ); for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } got_one = 1; break; } } fclose ( input ); if ( got_one == 0 ) { printf ( "\n" ); printf ( "FILE_COLUMN_COUNT - Warning!\n" ); printf ( " The file does not seem to contain any data.\n" ); return -1; } column_num = s_word_count ( line ); return column_num; # undef LINE_MAX } /******************************************************************************/ int file_row_count ( char *input_filename ) /******************************************************************************/ /* Purpose: FILE_ROW_COUNT counts the number of row records in a file. Discussion: It does not count lines that are blank, or that begin with a comment symbol '#'. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Output, int FILE_ROW_COUNT, the number of rows found. */ { # define LINE_MAX 255 int comment_num; char *error; FILE *input; char line[LINE_MAX]; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; input = fopen ( input_filename, "r" ); if ( !input ) { printf ( "\n" ); printf ( "FILE_ROW_COUNT - Fatal error!\n" ); printf ( " Could not open the input file: \"%s\"\n", input_filename ); return (-1); } for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } fclose ( input ); return row_num; # undef LINE_MAX } /******************************************************************************/ int i4_max ( int i1, int i2 ) /******************************************************************************/ /* Purpose: I4_MAX returns the maximum of two I4's. Licensing: This code is distributed under the MIT license. Modified: 29 August 2006 Author: John Burkardt Parameters: Input, int I1, I2, are two integers to be compared. Output, int I4_MAX, the larger of I1 and I2. */ { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } /******************************************************************************/ int i4_min ( int i1, int i2 ) /******************************************************************************/ /* Purpose: I4_MIN returns the smaller of two I4's. Licensing: This code is distributed under the MIT license. Modified: 29 August 2006 Author: John Burkardt Parameters: Input, int I1, I2, two integers to be compared. Output, int I4_MIN, the smaller of I1 and I2. */ { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } /******************************************************************************/ int i4_modp ( int i, int j ) /******************************************************************************/ /* Purpose: I4_MODP returns the nonnegative remainder of I4 division. Discussion: If NREM = I4_MODP ( I, J ) NMULT = ( I - NREM ) / J then I = J * NMULT + NREM where NREM is always nonnegative. The MOD function computes a result with the same sign as the quantity being divided. Thus, suppose you had an angle A, and you wanted to ensure that it was between 0 and 360. Then mod(A,360) would do, if A was positive, but if A was negative, your result would be between -360 and 0. On the other hand, I4_MODP(A,360) is between 0 and 360, always. Example: I J MOD I4_MODP I4_MODP Factorization 107 50 7 7 107 = 2 * 50 + 7 107 -50 7 7 107 = -2 * -50 + 7 -107 50 -7 43 -107 = -3 * 50 + 43 -107 -50 -7 43 -107 = 3 * -50 + 43 Licensing: This code is distributed under the MIT license. Modified: 12 January 2007 Author: John Burkardt Parameters: Input, int I, the number to be divided. Input, int J, the number that divides I. Output, int I4_MODP, the nonnegative remainder when I is divided by J. */ { int value; if ( j == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4_MODP - Fatal error!\n" ); fprintf ( stderr, " I4_MODP ( I, J ) called with J = %d\n", j ); exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } /******************************************************************************/ int i4_wrap ( int ival, int ilo, int ihi ) /******************************************************************************/ /* Purpose: I4_WRAP forces an I4 to lie between given limits by wrapping. Example: ILO = 4, IHI = 8 I Value -2 8 -1 4 0 5 1 6 2 7 3 8 4 4 5 5 6 6 7 7 8 8 9 4 10 5 11 6 12 7 13 8 14 4 Licensing: This code is distributed under the MIT license. Modified: 26 December 2012 Author: John Burkardt Parameters: Input, int IVAL, an integer value. Input, int ILO, IHI, the desired bounds for the integer value. Output, int I4_WRAP, a "wrapped" version of IVAL. */ { int jhi; int jlo; int value; int wide; if ( ilo < ihi ) { jlo = ilo; jhi = ihi; } else { jlo = ihi; jhi = ilo; } wide = jhi + 1 - jlo; if ( wide == 1 ) { value = jlo; } else { value = jlo + i4_modp ( ival - jlo, wide ); } return value; } /******************************************************************************/ int *i4mat_data_read ( char *input_filename, int m, int n ) /******************************************************************************/ /* Purpose: I4MAT_DATA_READ reads the data from an I4MAT file. Discussion: An I4MAT is an array of I4's. The file is assumed to contain one record per line. Records beginning with the '#' character are comments, and are ignored. Blank lines are also ignored. Each line that is not ignored is assumed to contain exactly (or at least) M real numbers, representing the coordinates of a point. There are assumed to be exactly (or at least) N such records. Licensing: This code is distributed under the MIT license. Modified: 28 May 2008 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Input, int M, the number of spatial dimensions. Input, int N, the number of points. The program will stop reading data once N values have been read. Output, int I4MAT_DATA_READ[M*N], the table data. */ { # define LINE_MAX 255 int error; char *got_string; FILE *input; int i; int j; char line[255]; int *table; int *x; input = fopen ( input_filename, "r" ); if ( !input ) { printf ( "\n" ); printf ( "I4MAT_DATA_READ - Fatal error!\n" ); printf ( " Could not open the input file: \"%s\"\n", input_filename ); return NULL; } table = ( int * ) malloc ( m * n * sizeof ( int ) ); x = ( int * ) malloc ( m * sizeof ( int ) ); j = 0; while ( j < n ) { got_string = fgets ( line, LINE_MAX, input ); if ( !got_string ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error == 1 ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } fclose ( input ); free ( x ); return table; # undef LINE_MAX } /******************************************************************************/ void i4mat_header_read ( char *input_filename, int *m, int *n ) /******************************************************************************/ /* Purpose: I4MAT_HEADER_READ reads the header from an I4MAT file. Discussion: An I4MAT is an array of I4's. Licensing: This code is distributed under the MIT license. Modified: 28 May 2008 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Output, int *M, the number of spatial dimensions. Output, int *N, the number of points. */ { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { printf ( "\n" ); printf ( "I4MAT_HEADER_READ - Fatal error!\n" ); printf ( " FILE_COLUMN_COUNT failed.\n" ); *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { printf ( "\n" ); printf ( "I4MAT_HEADER_READ - Fatal error!\n" ); printf ( " FILE_ROW_COUNT failed.\n" ); return; } return; } /******************************************************************************/ void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, char *title ) /******************************************************************************/ /* Purpose: I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. Discussion: An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. Licensing: This code is distributed under the MIT license. Modified: 14 June 2005 Author: John Burkardt Parameters: Input, int M, the number of rows of the matrix. M must be positive. Input, int N, the number of columns of the matrix. N must be positive. Input, int A[M*N], the matrix. Input, int ILO, JLO, IHI, JHI, designate the first row and column, and the last row and column to be printed. Input, char *TITLE, a title. */ { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; fprintf ( stdout, "\n" ); fprintf ( stdout, "%s\n", title ); /* Print the columns of the matrix, in strips of INCX. */ for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); fprintf ( stdout, "\n" ); /* For each row I in the current range... Write the header. */ fprintf ( stdout, " Row: " ); for ( i = i2lo; i <= i2hi; i++ ) { fprintf ( stdout, "%6d ", i ); } fprintf ( stdout, "\n" ); fprintf ( stdout, " Col\n" ); fprintf ( stdout, "\n" ); /* Determine the range of the rows in this strip. */ j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { /* Print out (up to INCX) entries in column J, that lie in the current strip. */ fprintf ( stdout, "%5d: ", j ); for ( i = i2lo; i <= i2hi; i++ ) { fprintf ( stdout, "%6d ", a[i-1+(j-1)*m] ); } fprintf ( stdout, "\n" ); } } return; # undef INCX } /******************************************************************************/ void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ) /******************************************************************************/ /* Purpose: MESH_BASE_ZERO ensures that the element definition is zero-based. Discussion: The ELEMENT_NODE array contains nodes indices that form elements. The convention for node indexing might start at 0 or at 1. Since a C or C++ program will naturally assume a 0-based indexing, it is necessary to check a given element definition and, if it is actually 1-based, to convert it. This function attempts to detect 1-based node indexing and correct it. Licensing: This code is distributed under the MIT license. Modified: 08 October 2010 Author: John Burkardt Parameters: Input, int NODE_NUM, the number of nodes. Input, int ELEMENT_ORDER, the order of the elements. Input, int ELEMENT_NUM, the number of elements. Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element definitions. */ { int element; int node; int node_max; int node_min; int order; node_min = node_num + 1; node_max = -1; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; node_min = i4_min ( node_min, node ); node_max = i4_max ( node_max, node ); } } if ( node_min == 1 && node_max == node_num ) { printf ( "\n" ); printf ( "MESH_BASE_ZERO:\n" ); printf ( " The element indexing appears to be 1-based!\n" ); printf ( " This will be converted to 0-based.\n" ); for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] - 1; } } } else if ( node_min == 0 && node_max == node_num - 1 ) { printf ( "\n" ); printf ( "MESH_BASE_ZERO:\n" ); printf ( " The element indexing appears to be 0-based!\n" ); printf ( " No conversion is necessary.\n" ); } else { printf ( "\n" ); printf ( "MESH_BASE_ZERO - Warning!\n" ); printf ( " The element indexing is not of a recognized type.\n" ); printf ( " NODE_MIN = %d\n", node_min ); printf ( " NODE_MAX = %d\n", node_max ); printf ( " NODE_NUM = %d\n", node_num ); } return; } /******************************************************************************/ int r8_nint ( double x ) /******************************************************************************/ /* Purpose: R8_NINT returns the nearest integer to an R8. Example: X R8_NINT 1.3 1 1.4 1 1.5 1 or 2 1.6 2 0.0 0 -0.7 -1 -1.1 -1 -1.6 -2 Licensing: This code is distributed under the MIT license. Modified: 05 May 2006 Author: John Burkardt Parameters: Input, double X, the value. Output, int R8_NINT, the nearest integer to X. */ { int s; int value; if ( x < 0.0 ) { s = - 1; } else { s = + 1; } value = s * ( int ) ( fabs ( x ) + 0.5 ); return value; } /******************************************************************************/ int r8_to_i4 ( double xmin, double xmax, double x, int ixmin, int ixmax ) /******************************************************************************/ /* Purpose: R8_TO_I4 maps real X in [XMIN, XMAX] to integer IX in [IXMIN, IXMAX]. Discussion: IX := IXMIN + ( IXMAX - IXMIN ) * ( X - XMIN ) / ( XMAX - XMIN ) IX := min ( IX, max ( IXMIN, IXMAX ) ) IX := max ( IX, min ( IXMIN, IXMAX ) ) Licensing: This code is distributed under the MIT license. Modified: 19 April 2014 Author: John Burkardt Parameters: Input, double XMIN, XMAX, the real range. XMAX and XMIN must not be equal. It is not necessary that XMIN be less than XMAX. Input, double X, the real number to be converted. Input, int IXMIN, IXMAX, the allowed range of the output variable. IXMAX corresponds to XMAX, and IXMIN to XMIN. It is not necessary that IXMIN be less than IXMAX. Output, int R8_TO_I4, the value in the range [IXMIN,IXMAX] that corresponds to X. */ { int ix; double temp; if ( xmax == xmin ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8_TO_I4 - Fatal error!\n" ); fprintf ( stderr, " XMAX = XMIN, making a zero divisor.\n" ); fprintf ( stderr, " XMAX = %g\n", xmax ); fprintf ( stderr, " XMIN = %g\n", xmin ); exit ( 1 ); } temp = ( ( xmax - x ) * ( double ) ixmin + ( x - xmin ) * ( double ) ixmax ) / ( xmax - xmin ); if ( 0.0 <= temp ) { temp = temp + 0.5; } else { temp = temp - 0.5; } ix = ( int ) temp; return ix; } /******************************************************************************/ double *r8mat_data_read ( char *input_filename, int m, int n ) /******************************************************************************/ /* Purpose: R8MAT_DATA_READ reads the data from an R8MAT file. Discussion: An R8MAT is an array of R8's. The file is assumed to contain one record per line. Records beginning with the '#' character are comments, and are ignored. Blank lines are also ignored. Each line that is not ignored is assumed to contain exactly (or at least) M real numbers, representing the coordinates of a point. There are assumed to be exactly (or at least) N such records. Licensing: This code is distributed under the MIT license. Modified: 27 January 2005 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Input, int M, the number of spatial dimensions. Input, int N, the number of points. The program will stop reading data once N values have been read. Output, double R8MAT_DATA_READ[M*N], the table data. */ { # define LINE_MAX 255 int error; char *got_string; FILE *input; int i; int j; char line[255]; double *table; double *x; input = fopen ( input_filename, "r" ); if ( !input ) { printf ( "\n" ); printf ( "R8MAT_DATA_READ - Fatal error!\n" ); printf ( " Could not open the input file: \"%s\"\n", input_filename ); return NULL; } table = ( double * ) malloc ( m * n * sizeof ( double ) ); x = ( double * ) malloc ( m * sizeof ( double ) ); j = 0; while ( j < n ) { got_string = fgets ( line, LINE_MAX, input ); if ( !got_string ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error == 1 ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } fclose ( input ); free ( x ); return table; # undef LINE_MAX } /******************************************************************************/ void r8mat_header_read ( char *input_filename, int *m, int *n ) /******************************************************************************/ /* Purpose: R8MAT_HEADER_READ reads the header from an R8MAT file. Discussion: An R8MAT is an array of R8's. Licensing: This code is distributed under the MIT license. Modified: 04 June 2004 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Output, int *M, the number of spatial dimensions. Output, int *N, the number of points. */ { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { printf ( "\n" ); printf ( "R8MAT_HEADER_READ - Fatal error!\n" ); printf ( " FILE_COLUMN_COUNT failed.\n" ); *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { printf ( "\n" ); printf ( "R8MAT_HEADER_READ - Fatal error!\n" ); printf ( " FILE_ROW_COUNT failed.\n" ); return; } return; } /******************************************************************************/ void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, char *title ) /******************************************************************************/ /* Purpose: R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. Licensing: This code is distributed under the MIT license. Modified: 20 August 2010 Author: John Burkardt Parameters: Input, int M, N, the number of rows and columns. Input, double A[M*N], an M by N matrix to be printed. Input, int ILO, JLO, the first row and column to print. Input, int IHI, JHI, the last row and column to print. Input, char *TITLE, a title. */ { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; fprintf ( stdout, "\n" ); fprintf ( stdout, "%s\n", title ); for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; fprintf ( stdout, "\n" ); fprintf ( stdout, " Row:" ); for ( i = i2lo; i <= i2hi; i++ ) { fprintf ( stdout, " %7d ", i - 1 ); } fprintf ( stdout, "\n" ); fprintf ( stdout, " Col\n" ); fprintf ( stdout, "\n" ); j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { fprintf ( stdout, "%5d:", j - 1 ); for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; fprintf ( stdout, " %14f", a[(i-1)+(j-1)*m] ); } fprintf ( stdout, "\n" ); } } return; # undef INCX } /******************************************************************************/ void s_blank_delete ( char *s ) /******************************************************************************/ /* Purpose: S_BLANK_DELETE removes blanks and left justifies the remainder. Discussion: All TAB characters are also removed. Licensing: This code is distributed under the MIT license. Modified: 01 July 2008 Author: John Burkardt Parameters: Input/output, char *S, the string to be transformed. */ { char *get; char *put; char TAB = 9; put = s; get = s; while ( *get != '\0' ) { if ( *get != ' ' && *get != TAB ) { *put = *get; put = put + 1; } get = get + 1; } *put = *get; return; } /******************************************************************************/ int s_len_trim ( char *s ) /******************************************************************************/ /* Purpose: S_LEN_TRIM returns the length of a string to the last nonblank. Licensing: This code is distributed under the MIT license. Modified: 26 April 2003 Author: John Burkardt Parameters: Input, char *S, a pointer to a string. Output, int S_LEN_TRIM, the length of the string to the last nonblank. If S_LEN_TRIM is 0, then the string is entirely blank. */ { int n; char *t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } /******************************************************************************/ int s_to_i4 ( char *s, int *last, int *error ) /******************************************************************************/ /* Purpose: S_TO_I4 reads an I4 from a string. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char *S, a string to be examined. Output, int *LAST, the last character of S used to make IVAL. Output, int *ERROR is TRUE (1) if an error occurred and FALSE (0) otherwise. Output, int *S_TO_I4, the integer value read from the string. If the string is blank, then IVAL will be returned 0. */ { char c; int i; int isgn; int istate; int ival; *error = 0; istate = 0; isgn = 1; i = 0; ival = 0; while ( *s ) { c = s[i]; i = i + 1; /* Haven't read anything. */ if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = 1; return ival; } } /* Have read the sign, expecting digits. */ else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = 1; return ival; } } /* Have read at least one digit, expecting more. */ else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } /* If we read all the characters in the string, see if we're OK. */ if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = 1; *last = 0; } return ival; } /******************************************************************************/ int s_to_i4vec ( char *s, int n, int ivec[] ) /******************************************************************************/ /* Purpose: S_TO_I4VEC reads an I4VEC from a string. Licensing: This code is distributed under the MIT license. Modified: 19 February 2001 Author: John Burkardt Parameters: Input, char *S, the string to be read. Input, int N, the number of values expected. Output, int IVEC[N], the values read from the string. Output, int S_TO_I4VEC, is TRUE (1) if an error occurred and FALSE (0) otherwise. */ { int error; int i; int lchar; error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } /******************************************************************************/ double s_to_r8 ( char *s, int *lchar, int *error ) /******************************************************************************/ /* Purpose: S_TO_R8 reads an R8 value from a string. Discussion: We have had some trouble with input of the form 1.0E-312. For now, let's assume anything less than 1.0E-20 is zero. This routine will read as many characters as possible until it reaches the end of the string, or encounters a character which cannot be part of the real number. Legal input is: 1 blanks, 2 '+' or '-' sign, 2.5 spaces 3 integer part, 4 decimal point, 5 fraction part, 6 'E' or 'e' or 'D' or 'd', exponent marker, 7 exponent sign, 8 exponent integer part, 9 exponent decimal point, 10 exponent fraction part, 11 blanks, 12 final comma or semicolon. with most quantities optional. Example: S R '1' 1.0 ' 1 ' 1.0 '1A' 1.0 '12,34,56' 12.0 ' 34 7' 34.0 '-1E2ABCD' -100.0 '-1X2ABCD' -1.0 ' 2E-1' 0.2 '23.45' 23.45 '-4.2E+2' -420.0 '17d2' 1700.0 '-14e-2' -0.14 'e2' 100.0 '-12.73e-9.23' -12.73 * 10.0**(-9.23) Licensing: This code is distributed under the MIT license. Modified: 24 June 2005 Author: John Burkardt Parameters: Input, char *S, the string containing the data to be read. Reading will begin at position 1 and terminate at the end of the string, or when no more characters can be read to form a legal real. Blanks, commas, or other nonnumeric data will, in particular, cause the conversion to halt. Output, int *LCHAR, the number of characters read from the string to form the number, including any terminating characters such as a trailing comma or blanks. Output, int *ERROR, is TRUE (1) if an error occurred and FALSE (0) otherwise. Output, double S_TO_R8, the value that was read from the string. */ { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = 0; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; /* Blank or TAB character. */ if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } /* Comma. */ else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } /* Minus sign. */ else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } /* Plus sign. */ else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } /* Decimal point. */ else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } /* Exponent marker. */ else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } /* Digit. */ else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } /* Anything else is regarded as a terminator. */ else { iterm = 1; } /* If we haven't seen a terminator, and we haven't examined the entire string, go get the next character. */ if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } /* If we haven't seen a terminator, and we have examined the entire string, then we're done, and LCHAR is equal to NCHAR. */ if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } /* Number seems to have terminated. Have we got a legal number? Not if we terminated in states 1, 2, 6 or 7! */ if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = 1; return r; } /* Number seems OK. Form it. We have had some trouble with input of the form 1.0E-312. For now, let's assume anything less than 1.0E-20 is zero. */ if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { if ( jsgn * jtop < -20 ) { rexp = 0.0; } else { rexp = pow ( ( double ) 10.0, ( double ) ( jsgn * jtop ) ); } } else { if ( jsgn * jtop < -20 * jbot ) { rexp = 0.0; } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( ( double ) 10.0, ( double ) rexp ); } } } r = isgn * rexp * rtop / rbot; return r; } /******************************************************************************/ int s_to_r8vec ( char *s, int n, double rvec[] ) /******************************************************************************/ /* Purpose: S_TO_R8VEC reads an R8VEC from a string. Licensing: This code is distributed under the MIT license. Modified: 19 February 2001 Author: John Burkardt Parameters: Input, char *S, the string to be read. Input, int N, the number of values expected. Output, double RVEC[N], the values read from the string. Output, int S_TO_R8VEC, is TRUE (1) if an error occurred and FALSE (0) otherwise. */ { int error; int i; int lchar; error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } /******************************************************************************/ int s_word_count ( char *s ) /******************************************************************************/ /* Purpose: S_WORD_COUNT counts the number of "words" in a string. Licensing: This code is distributed under the MIT license. Modified: 16 September 2015 Author: John Burkardt Parameters: Input, char *S, the string to be examined. Output, int S_WORD_COUNT, the number of "words" in the string. Words are presumed to be separated by one or more blanks. */ { int blank; int word_num; char *t; word_num = 0; blank = 1; t = s; while ( *t ) { if ( *t == ' ' || *t == '\n' ) { blank = 1; } else if ( blank ) { word_num = word_num + 1; blank = 0; } t++; } return word_num; } /******************************************************************************/ void timestamp ( ) /******************************************************************************/ /* Purpose: TIMESTAMP prints the current YMDHMS date as a time stamp. Example: 31 May 2001 09:45:54 AM Licensing: This code is distributed under the MIT license. Modified: 24 September 2003 Author: John Burkardt Parameters: None */ { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); printf ( "%s\n", time_buffer ); return; # undef TIME_SIZE } /******************************************************************************/ void triangulation_plot ( char *filename, int node_num, double node_xy[], int element_order, int element_num, int element_node[] ) /******************************************************************************/ /* Purpose: TRIANGULATION_PLOT plots a triangulation in SVG format. Licensing: This code is distributed under the MIT license. Modified: 21 April 2014 Author: John Burkardt Parameters: Input, char *FILENAME, the name of the output file. Input, int NODE_NUM, the number of points. Input, double NODE_XY[2*NODE_NUM], the nodes. Input, int ELEMENT_ORDER, the order of the element. Input, int ELEMENT_NUM, the number of elements. Input, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], lists, for each element, the indices of the points that form the vertices of the element. */ { int i; int i4; int i4_max; int i4_min; int ii; int j; int j4; int j4_max; int j4_min; int node; int order6[6] = { 0, 3, 1, 4, 2, 5 }; FILE *output; double x_max; double x_min; double x_scale; double y_max; double y_min; double y_scale; /* Determine SCALE, the maximum data range. */ x_max = node_xy[0+0*2]; x_min = node_xy[0+0*2]; for ( j = 0; j < node_num; j++ ) { x_max = fmax ( x_max, node_xy[0+j*2] ); x_min = fmin ( x_min, node_xy[0+j*2] ); } x_scale = x_max - x_min; x_max = x_max + 0.05 * x_scale; x_min = x_min - 0.05 * x_scale; x_scale = x_max - x_min; y_max = node_xy[1+0*2]; y_min = node_xy[1+0*2]; for ( j = 0; j < node_num; j++ ) { y_max = fmax ( y_max, node_xy[1+j*2] ); y_min = fmin ( y_min, node_xy[1+j*2] ); } y_scale = y_max - y_min; y_max = y_max + 0.05 * y_scale; y_min = y_min - 0.05 * y_scale; y_scale = y_max - y_min; i4_min = 1; j4_min = 1; if ( x_scale < y_scale ) { i4_max = ( int ) ( 0.5 + 500.0 * x_scale / y_scale ); j4_max = 500; } else { i4_max = 500; j4_max = ( int ) ( 0.5 + 500.0 * y_scale / x_scale ); } /* Open the file. */ output = fopen ( filename, "wt"); /* Write that junk. */ fprintf ( output, "\n" ); fprintf ( output, "\n" ); fprintf ( output, "\n" ); fprintf ( output, "\n" ); fprintf ( output, "\n" ); fprintf ( output, " \n" ); fprintf ( output, " Triangulation created by triangulation_svg.c\n" ); fprintf ( output, " \n" ); for ( j = 0; j < element_num; j++ ) { fprintf ( output, " \n" ); } fprintf ( output, "\n" ); fclose ( output ); printf ( "\n" ); printf ( " Graphics data written to file \"%s\"\n", filename ); return; }