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We present nonoverlapping domain decomposition techniques applied to a two-stage Numerov- 
Galerkin finite element model of the shallow water equations over a limited-area domain. The Schur 
complement matrix formulation is employed and a modified interface matrix approach is proposed to 
handle the coupling between subdomains. The resulting nonsymmetric Schur complement matrices, 
modified interface matrices as well as the subdomain coefficient matrices are solved using Pre- 
conditioned Conjugate Gradient Squared (PCGS) non-symmetric iterative solvers. Various stages of 
the finite element solution are parallelized and the code is implemented on a four processor CRAY 
Y-MP supercomputer applying multitasking techniques in a dedicated environment. 

1. Introduction and motivation 

Recently there has been an increase in research activities in the area of parallel computing 
due to the advent and growth of various parallel processing architectures. The domain 
decomposition approach achieves the highest level of parallelism in the numerical solution of 
partial differential equations. Specifically, the problem defined on the original domain of 
interest is explicitly split up into several smaller subproblems defined on subdomain regions. 
Each of these subproblems is associated with a task or software process which is scheduled 
onto a different processor for parallel processing. 

The idea of domain decomposition goes back to Schwarz [1] or the work of structural 
engineers in the early 1960s [2]. However, it was only during the last 10 years that researchers 
developed and extended these ideas for use with parallel architectures. While taking advan- 
tage of available modern powerful parallel computers is the main reason for carrying out this 
research, there are additional reasons for developing this technique. Some of these are listed 
below: 
(1) The domain decomposition technique can be employed for the solution of problems 

defined on irregular domains when one is applying finite difference or spectral methods 
and thus rendering these numerical schemes more flexible and versatile geometrically (see 
[:3,41). 
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(2) The domain decomposition techniques also allow us to use different numerical schemes 
and different resolutions (or different types and orders of elements for the finite element 
method) for different subdomains (see, for example, [5]). Thus they allow us to combine 
the advantages of finite element, spectral and multigrid methods and provide oppor- 
tunities for devising more efficient and accurate algorithms applicable to parallel architec- 
tures (see [6] and references therein). 

(3) It also provides us with an easy means for isolating regions which require special 
treatment. Thus the computational effort can be focused upon regions where large 
gradients, boundary layers, shocks or even singularities occur (see [7, 8]). 

(4) The technique is particularly useful for problems which require different mathematical 
models for different subdomains, for instance, in fluid dynamics, using a viscous model 
near the boundary and an inviscid model in the far field. Two good examples are in 
[9, 10]. 

There are two main approaches for the domain decomposition, namely overlapping and 
nonoverlapping, characterized by the way the subdomains are constructed. For the nonover- 
lapping approach, most of the research, up to now, has been almost exclusively focused on the 
interface(s), or more specifically, on finding good preconditioners of the Conjugate Gradient 
(CG) algorithm [11] for the symmetric capacitance linear systems arising from finite difference 
or finite element discretizations of elliptic partial differential equations in two- or three- 
dimensional domains (see [12-18] for more details). 

The primary reason for this focus is that the iterative solution of the interface Schur 
complement matrix system involves repeated solutions of all the subdomain problems and the 
interface solver itself is a potential bottleneck for the coarse-grained parallelism. 

In this paper, we extend the applicability of domain decomposition methods to a set of 
coupled nonlinear hyperbolic shallow water partial differential equations defined on a 2-D 
limited.area domain, using finite element discretization in space and an implicit integration 
scheme in time. 

Due to the paramount importance of the shallow water equations in meteorology and 
oceanography, where they serve as test models for the development of new algorithms, the 
efficient finite element solution of the shallow water equations has attracted the interest of 
many researchers. A tremendous amount of work has been done in this direction, see, for 
example, [19-28], to cite but a few references. These algorithms were not, however, designed 
to run efficiently on various parallel processing architectures. 

In the present paper, we report our work on the Schur complement matrix and modified 
interface matrix appro~ehes applied to a two-stage Numerov-Galerkin finite element model of 
the shallow water equations [24, 25] over a limited-area domain. The main points in each of 
the following sections are summarized below. 

In Section 2, we give a mathematical presentation of the 2-D shallow water equations under 
consideration along with a nondimensionalized version of the problem, followed by a brief 
presentation in Section 3 of the essential components of the two stage Numerov-Galerkin 
finite element method. In Section 4, the Schur complement and relevant formulas for 
n (n >-- 2) nonoverlapping subdomains are briefly reviewed. 

One of the key steps for carrying out the Schur complement domain decomposition is to 
obtain the so-called arrow-head matrix, from which information can be derived regarding the 
Schur complement matrix or the modified interface matrix and the systems governing the 
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various subdomain problems. In Section 5 we present a scheme which transforms the global 
finite element automatically into this arrow-head matrix. 

In Section 6, we describe a computational algorithm employed for our numerical experi- 
ments of a relatively new nonsymmetric iterative solver [29] of the Lanczos type, PCGS 
(preconditioned conjugate gradient squared) along with other relevant issues. Section 7 deals 
with the Schur complement matrix approach to our problem. A class of relatively robust and 
efficient boundary probe preconditioners [30] was employed to accelerate the convergence on 
the interfaces. 

The theory and algorithms for a modified interface matrix approach of the nonoverlapping 
domain decomposition are presented in Section 8. The modified interface matrix is con- 
structed by using a Neumann series expansion and the MILU (modified incomplete LU) 
factorization in each subdomain. 

For this approach, it is observed that iterative improvements of the initial guesses are 
possible for the iterative solutions in the subdomains as well as on the interfaces. The 
reduction in the number of iterations, due to the improved initial guesses, for the solution of 
the subdomain problems may be regarded as a remedy for the disadvantage that no fast 
solvers are available in the subdomains. The iterative improvement of the initial guesses made 
on the interfaces greatly reduces the computational cost and thus the parallel processing 
overhead for the solution of the modified interface matrix linear system. 

In Section 9, we present the results of various numerical experiments along with the parallel 
implementation of our algorithms on the four-processor Cray Y-MP/432 supercomputer in a 
dedicated environment by applying multitasking techniques. Finally, summary and conclusions 
are presented in Section 10. 

To conclude the introduction, we point out the existence of another good approach which 
constructs a domain-decomposed preconditioner for the simultaneous iterative procedure on 
the whole domain. One of the advantages of this approach is that only approximate 
subdomain solvers are required. This alternative approach was first proposed in [31, 32], and 
further studied in [33, 34]. Our work based on this approach along with the application and 
comparison of various nonsymmetric iterative solvers for the shallow water equations will be 
reported in another paper [35]. 

2 Problem presentation 

The shallow water equations are a set of first order nonlinear hyperbolic partial differential 
equations having many important applications in meteorology and oceanography. These 
equations can be used in studies of tides and surface water run-off. They may also be used to 
study large-scale waves in the atmosphere and ocean if terms representing the effects of the 
earth's rotation (Coriolis terms) are included. 

Indeed, it has become customary in developing new numerical methods for numerical 
weather prediction or oceanography, to study first the simpler nonlinear shallow water 
equation system, which possesses the same mixture of slow- and fast-moving waves as the 
more complex baroclinic three-dimensional primitive equations of motion. 

Here we are concerned with the domain decomposition solution of the 2-D shallow water 
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equations on a limited-area domain discretized by finite element approximations. The 2-D 
shallow water equations in Cartesian coordinates assume the following form: 

Of 
Ot 

Ou 

Ot 

Ov 

Ot 

+ u Tx + O Ty + ¢ Tx + 

Ou Ou Otp _ 
+ u T ~ + v T ~  + ox fv=0, 

Ov Ov Otp 
+ u + o + Ty + f "  = o ,  

- 0 ,  (2.1) 

(2.2) 

(2.3) 

O<~x<~L, O<~y<<.D, t > 0 .  

The last two equations are termed momentum equations, while the first equation is the 
continuity equation. The Coriolis parameter is given by the fl-plane approximation 

f = f  + ~ ( y -  D/2),  (2.4) 

where L and D are the dimensions of a rectangular domain of area A = LD, u and v are the 
velocity components in the x and y directions, respectively, h is the depth of the fluid, tp = gh 
denotes geopotential, g is the acceleration of gravity, f is the Coriolis parameter, and f and/3 
are two constants. 

Periodic boundary conditions are assumed in the x direction for all the field variables. Let 
w = (u, v, ¢)t. Then 

w(x, y, t)= w(x + L, y, t) . (2.5) 

In the y direction, rigid boundary conditions are specified only for the v-velocity component, 
that is, 

v(x, O, t) = v(x, D, t) = O. (2.6) 

Initial conditions need to be specified for the u, v and ~ fields, namely 

w(x, y, 0)= w0(x, y). (2.7) 

Under these boundary and initial conditions, the total energy 

l fLo f ~ v 2 ¢- dx dy (2.8) E = ~ (u 2 + + ~) g 

is independent of time, i.e., it is an integral invariant. 
The test problem used here is one proposed in [36] for the nonlinear shallow water 

equations in a channel on the rotating earth, the initial conditions being determined by the 
following initial height field: 
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h(x ,  y ) =  H o +  H,  t a n h ( 9 ( D I 2 -  y ) )  + H 2 s e c h 2 ( 9 ( D I 2 - Y ) ) s i n ( 2 1 r x ]  
2 0  2 0  -- -L- l"  

(2.9) 

The initial geopotential q~ and velocity fields u and v are derived from the initial height field 
using the geostrophic relationship 

Oh (2.10) q~ = gh , u = - ( g / f )  Oy , v = ( g / f )  Ohox 

The dimensionless form of any physical problems is not anique. A possible nondimension~' • 
ized version of the above set of the shallow water equalions is obtained by introducing i i:<: 
following dimensionless variables, where t¢ 0 is a pre-selected reference geopotential" 

x '  = x / L  , y '  = y / L  , 

t' = t v ~ o l L  , ~p' = q~lq~o , 

u ' = u l x/-~o , v ' = v l V~o  , (2.11) 

h'  = h l L  , H ~ =  H o / L  , 

H[ = Hi~L, H~= H2/L , 

g, = g L hpo ' jr, = f L I V~o  . 

By using (2.11) and dropping the primes, our problem can be shown to be governed by 
(2.1)-(2.7), (2.9) and (2.10) with L being 1, D replaced by D / L ,  f by L f / V ~ o  and /3 by 
L 2~ I v ~ o  . 

3. The two-stage Numerov-Galerkin finite element method 

Using linear piecewise polynomials on triangular elements and a time extrapolated Crank- 
Nicolson time differencing scheme [20,21], the usual Galerkin form of the shallow-water 
equations yields 

M(~b7 +' 

M(u', '+' 

M ( v  n+! 

- * 7 ) -  ½At ÷' + * 7 ) = o ,  

-- Uj)n + ½At K2(u  j ,  n+l + Uj)" + ½Atk'*i'k'"+i+K21 )"  +AtP2=0 s ~ 2 k s L 2 1  

v i ) +  ½AtK~" "+' " _ n [Vj + Vj) + ½At k'*tk'n+l + K3t) + At P3 = 0  sx  2ks , .  31 

(3.1) 

(3.2) 

(3.3) 

for the continuity and the u- and v-momentum equations, respectively. 
Here n is the time level ( t .  = n At), At is the time-step, M is the mass matrix given by 

M =  f fa  V j~  d A  , 
(3.4) 
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where t~ is the basis function. ~bj(t), uj(t) and vj(t) are the discrete scalar nodal values for the 
geopotential tp and velocity fields u and v, respectively. The following matrix definitions have 
been used: 

r~ = V~Vku' ~ --~ d A  + V~Vkv ~ ~ d A  , (3.5) 

K~ = u~VgV~ - ~  d A  + v~VrV ~ ~ d A  , (3.6) 

K271 ff,,=÷l avK = ,,.x ~ V~ d A ,  (3.7) 

P,= f f~ ~V,V, dA , (3.8) 

ff ÷, ov, K'~ = u r V r - ~  d A  + v~V r - ~  d A  , (3.9) 

O Vic oy E dA, (3.10) 

e, -  f fA fuT'v,v, dA , (3.11) 

and similar definitions for K~ and K~t, respectively. 

3.1. Truncation error,for the single-stage Galerkin method 

The single-stage Galerkin method [19] was applied to the nonlinear advective terms of form 
vVv. If we consider the advective operator 

t~v 
L(u, v)= u 0--;' (3.12) 

then, as shown in [19], we can consider a direct Galerkin approximation using two functions: 

u = e i*x , v = e ux , (3.13a) 

and With 

= k h ,  71 - lh ,  (3.13b) 

where h is a positive mesh length. One can show the asymptotic truncation error of u Ov/Ox is 
(by assuming Fourier modes) 

IT.E.I ~ [47/4 + 8~2s~ + 7v/2s ~ 2 -  2vff 3] 
720 " (3.14) 
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For ~: = 71, we obtain 

17 4 (3.15) IT.E.I-- 720 7 • 

3.2. Truncation error for  the two-stage Numerov-Galerk in  method 

In this approach one calculates the Galerkin approximation to Ov/Ox which we denote by 
Z: 

1Zi - +2 1Zj_t= 1 -Vj_,) -~ ~ -~ Z j + -~ ~ h - t ( Vj + ~ , (3.16) 

then we calculate the product 

00 
W = u  

Ox ' 

1 Wj+ 1 +2~ Wj+~I Wj_l = 1-21 (Uj_ IZj-  ! +Uj_ 1Zj+U~Zj-  1 + UjZj+I 

1U~Z~ + tJj+,zj+,) + g 

(3.17) 

+ uj÷,zj 

(3.18) 

It can be shown that this algorithm has an asymptotic truncation error of 

IT.E.I [2~:37 + 3~27 2 + 2~7 3 - 4 7  4] 
T,vo-stage N.G. 720 

(3.19) 

and if ¢ = 7  

[T.E.[ 3 4 
Two-stageN.G. " 7 2 0 7  , 

i.e., an error at least six times smaller than (3.15) (see [24]). 

(3.20) 

3.3. Numerical implementation o f  the Numerov-Galerkin  method 

In our approach, we combine the two-stage Galerkin method with a high-order compact 
implicit difference approximation to the first derivative. 

This approximation has a truncation-error of o(h 4t) and uses a finite difference stencil of 
21 + 1 grid points, at the price of solving a 21 + 1 banded matrix (see [37, 23]). The compact 
Numerov O(h s) approximation to av /ax  is given by 

00 
1 [(~xV)i+2 + 16(~x)i+1 + 36(_~x)i + 16(~xV)i_l + (0-x')i-2] 

_- 1 [ - 5 v i _ 2 -  32vi_1 + 32vi+1 + 5vi+2] 
84h 

(3.21) 

where h = Ax = Ay. 
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The estimation of Ov/Ox necessitates solving a pentadiagonal system of the form 

1 
7O 

-36  

16 

1 

16 1 

36 16 1 

16 36 16 1 

1"" 16"" 36"'16"" 1 

1 16 36 16 

1 16 36_ 

1 
84h 

m 

0 
-5Vo-  32v~ + 32v 3 + 5v 4 
-5v~ - 32v2 + 32v4 + 5v5 

-SvN,,-4- 32VNy_'2 + 32VN + 5VN~+I 
.-5,vN _3 - 32VN _2 + 32V~ + 5VN~+ ~ 

(3.22) 

for j-- 1 , 2 , . . . ,  Ny. 
Here we interpolate for the boundary values of vo and VN,.+, using 

v o = 4v~ - 602 + 4v:~ - 04 , 

V,,, +t = 4VN, -- 6VN~.-t + 4VN~.-2 - -  0 N y _  3 , 

(3.23) 

while for the intermediate expression Z, we have 

Zi = ( 0 ~ )  -25v I + 48v2- 36v 3 - 16v4 - 3v5 
= 12h + o(h4) ,  (3.24a) 

Or) 3VNy-4 -- 16VNy-3 + 36VNy-2 -- 48VN,,-I + 25VN,. + o(h 4) (3.24b) 
Z,,,, = ~ N, = 12h " 

For the second stage of the finite element Numerov-Galerkin, we solve a tridiagonal system 
of the form 

1 
~ . 4  1 

" i  4. 
1[ vj_~Zj_~ + vjZj_~ + vj_~Zj + ] 

[wj] = ~ vi+lZj + viZi+l + vi+lZi+! + 6vjZ i . (3.25) 

In the second stage, we interpolate the values of Z0 and ZN,,+ m in a way similar to (3.24). A 
pentadiagonai and a cyclic pentadiagonal matrix solver (induced by the periodic boundary 
conditions) were developed following [38] and generalizing [39], respectively. 
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4. Substructuring and the Schur complement 

It is well known in the finite element method that the internal degrees of freedom can be 
condensed out at the element level before the assembly process (see, for example, [40]). 
When this idea is applied to a group of elements, i.e., a substructure or a subdomain, it leads 
to what is known among engineers as the substructuring techniques. 

The idea is that the whole structure or domain is considered to be an assembly of 
substructures or subdomains (see, for example, [2, 41, 42]). Each substructure or subdomain, 
in turn, is idealized as an assembly of finite elements, and all internal degrees of freedom are 
statically condensed out. 

To fix ideas, two classes of variables are usually identified, namely the internal variables 
relevant to nodes within subdomains, and the interface variables relevant to nodes belonging 
to two or more subdomains. The internal variables may be numbered either before or after 
the interface ones. 

Here we are particularly interested in the computational speedup resulting when using the 
domain decomposition technique. We will consider subdividing the domain 12 under consid- 
eration into n nonoverlapping parallel strips n i, i = 1 , . . . ,  n, of equal or nearly equal sizes. 
The n -  1 interfaces F~, i = 1 , . . . ,  n -  1, separating these n subdomains from each other are 
collectively denoted by F. We have the following relations: 

a -  a, u G u... u n. u r ,  (4.1) 

n, nnj= for i # j ,  (4.2) 

r= r, u u r._,. (4.3) 

The differential operator governing the problem on/~ can be split up into operators acting 
on the interfaces F and the n subdomains/~, i = 1 , . . . ,  n, at each time step as can be realized 
by identifying two types of variables and renumbering. If we denote the matrix representations 
of these reduced operators as A , ,  i = 1 , . . . ,  n, on each of the subdomains and As, on the 
interfaces F, we obtain the following system of equations: 

[ A l { x } = { I }  , (4.4) 

where A is an arrow-head matrix of the form 

where 

Add Ads ] 
[A] = As d As ~ j 

(4.5a) 

Add - - "  diag[A ,,, A 2 2 , . . . ,  A. .]  (4.5b) 

is a block diagonal matrix. Ads and A sd are the block column and row vectors of the following 
forms: 
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A a = { A t ~ , A z s , . . .  , A n s }  t , (4.5c) 

and 
A~d = {As1, As2 , . . . ,  As . } ,  

{X}= { X l , X 2 , . . . , X n ,  Xs} t , 

(4.5d) 

(4.6) 

{f} = {f~, f 2 , . . . ,  f , ,  fs}t. (4.7) 

Note that the matrix A consists essentially of the assembly of the subdomain stiffness matrices, 
see also [15]. If we let n i, i = 1 , . . . ,  n, be the number of unknowns in each of the subdomains 
and n s be the number of unknowns on the interfaces, then each of the matrices A , ,  A i s  and 
A,~ is of size n~ x n~, n~ x n~ and n~ x ni, respectively, for i = 1 , . . . ,  n. Likewise A~s is of the 
size n s × n s . 

There is no direct coupling between any two different subdomains. Each of the matrices 
A , ,  i - 1 , . . . ,  n, has at most seven nonzero entries in each row for our seven-point stencil 
corresponding to the linear triangular finite element discretization. The coupling between the 
subdomains and interfaces is represented by the matrices A~, and Asi, i = 1 , . . . ,  n, which are 
very sparse matrices. Most rows of A~,, i = 1 , . . . ,  n, are zeroes (for a reasonably high mesh 
resolution) and there are at most two nonzero entries for any nonzero rows. The same 
arguments hold for the matrices As~, i = 1 , . . . ,  n, if we refer to columns instead of rows. 

The interfaces F include n - 1 internal boundaries F~, i = 1 , . . . ,  n - 1, which satisfy (4.3), 
and no points from different internal boundaries are expected to appear in the same stencil. 
This accounts for the special structure of matrix Ass. For instance, Ass is diagonal for a 
three-point stencil 1-D problem; block diagonal 

diag[B,,, B~.~,..., B,,_,.,_,], (4.8) 

with each of B,,  i = 1 , . . . ,  n - 1, being of the following form: 

• .. (4.9) 

for a five-point finite difference stencil or a seven-point triangular finite element stencil 
discretization of the 2-D shallow-water equations problem presented in Section 2. The matrix 
structure in (4.8) will be used to explore the parallelism of the interface preconditioner 
presented in Section 7. 

At each time step, we have to handle three systems of linear equations of the form (4.4) 
governing, respectively, the evolution of the geopotential field and two components of the 
velocity field distributions. 

By using block Gaussian elimination, the system (4.4) can be reduced to the following 
systems of linear equations: 
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Cx~ = g on F ,  (4.10) 

and for i =  1 , . . . ,  n 

where 

and 

A ,x  i = f / -  Aisxs on/~i ,  

C A ~ -l = ss - A s i A i i  A i s  
i = l  

(4.11) 

(4.12) 

n 

g = f~ - ~ ,  A s i A ~ L .  (4.13) 
i = 1  

C is the so-called Schur complement, capacitance matrix or Gauss transform in different 
contexts (see [43-45]). It is clear that the subdomain problems (4.11) are essentially 
independent of each other and that the solutions can be sought in a highly parallel way once 
the interface Schur complement linear system (4.10) has been solved. 

It is well known that although each of the matrices A , ,  i = 1 , . . . ,  n, and Ass corresponds to 
a lower dimensional local differential operator and hence sparse, the Sehur complement 
matrix C is generally not sparse. This fact is clearly seen in the finite element context by 
noticing that the Schur complement C consists essentially of the assembly matrix of the 
substructure stiffness matrices. Therefore the solutions of (4.10) are expensive to obtain using 
a direct solver, especially as the degrees of freedom on the interfaces increase when higher 
mesh resolutions are employed. 

5. A node renumbering scheme 

In a computer program designed for solving partial differential equations, we may introduce 
a modification of the code in order to accommodate various mesh resolutions aimed at 
obtaining higher orders of accuracy and testing the convergence of the method. 

Let us denote the original nodal numbers (specific to each approximation method) as the 
old numbering, while the nodal numbers after renumbering (i.e. the substructuring number- 
ing) will be denoted as the new numbering. 

If we discretize the partial differential equation based on the new numbering scheme, the 
relations between the interface nodal numbers and those nodal numbers of the subdomains 
adjacent to the interfaces become difficult to predict for arbitrary high resolutions. 

This becomes evident for the case of the finite element discretization in which the 
relationship amongst global nodes, local nodes and element numbering turns out to be very 
different if we try to formulate the problem using the new numbering systems for various mesh 
resolutions. 

In view of this, other efficient ways for transforming the original system matrix into the 
arrow-head matrix like that in (4.5) need to be devised. For example, the following node 
renumbering scheme may be used for this purpose: 
(1) Set up the relationship between the old and the new numbering system by defining a 1-D 
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array number(n), where n is the total number of nodes and the number(i) is the nodal 
number under the new numbering scheme corresponding to the old nodal number i. 

(2) Renumber the nodes by putting the jth column of the original matrix into the j]th column 
of the transformed matrix, where ]j = number(j). 

(3) Change the positions of nodal actions by putting the ith row of the matrix obtained at step 
(2) into the iith row of the transformed matrix, where ii = number(i). 

After these three steps have been implemented, we obtain the arrow-head matrix which has a 
similar structure to that of (4.5), corresponding exactly to the new nodal numbering defined 
by the array number(n). This idea also provides an easy way for implementing multicoloring 
techniques. 

6. The CGS algorithm 

As is well known, the conjugate gradient algorithm with suitable preconditioners is one of 
the best methods available today for the iterative solution of large sparse symmetric and 
positive definite linear systems. However, this algorithm is not applicable to the solution of 
nonsymmetric linear systems which may arise from the discretizations of nonself-adjoint 
elliptic partial differential equations. 

A large number of generalizations were proposed in the literature (see [46, 47] and 
references therein) for solving large linear systems with nonsymmetric coefficient matrices. 
However, none of them may claim to be a clear winner. CGN (the conjugate gradient 
algorithm applied to the normal equation of the original nonsymmetric system), CGS 
(conjugate gradient squared) and GMRES (generalized minimal residual) seem to be the most 
often used algorithms. Recently, a fast squared Lanczos method for nonsymmetric linear 
systems was proposed in [48]'. This new algorithm was found to be very fast and robust 
compared to GMRES. 

Only limited numerical experience exists at present for most of these nonsymmetric 
iterative solvers, especially for real life applications. In their efforts to generate part of the 
production code for the modelling of weak plasma turbulence, Radicati et al. [49] studied the 
CGN, BCG (biconjugate gradient), CGS and GMRES algorithms as applied to the nonsym- 
metric time-dependent linear systems arising from the discretization of their problem. 
According to their report, the CGS and GMRES algorithms yield the best performances and 
are highly competitive with each other. 

In this paper, we choose to apply CGS algorithm for the iterative solutions of linear systems 
both in the subdomains and on the interfaces and leave detailed comparisons between various 
nonsymmetric iterative solvers applied to our problem to a follow-up paper [35]. 

The CGS algorithm was derived from the BCG algorithm by squaring the residual and 
direction matrix polynomials. The BCG algorithm produces two sequences of residuals r~ and 
F~ by simple relations similar to the CG algorithm in which (r~, ~ ) = 0 ,  for i # / .  It can be 
shown that r~ = P~(A)r o and r'~ = P~(At)7o where P~(A) is a polynomial of degree i in the 
coefficient matrix A. The motivation for formulating CGS is through the observation that 
p~ = (~'~, r~) in BCG may be expressed as follows: 
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p, = (~, r,) = (P~(At)~'0, Pi(A)ro)  = (~o, p2(A)ro)  (6.1) 

and a similar relation holds for the direction vectors pi and ~ .  
It is preconditioning that makes these iterative methods highly competitive. There are 

several possibilities for applying the preconditioning in the CGS algorithm. The PCGS 
algorithm used in our numerical experiments for solving A x  = b is given in the following form 
ready for computer implementation: 

r = b ,  x = x  o,  r = r - A x .  

Choose ~" such that 

(7, r ) # O ,  p = r ,  u = r ,  

g = G - ~ p ,  ( ,)  

p l  = A g ,  80=  (~', p l ) ,  

q = u - a p l ,  u = u + q ,  

81 = (F, r ) ,  a = 8 1 / 8 0 ,  

g = C - l u ,  x = x + a g .  (6.2) 

If the convergence criterion is met then stop, otherwise continue 

p l  = A g  , 80 = (~, r) , r = r -  a p l  , 81 = (~, r) , 

/3 = 8 1 / 8 0 ,  u = r + / 3 q ,  p = u + 13(q + / 3 p ) ,  G o t o  ( * ) ,  

where the right-hand side b and the initial guess x0 are input vectors and ( , )  denotes the usual 
Euclidean inner product. G is a preconditioning matrix. If G = I, then (6.2) reduces to a 
nonpreconditioned version of the CGS algorithm. For G = A, it is easy to show that (6.2) 
converges in one iteration. Between these two extremes, there are infinitely many choices of 
G. 

From the algorithm (6.2), it is readily observed that seven one-dimensional arrays 
r, r, p, p l,  q, u and x are required for implementing the nonpreconditioned version and an 
additional vector g is needed for the preconditioned version. By comparison, the conjugate 
gradient method requires the storage of only four vectors with or without preconditioning. 
The matrix A can be stored in a variety of ways due to its sparseness and the storage of the 
preconditioning matrix G is strongly case-dependent. 

No theoretical convergence bound has yet been discovered for the CGS algorithm. 
However, the CGS algorithm is known to amplify the effects of the Lanczos method. In 
particular, we have 

rCOS= p ~ ( A ) r o ,  r~an= p i ( A ) r  ° (6.3) 

for the residuals of the CGS and Lanczos method, respectively. If Pi(A)  defines a contraction, 
by (6.3) the expected convergence rate of CGS is thus roughly twice that of BCG, as was 
observed in practice [50]. 
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7. The Schur complement matrix approach 

Historically, it was common practice to apply the LU or Cholesky factorization in each 
subdomain and form the Schur complement matrix C and its right-hand side g. Thus the 
solution to (4.10) can be obtained, followed by that to each of the subsystems (4.11). 

The coupling between subdomains is now handled more efficiently using preconditioned fast 
iterative solvers without constructing the Schur complement matrix explicitly. However, as has 
been pointed out in [51], the approach based on explicitly forming the Schur complement 
matrix still remains a useful procedure in some cases. 

As formulated in [45], it requires n(n s + 1) forward and back substitutions to obtain C and 
g. A minor improvement can be made here to reduce this number to nn s. The algorithm 
assumes the following form: 

A L G O R I T H M  7.1 
Step 1. Carry out the LU decomposition for each of the subdomain matrices A~ 

Step 2. 

Step 3. 
Step 4. 

-- L i U i ,  i = 
1 , . . . ,  n. This part is highly parallel. 
Solve Ys~U~ = As~ and Xs~L~= Ys~ row by row for i=  1 , . . .  , n .  Form C =  A s s -  
E~--t Xs~A ~ and g = f s -  E"~ffit X~if~. This part can also be calculated in parallel, where 
Xsi and Ysi are two n s x n i matrices. 
Solve (4.10). This is a bottleneck for parallelism. 
Solve (4.11) in parallel by using the LU decompositions of A~, i -  1 , . . . ,  n. 

The aforementioned algorithm requires the formation of the Schur complement matrix 
explicitly, a computationally expensive procedure for most problems. Like the Schur comple- 
ment matrix approach formulated by the C(3 algorithm, the following algorithm may be 
formulated for any nonsymmetric solver in which only matrix-vector multiplications are 
required, although we only refer here to the CGS algorithm. 

A L G O R I T H M  7.2 
Step I. Solve 

A u b  i = f~ (7.1a) 

and form As~bi, i ffi 1 , 2 , . . . ,  n, in parallel; form the right-hand side of the Schur 
complement matrix system 

g ~f~ - ~ As~bi. 
i f f i l  

(7.1b) 

Step 2. Use the CGS algorithm to solve the Schur complement system (4.10). This is an 
iterative process carried out until a convergence criterion on the interfaces is met. The 
product of the Schur complement matrix with a vector w s, Cw s, may be evaluated as 
follows. Solve each subdomain problem 

Ai~vi = - A i s w s  (7.2a) 
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once and form the product A~iv i for i = 1, 2 , . . . ,  n in parallel; form the product 

n 

Cws = A~w~ + ~,  A~iv i . (7.2b) 
i = 1  

Step 3. Once the interface nodal values x s are obtained, we may solve in parallel (4.11) for 
each subdomain. 

Note that (7.1a) essentially requires us to solve the original set of shallow water equations 
(2.1), (2.2) and (2.3) on each subdomain with zero boundary conditions imposed on the 
interfaces r~, i = 1 , . . . ,  n - 1. 

The above algorithm may be heuristically described as a divide-and-feedback process. The 
problem defined on the original domain is divided into smaller problems and solved in parallel 
within the subdomains. The information gathered from the solution of each of these 
subdomain problems is then fed back to the interface iterafive solver. If the convergence 
criterion is not met on the interfaces, the domain is decomposed again and the subdomain 
problems solved. This divide-and-feedback process continues until the convergence criterion 
on the interfaces is fulfilled. 

This divide-and-feedback process immediately indicates that the efficiency of this approach 
relies on the number of iterations required for obtaining convergence on the interfaces as well 
as on the computational cost for each subdomain solver. Preconditioning techniques may be 
used to reduce the number of iterations on the interfaces. In the subdomains, in the case 
where fast solvers do not exist, either direct solvers based on LU factorizations or iterative 
methods may be applied. 

For the iterative subdomain solver, preconditioning based on either ILU [52] or MILU 
[53-55] factorizations may be applied. The MILU factorization preconditioning was proposed 
in order that the spectral condition number of the matrix G - t A  satisfies the following 
asymptotic relation: 

g ( G - t A ) - - O ( h - l ) ,  as h---,0, (7.3) 

where h is the mesh size, instead of O(h -2) as for ILU. Here G ffi L U  - A + D + R,  R is the 
so-called defect or error matrix whose rowsum is zero for each row of R. D is a diagonal 
matrix containing some preconditioning parameters. 

Specifically, for a class of M matrices or a weakly diagonally dominant symmetric L 
matrices, it was shown that the MILU factorization could be constructed such that (7.3) holds. 
For some other more general coefficient matrices, as pointed out in [53], the same rate of 
convergence was observed. 

It is readily observed that, at each time step and for each of the geopotential or velocity 
capacitance matrices, the incomplete factorization needs to be carried out only once for each 
subdomain during the entire divide-and-feedback process. The work required for the pre- 
conditioning of each subdomain consists mainly of the forward and back substitutions which 
may be computed in parallel. 

There is no definite answer as to which subdomain solver is better, direct or iterative. The 
relative efficiency of these two approaches is problem-dependent. For our application, 
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numerical results indicate that CGS iterative subdomain solvers preconditioned by MILU 
factorizations are more efficient than direct solvers based on LU factorizations in the 
subdomains for higher mesh resolutions (see Section 9). 

For the interface, a class of relatively robust preconditioners is the so-called boundary 
probe preconditioners (also called modified Schur complement preconditioners in [51]) which 
were first proposed in [30] and discussed in some detail in [56]. The basic idea behind this type 
of preconditioners is based on the empirical observation that the Schur complement matrix is 
close to a tridiagonal matrix for many elliptic operators. Thus it is reasonable to construct a 
tridiagonal or even a 2k + 1, for k > 1, diagonal approximation to the Schur complement 
matrix C and use it as the preconditioning matrix for the interfaces. 

A 2k + 1, for k - 0 ,  1, . . . ,  diagonal approximation to C may be constructed by evaluating 
the products of the Schur complement matrix C with 2k + 1 'probing vectors' v j , / -  
1 , . . . ,  2k + 1. This would require 2k + 1 solves in each of the subdomains. 

The success and efficiency of this class of preconditioners obviously depend on whether or 
not the elements in the Schur complement matrix die off rapidly enough away from the main 
diagonal. To show that our problem possesses this nice property, we produce in Fig. 5 (see 
Section 9) the surface plot of the elements in a typical geopotential Schur complement matrix 
as a function of its indices at the end of 1 h. The structures of the Schur complement matrices 
corresponding to velocity distributions are quite similar. 

The special structure of the Schur complement matrix immediately suggests that we use the 
tridiagonal part of the Schur complement matrix as the preconditioning matrix. This tridiagon- 
al part may be obtained efficiently by evaluating three matrix-vector products of C and v~, for 
i = 1, 2, 3, where 

v, = {1,0, 0, 1,0, 0 , . . . } ' ,  (7.4a) 

v 2 = {0, 1,0, 0, 1, 0 , . . . } ' ,  (7.4b) 

v 3 = (0, O, 1, O, O, 1 , . . . } ' .  (7.4c) 

It may be easily verified that the elements of the tridiagonal part of the Schur complement 
matrix C are all contained in Cv;, for i = 1, 2, 3. Three solves are required in each subdomain 
for this construction. 

However reasonable this approach may seem, it generally requires four or five iterations 
10 before the convergence criterion (the 12 norm less than 10- ) on the interfaces is met. It turns 

out that a more efficient interface preconditioner may be constructed for our case (two or 
three iterations) by retaining the block structure of As~ (see (4.8) and (4.9)) and replace each 
entry in the main diagonal of A s~ by the corresponding row-sum of the Schur complement C. 

Let us denote the preconditioning matrix constructed this way by 

- . ] 
G = d i a g  11, B 2 2 , .  • • ,  B , , - 1 . . - ,  • (7.5) 

The preconditioning matrix K will then be the same as A~s except that the main diagonal is 
determined by the following: 

diag(G) = diag(A~) + u, (7.6) 
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where 

u = -  ~., A s i A ~ l A i ~ v  
i=l 

(7.7) 

and v = {1, 1, 1, 1, 1, 1 , . . .} t .  Now only one solve is required in each subdomain for this 
construction. 

The p-econditioning linear system G g  = p  (see (6.2)) may be solved in parallel, 

Biigi  -- Pi , (7.8) 

for i = 1, 2 , . . . ,  n -  1, where the definitions of g~ and Pi are obvious. 
Various algorithms may be generated from Algorithm 7.2 depending on the types of 

subdomain solvers and interface preconditionings. To facilitate the comparison of various 
numerical experiments to be reported in Section 9, we use the following definitions: 
(1) SCMA I, MILU-PCG in the subdomains and no interface preconditioning; 
(2) SCMA II, MILU-PCG in the subdomains and interface preconditioning by the tridiagonal 

part of the Schur complement matrix; 
(3) SCMA III, MILU-PCG in the subdomains and interface preconditioning based on 

(7.5)-(7.7); 
(4) SCMA IV, direct subdomain solvers based on (complete) LU factorizations in the 

subdomains and interface preconditioning based on (7.5)-(7.7). 

8. The modified interface matrix approach 

For the Schur complement matrix approach, the subdomain problems (4.11) are solved 
only after the solution x, on the interfaces is obtained. We propose, in this section, a new 
approach to handle the coupling between the different subdomains. It differs from the Schur 
complement matrix approach in that the approximations to the solutions on the interfaces and 
in the subdomains are successively improved. 

8.1. The  basic  theory  

Consider the following iterative procedure for solving (4.4)" for k = 0, 1, 2 , . . . ,  

A . x (k + ~ ) . . (k  ) ,~ i = fi - A f o r i = l  2, n i s i s  , , • . . , 
(8.1a) 

n 

A,~x~ k+l) = f ,  - E A , x l  k+') . (8.1b) 
i - - I  

The iteration starts with an arbitrary initial guess x(s °) on the interfaces F = F~ U F 2 U . . .  U F,, 
solves the subdomain problems (8.1a) in parallel, then updates the approximation on the 
interfaces by solving (8.1b). In this way, we solve the subdomain problems and the interface 
problem successively until the convergence criterion on the interfaces is met. 

* be the solutions * f o r i = l  2 , . . . , n ,  andx ,  Let Is~ be an identity matrix of size n, x n,, x i, 
for (4.11) and (4.10). We prove here the following result, where C is the Schur complement 
matrix defined by (4.12). 
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..(k) produced by THEOREM 8.1. Sequences of approximation ~i"(k), for i = 1, 2, . . . ,  n, and ,% 
..(o) * for an arbitrary initial guess ,% on the (8.1) converge to x*, for i = 1, 2 , . . . ,  n, and x s 

interfaces if and only if the spectral radius of the matrix Is~ - A~IC satisfies 

p(Is~ - A~' C) < 1, (8.2) 

PROOF. Define an error vector _(k) _(k) * for the interface approximation. Since g s  ~ "~s  - -  X s 
= - . .  A , . ( k + l )  X[ k+~) A~(f~ Aisx~k)), for i =  1,2, . ,n ,  it is straightforward to show that ss.~s = 

g + ( A , s - C ) x ( ,  k), where g is defined by (4.13). It follows that e~k+~)=(l**-A~C)e~ k). 
Hence we have ..(k)_.> , xs xs, as k--->oo if and only if (8.2) holds. Now let k--->oo in (8.1a), it 
follows from (4.11) that _(k) ._.> . k-'> ~, for i = 1, 2 , . . . ,  n. l'-I -~i x i ,  as 

Compared with Algorithm 7.2, the algorithm based on (8.1) is quite straightforward and 
the condition (8.2) is satisfied in our case for various mesh resolutions. Specifically, our 
numerical experiments (see Section 9) indicate that for various mesh resolutions of the 
discretized domain, the spectral radii p(I~ - A~ ~ C) are about 0.13. Hence the asymptotic rate 
of convergence - In  p, (see, for example, [57]) is about 2.0402. Thus, in order to reduce the 
norm of the initial error vector on the interfaces by a factor of, say, 10 -6, roughly seven 
iterations will be required. 

We now proceed to modify this iterative procedure. Since each iteration in (8.1) requires 
the solutions of all the subdomain problems once, it is important to reduce the number of 
iterations. It is well known that the smaller the spectral radius, the faster the convergence. In 
order to reduce the spectral radius, we construct a matrix Ks~ such that A s~ + K,., is a good 
approximation of the Schur complement matrix C in the sense that the spectral radius 
p[(Ass + Kss)-lC] is close to 1. The matrix As , + K~ is referred to as the modified interface 
matrix. 

Now assume that the matrix Ks~ has been chosen; the following modified iterative procedure 
can then be proposed: for k = 0, 1, 2 , . . . ,  

A,xl  k+l) = f ~ -  ~t ..(k) f o r i =  1,2, . n 
- • [ S , A , $  , * • , , (8.3a) 

tl 

(As~ + Ks,)ax(s k) ~f ,  - A~xJ k) -  ~, A~,x~ k*') , (8.3b) 
i ffi l i 

where Ax~ *) = x~(**t) - x~ k). The iteration starts with an arbitrary initial guess ,,="(°) on the 
interfaces and we successively solve the subdomain problems (8.3a) in parallel and problem 
(8.3b) on the interfaces until the norm given by (8.5) is small enough. 

The following result may be proved in a similar way. 

THEOREM 8.2. Sequences of approximation x (k)~ , for i = 1, 2, . . . ,  n, and x~ k) obtained by 
(8.3) converge to x*~, for i = 1, 2 , . . . ,  n, and x* for an arbitrary initial guess .%"(°) on the 
interfaces if and only if the spectral radius of the matrix 1~ - (A ~ + K,~)-IC satisfies 

p(/~,  - (A, ,  + K, , ) - tC)  < 1 .  ( 8 . 4 )  

It is interesting to make an analogy here and think of each of the equations in (8.3a) as the 
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governing equation for the displacement distribution within a substructure subjected to a load 
f~ originally acting upon it and the boundary interaction forces - A  _tk} due to interface isA, s 

connections between the substructures. 
By taking ~(°) to be some initial guess on the interfaces that differs from the true solution 

x~, we are actually imposing some constraints in addition to the original constraints (the 
boundary conditions) to the structure and thus making it stiffer. However, as guaranteed by 
Theorem 8.2, the extra constraints introduced due to the incorrect initial guess will be 
continually relaxed by solving (8.3b) repeatedly. 

In the sequel, our discussion will be related to the CGS nonsymmetric iterative method for 
each of the linear systems (8.3a) in the subdomains, preconditioned by the MILU factorization 
and for the system (8.3b) on the interfaces with a preconditioner similar to that given by 
(7.5)-(7.7) (see Section 8.3). 

A.~ s The stopping criterion for (8.3) may be based on the norm of the vector (A~ + K~) ..(k) 
since the following relation can be readily verified: 

II(A   ÷ g  )Ax ))II = I I g -  Cx   )ll, (8.5) 

where C is the Schur complement matrix and g is the corresponding right-hand side. If this 
norm is small enough, we conclude that system (4.10) on the interfaces is approximately well 
solved. 

8.2. The construction of Ks, 

We now investigate the construction of the matrix K,~ such that the modified interface 
matrix A~, + K~ constitutes a good approximation of the Schur complement matrix C. Since 
we are mainly interested in nonsymmctric iterative methods, for which only matrix-vector 
products are required, for the solution of the system (8.3b), it is more efficient to consider the 
algorithm of computing k,sw~ for a given vector w, rather than first forming the matrix and 
then the product. 

As a first approach, let us consider a splitting of each of the subdomain matrices A , ,  

A,, = P , , -  Q, = P~,(I~,- R,,), (8.6) 

where Pi~ is a nonsingular matrix and li~ is the identity matrix of size n~ x n~. Assuming that the 
spectral radius of R~ = I, - P ~ A ~  is less than 1, we may obtain the following Neumann series 
expansion: 

' " ' - , :  ,87, 

C -  A~ s can be approximated by using only a finite truncated expansion, i.e., 

_ x , ( m  + 1 ) 
C A s , - ~ K , , = - ~ A , , - - , ,  , 

i=1 

(8.8a) 

where 
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X~7+') = [ ~k---o (I"-P~'A")k] P~'A'~" (8.8b) 

The following algorithm can be shown to be valid for computing K, sw,: 

Kssw.~ - ~ A /)(m+l) 
- -  s i - - i  ' 

i=1 

(8.9a) 

where the vector Ol m+l) can be obtained by the following iterative procedure: for k =  
0, 1 , . .  . ,  m, starting with t,~" (0) = 0, 

P.(v~ k+')- of)=-A.olk)+ u i , (8.9b) 

for i = 1 , 2 , . . . ,  n and u i= Ai~w ~. Notice that (8.9b) can be implemented and AsiV~ "+l) 
formed, for i = 1 , . . . ,  n, completely in parallel. 

Another approach is to use MILU preconditioners in the subdomains A,.~ L~U~ to 
construct the matrix K.,,. Specifically, we take 

n 

K~ = -  ~ A, , (L ,U~) - tA ,~ .  (8.10) 
i=!  

Here the matrix-vector product may be evaluated as follows: 

/1 

K.w~ f f i -  ~ A~Iv ~ , (8.11a) 

where v~ can be determined by 

and 
L~O~ = A~ws (8 . l ib)  

U , v ,  ffi O, , (8.11c) 

for i = 1, 2 , . . . ,  n. The solutions of (8.11b) and (8.11c) can be carried out and Ashy j formed in 
parallel. 

Numerical results indicate that the spectral radii p(l~s- (As~ + K~)-tC) for various res- 
olutions are around 0.04 by retaining just the first term in the Neumann series and 0.002 by 
using the MILU factorization. Thus, in order to reduce the norm of the initial error vector on 
the interfaces by a factor, say, 10 -6, roughly only four and two iterations, respectively, will be 
required. 

8.3. The algorithm 

Prior to presenting an algorithm of the modified interface matrix approach, we discuss here 
how to choose initial guesses for the solution of (8.3a) as well as that of (8.3b) and how to 
precondition (8.3b). 

Instead of making a guess of the initial vector for the PCGS solver to start with, we take 
(k) for i = 1 2, . ,  n, as the initial guess for the solution of each of the linear systems in Xi ~ , . .  
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(8•3a), for k = 1, "~ . . , • . . ,  as well as a zero vector as the initial guess for the modified interface 
matrix linear system (8.3b), for k = 0, 1, . . . .  

It is clear from Theorem 8.2 that, as k increases, xl k ÷ ~) - x~ k) --> 0, for i = 1, 2 , . . . ,  n, and 
Axts kJ-->0 on the interfaces. Consequently, the initial vectors selected this way become better 

(k+l) approximations, as the iterative procedure (8.3) proceeds, to the subdomain solutions xi , 
for i = I, 2,.. n, as well as to the solution on the interfaces _~k~ •, A~s o, and thus fewer iterations 
are required for the the iterative solutions in the subdomains (8.3a) and on the interfaces 
(8.3b). As a result, the computational cost of the modified interface matrix approach (8.3) 
decreases as k increases. The reduced cost for the subdomains mitigates the disadvantage that 
no fast subdomain solvers are available. 

Here we use, for any fixed k, essentially the same preconditioner as that expressed by (7.5) 
and (7.6) to accelerate the convergence of the iterative solution of (8.3b), with u determined 
by u = K~v, where v = {I, I, I, I, I, 1,...}t. The product K~,v is evaluated by using either 
(8.9) or (8.11). If (8.11) is used, it is easy to see that just one inexact solve is required for the 
construction of this preconditioner in each subdomain. 

Based on the above discussion, we present here an algorithm for the modified interface 
matrix approach: 

Algorithm MIMA: (modified interface matrix approach) 
Step 1. Carry out the MILU factorizations of Aii, A i~ .  L~U~, for i = 1 , 2 , . . . ,  n, in parallel. 
Step 2. Construct the preconditioner for (8.3b) of the form (7.3) and (7.4) with u = KssV. A 

large part of this calculation may be carried out in parallel by using either (8.9) or 
(8.11). 

Step 3. Set k =0 .  Specify ~s~°) on the interfaces and solve subdomain problems (8.3a) in 
parallel by using the MILU PCGS solver with a suitable initial guess. 

Step 4. Solve (8.3b) by the PCGS solver with the preconditioner constructed in Step 2, and an 
initial guess taken to be the zero vector on the interfaces. The preconditioning system 
may be solved in parallel (see (7.8)), and the matrix-vector product K~sw, may be 
computed by either (8.9) or (8.11) mostly in parallel, where w~ varies between 
iterations. 

Step 5. Test for convergence on the interfaces (see (8.5)). If the convergence criterion is met, 
go to Step 6 and quit; Otherwise, go to Step 6 and then go back to Step 4. 

Step 6. Set k ~--k + 1. Solve subdomain problems (8.3a) in parallel by using the MILU PCGS 
solver with initial guesses xl k), for i = 1, 2 , . . . ,  n. 

For the sake of numerical comparisons carried out in Section 9, Algorithm MIMA with 
K,sw ̀  computed by either (8.9) or (8.11) will be referred to as MIMA I or MIMA II, 
respectively. 

9. Results 

9.1. Numerical experiments and results 

We carried out numerical experiments on the Cray Y-MP/432 which has a machine accuracy 
around 0.8 x 10 -14 for a single precision• For our numerical experiments, we used the 
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following constants: 

L = 6000 km, D = 4400 km, (9.1a) 

g = 10 m/s ,  H 0 = 2000 m,  (9.1b) 

H~ = 220 m,  H 2 = 133 m,  (9.10 

f----" 10 -4 S -1 , /3 = 1.5 X 10 -11S -1 m -1 . (9.1d) 

The geopotential field distribution in the present problem has the order of magnitude 
104 m2/s 2. The preselected reference geopotential has been chosen to be g'0 = 104 m2/s2 so that 
the nondimensional geopotential ~' as defined by (2.11) has the order of magnitude of O(1). 
Under this choice of reference geopotential, the dimensionless constants corresponding to 
(9.1) are 

L'  = 1, D' = 0.733333, (9.2a) 

g' - 6000, H~ = 0.333333 X 10 -3 , (9.2b) 

H i - 0.366666 × 10 -4 , H~ = 0.221666 X 10 -4 , (9.2C) 

f '  = 6,  /3 '= 5.4. (9.2d) 

The two stage Numerov-Galerkin finite element discretization scheme has been employed 
in space to solve the set of nonlinear shallow water equations given in (2.1), (2.2) and (2.3) 
over a limited nondimensionalized rectangular domain 0 ~ x ~ L', 0 ~ y ~ D' and t' > 0. For 
simplicity, linear triangular elements have been used with a seven-point stencil structure at any 
point within the integration domain. 

In order to allow for further flexibility of the code, a modification has been introduced 
which allows, by changing just two parameters corresponding to the number of grid points in 
the x and y directions, respectively, the introduction of arbitrary mesh resolutions of the 
model. The automatic transformation of the global finite element matrices to the arrow-head 
matrices has been rendered possible by the node renumbering scheme presented in Section 5. 

In the actual implementation, the matrices are seldom stored in full due to their sparseness 
property. Hence, the general node renumbering scheme in Section 5 has been adapted for 
transforming the information corresponding to compact matrices. Here we essentially trans- 
form the arrays which record the nonzero elements of the sparse matrices. 

The initial non-dimensional geopotential distribution for the 2-D shallow water equations 
under consideration is given by (2.9) and (2.10) and its contour lines as well as a 3-D view are 
presented in Figs. 1 and 2, respectively. The whole domain is divided into four subdomains of 
equal sizes with three internal boundaries which collectively constitute the interfaces of the 
domain as are shown by three dotted lines in Fig. 3. 

We present, in Figs. 3 and 4, a typical finite element domain decomposition solution for the 
nondimensionalized geopotential distribution of the shallow water equations at the end of 5 h 
of numerical integration. A mesh resolution 45 by 39 was used to produce the solution. There 
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Fig. 1. Contour lines of the initial nondimensionalized 
geopotential field for the test problem run on the finite 
element shallow water equations model. 

Fig. 2. A 3oD view of the initial nondimensionalized 
geopotential field using test problem as in Fig. 1. 
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Fig. 3. Contour lines of the nondimensionalized 
geopotentiai field for the test problem with four sub- 
domains domain decomposition after 5 h of numerical 
integration. The dotted lines illustrate the interfaces 
between subdomains. 
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Fig. 4. A 3-D view of the nondimensionalized 
geopotentiai field for the test problem after 5 h of 
numerical integration using the finite element model 
with four subdomains domain decomposition. 
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are correspondingly 405 nodes in each of the four subdomains and 135 nodes on the interfaces. 
This run requires a total of 1755 nodes and 3420 elements in the whole domain. The time step 
is 0.5 h or 0.03 in nondimensionalized time. 

It should be pointed out that although all of the algorithms presented in this paper may be 
applied to the finite element domain decomposition solution of the shallow water equations 
and yield simila: numerical results, the respective computational costs corresponding to the 
implementation of different algorithms are vastly different. 

In the sequel, we will compare the relative efficiencies of various algorithms. For con- 
venience, the Schur complement matrix approach and the modified interface matrix approach 
will be abbreviated to SCMA and MIMA. The 2-norm is u~, ,  ~hroughout and the stopping 
criterion for the iterative algorithm is based on the 2-norm t,f the final residual vector being 
less than 10 - '°  unless indicated otherwise. 

To justify our choosing to apply the boundary probe preconditioners to the iterative 
solution of the Schur complement matrix, we present in Fig. 5 the surface generated by the 
entries in the nondimensionalized geopotential Schur complement matrix as a function of its 
indices at the end of 1 h. The mesh resolution used for this calculation is 31 by 31 grid points. 
However, similar diagonally dominant structures were observed for other mesh resolutions. 

It was also found that structures of the Schur complement matrices governing the velocity 
distributions on the interfaces and corresponding to different mesh resolutions are all similar 
to the tridiagonal structure displayed in Fig. 5. This typical structure of the Schur complement 
matrix was first observed in [14] for the case of the Laplace operator. 

We tested the SCMA based on algorithm (6.2) corresponding to various mesh resolutions 
using SCMA II and SCMA IlI algorithms (see the end of Section 7). It was found that the 
SCMA 111 algorithm produced invariably better results in terms of both the number of 
iterations for convergence and the corresponding CPU time. 

Fig. 5. The surface generated by the nondimensionalized geopotential Schur complement matrix at the end of 1 h. 
The mesh resolution is 31 by 31 for the original domain. For this choice, there are 93 nodes on the interfaces and 
217 nodes in each of the four subdomains. 
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We present,  in Fig. 6, the log~0 norms of the residual vectors on the interfaces versus the 
number  of i terations corresponding to each of these two cases. A mesh resolution of 51 by 51 
was used for this calculation. For  comparison purposes,  the case corresponding to the S C M A  I 
algorithm is also included. Both the number  of i terations and the CPU time required for each 
case are recorded in Table 1 for the solution of the nondimensional geopotential  Schur 
complement  linear system at the end of I h. 

Before confirming numerically that  the M I L U  PCGS subdomain solvers are computat ional-  
ly more efficient than the L U  direct subdomain solvers in our case, for higher resolutions we 
display the effect of the M I L U  precondit ioner on the subdomain solution. A typical 
convergence behavior  is plotted in Fig. 7, where the mesh resolution is 51 by 51 and the 
stopping criterion has been chosen to be that the 2-norm of the final residual vector is less that 
10 -~5. The results, displaying the numbers  of iterations and the CPU time required to attain 
convergence,  are presented in Table 2 for the solution of a typical subdomain.  

o 
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Fig. 6. The loglo residual norms for the Schur comple- 
ment matrix linear system on the interfaces for the 
non-dimensionalized geopotential matrix system at the 
end of 1 h. The mesh resolution is 51 by 51 for the 
original domain. For this choice, there are 153 nodes 
on the interfaces and 612 nodes in each of the four 
subdomains. 
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Fig. 7. The Iog]o residual norms in the subdomain for 
the nondimensionalized geopotential matrix system at 
the end of 1 h with and without preconditioning. The 
mesh resolution is 51 by 51 for the original domain 
and for this choice there are 612 nodes in each of the 
four subdomains. 

Table 1 
A comparison between interface preconditioners 

SCMA I SCMA II SCMA III 

8 iterations 4 iterations 2 iterations 
4.08 s 2.12 s 1.02 s 

Table 2 
MILU precondition in a typical subdomain 

No preconditioning MILU preconditioning 

22 iterations 5 iterations 
0.2207 s 0.1480 s 
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In order to compare the relative computational costs of the SCMA III and SCMA IV 
algorithms, we computed the numerical solutions at the end of 1 h with a time step of 0.5 h 
various mesh resolutions for both the interfaces and the subdomains. We recorded the CPU 
time required to obtain the solution at the end of 1 h. See Figs. 8-10 for the graphical 
presentations of the results. 
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Fig. 8. A comparison of the LU direct and PCOS 
iterative subdomain solvers in terms of the CPU time. 
For this comparison, the number of each subdomain 
nodes is equal to the number of interface nodes. 
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Fig. 9. A comparison of the LU direct and PCGS 
iterative subdomain solvers in terms of CPU time. For 
this comparison, the number of each subdomain nodes 
is equal to twice the number of interface nodes. 
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~ig. 10. A comparison of the LU direct and PCGS iterative subdomain solvers in terms of CPU time. For this 
comparison, the number of each subdomain nodes is equal to three times the number of interface nodes. 
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The computational results indicate that the SCMA IV algorithm is less expensive than the 
SCMA III algorithm when the mesh resolutions are relatively coarse and when the ratio 
between the size of each subdomain problem and that of the interface problem is less than 
two. However, as the mesh resolutions increase and the degrees of freedom on each 
subdomain get larger compared to those on the interfaces, the SCMA III algorithm turns out 
to be better. The results obtained here agree in some sense with those presented in [49], in 
which the Gauss direct solver was compared with the CGS solver. 

We point out that, in most practical problems, the subdomain problems are much larger 
than the interface one. As a result the preconditioned iterative solution in each of the 
subdomains is to be preferred for our case, especially for large-scale problems. 

We now turn our attention to the theory discussed in Section 8. The critical factor that 
affects the successful use of the theory and algorithms presented here is the spectral radii of 
the matrices (Iss - A~ ~ C) and (Iss - (Ass + Kss)-~C), respectively. Our numerical experiments 
applied to various mesh resolutions indicate that condition (8.2) is satisfied and that the effect 
of modifying Ass to Ass + Kss is computationally significant. 

We now present numerical results obtained using two mesh resolutions, one being 21 by 19, 
the other being 41 by 39. For these two cases, we obtained that p( Iss -  A~ 1 C ) =  0.1349 and 
0.1340, respectively. For the construction of the matrix Kss, both the MILU factorizations and 
Neumann series expansions in the subdomains are used. In the case of Neumann series 
expansion, Pi~, for i = 1, 2 , . . . ,  n, has been chosen to be the diagonal part of the matrix Aii, 
see (8.6). The results for (p ( I s s -  (Ass + Kss)-~C) are summarized in Table 3, where the 
second row in the table corresponds to the spectral radii for the lower resolution, while the 
third row corresponds to the higher resolution. 

We notice that the matrix Kss constructed by MILU factorization (see (8.10)) in the 
subdomains yields the smallest spectral radius ~nd therefore a faster convergence rate of the 
iterative procedure defined by (8.3) is to be expected. For m = 3, i.e. by taking four terms in 
the Neumann series expansion, the spectral radii for the lower and higher resolutions are, 
respectively, 1.508 x 10-2 and 1.199 x 10 -2. They are still not as small as those obtained using 
MILU factorizations. Moreover, the CPU time consumed by taking four or more terms in the 
Neumann series generally outweighs the gain obtained by the reduction of the number of 
iterations. 

The modified interface matrix Ass + Kss constructed according to (8.10) constitutes quite a 
good approximation to the Schur complement matrix. A plot of the surface formed by the 
elements in the modified interface matrix as a function of its indices can hardly be dis- 
tinguished from Fig. 5. Instead, we present in Fig. 11 the surface generated by the entries in 
the matrix C -  (Ass + Kss) corresponding to the nondimensional geopotential matrix at the 
end of 1 h. Similar structures are observed for other mesh resolutions. 

Table 3 
A comparison between spectral radii by using MILU factori- 
zation and Neumann series expansion 

MILU m = 0 m = 1 m = 2 

2.127 x 10 -3 4.138 x 10 -2 2.750 x 10 -2 1.867 x 10 -2 
1.952 x 10 -3 3.922 x 10 -2 2.571 x 10 -2 1.662 x 10 -2 
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To compare the performance behavior of the MIMA I and II algorithms, we present in Fig. 
12, the log10 norms of the residual vectors (see (8.5)) on the interfaces for various cases, where 
the IMA (interface matrix approach), the approach based on (8.1), is also included for 
comparison. We see that the modified interface matrix formed by the MILU factorization in 
each subdomain proves to yield the best results. This is to be expected since p(Iss-  (As~ + 
K~s)-IC) is of order 10 -3 (see Table 3). 

The number of iterations and the CPU time required for the solution of the geopotential 
distribution at the end of 1 h corresponding to each one of these cases are summarized in 
Table 4, where IMA is the case when K~ = 0; m = 0, 1 , . . . ,  4 correspond to K~s constructed 
according to (8.8) by retaining one, t w o , . . . ,  five terms in the Neumann series expansion, 
respectively. 

To see how the initial guesses in the subdomains and on the interfaces improve as the 
iteration count k in algorithm MIMA increases, we carried out numerical experiments based 
on the algorithm MIMA II and kept a record of the initial residual norms for each of the four 
subdomain problems and the modified interface matrix linear system as functions of the 
number of iterations k (see Fig. 13 for details). 

Table 4 
A comparison between algorithms MIMA I and II 

[MA m=0 m = l  m=2 m=3 m--4 MILU 

10 7 6 5 5 5 4 
2.435 1.895 1.834 1.729 1.779 1.843 1.607 

Fig. 11. The surface generated by the entries of the 
matrix C - ( A ~  + K~) for the nondimensionalized 
geopotential system at the end of I h. The mesh 
resolution is 31 by 31 for the original domain. For this 
choice, there are 93 nodes on the interfaces and 217 
nodes in each of the four subdomains. 
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Fig. 12. The log~o residual norms for the modified 
interface matrix system on the interfaces for the non- 
dimensionalized geopotential matrix system at the end 
of 1 h using the algorithm MIMA. The mesh resolu- 
tion is 51 by 51. For this choice, there are 153 nodes 
on the interfaces and 612 nodes in each of the four 
subdomains. 
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Table 5 is presented here to provide further information. We integrated the shallow water 
equations by using algorithm MIMA II for I h for five different mesh resolutions with and 
without the improved initial guesses in the subdomains. These two cases are identified by 
MIMA II(a) and MIMA II(b). For larger problems, the subdomain solvers become more 
expensive and hence the differences of the computational cost between MIMA II(a) and II(b) 
become more pronounced as is confirmed by the results summarized in Table 5. For the case 
in which no improvements are made, the initial guesses are taken to be zero vectors for the 
subdomain solvers. 

Finally we would like to compare the SCMA III with the MIMA II algorithms by inte- 
grating the shallow water equations for a period of I h with various mesh resolutions. It 
becomes evident that, as the mesh resolution increases, the computational costs of the 
solutions in the four subdomains and on the ir.terfaces will play a prominent role for the 
efficiency of the entire integration process. Thus we expect the MIMA II algorithm to behave 
much better than the SCMA III algorithm for higher mesh resolutions, as confirmed by the 
numerical experiment results shown in Fig. 14. 

Table 5 
The effect of the improved initial guesses 

Resolutions CPU time for MIMA ll(a) CPU time for MIMA ll(b) 

15 × 15 0.418 0.525 
27 × 27 1.515 1.886 
39 × 39 3.854 4.936 
51 × 51 8.879 11.205 
63 x 63 17.537 23.349 
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Fig. 13. The history of improved initial guesses in the 
subdomains and on the interfaces for the nondimen- 
sionalized geopotential matrix system at the end of I h 
using the MIMA II algorithm. The mesh resolution is 
51 by 51 in the original domain. 
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Fig. 14. A comparison in terms of CPU time between 
the SCMA III and MIMA II algorithms for various 
mesh resolutions, where the horizontal coordinates n, 
for n = 1 5 , 1 9 , . . . , 6 3 ,  stand for n x n  mesh res- 
olutions in the original domain. 
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9.2. Parallel implementation and results 

We designed a multitasking code to implement the algorithm MIMA II on the CRAY YMP/ 
432 supercomputer using four vector processors in a dedicated environment. 

The domain decomposition approach formulated by using the SCMA or the MIMA 
approach essentially reduces the solution of a large linear system into that of solving several 
disjoint smaller subsystems. This is a typical example of the coarse-grained parallelism. This 
kind of parallelism may be efficiently implemented on the Cray YMP supercomputer by 
employing macrotasking techniques. 

We exploited also microtasking techniques besides macrotasking for the following reasons: 
in a typical finite element solution of a time dependent partial differential equation problem, 
the following computational stages are required: 
(1) input or preparation of the data required by the code, such as the global numbering of the 

nodes, the calculation of coordinates of these nodes, etc., 
(2) construction and representation of the triangulation if triangular elements are used; 
(3) specification of the initial conditions; 
(4) calculation of the element matrices and the load vectors for each time step; 
(5) assembly of the element matrices and load vectors to obtain the global matrices and load 

vectors for each time step. 
(6) the solution of the global matrix systems at each time step. 
The domain decomposition based on the SCMA and the MIMA algorithms effectively 
parallelizes the last stage of a finite element code, i.e. the solution of global matrix systems. 
Although it is generally true that the main workload is concentrated at the final stage, the 
parallelization of the other stages turns out to be equally important. Moreover, the interface 
calculation is the overhead for coarse-grained parallelism for the subdomains, therefore the 
interface solver including the preconditioner should also be parallelized as much as possible. 

The reason for this is given by Amdahrs law on the theoretical speed-up for parallel 
computing (see [58]). Amdahrs law points out that even a small portion of a serial code may 
drastically reduce the speed-up and the situation gets worse when more physical CPUs are 
involved. For example, suppose that 20% of computation is not multitasked, then Amdahrs 
law predicts that best speed-up is less than 2.5 for four processors, 3.33 for eight processors 
and 5 for an infinite nm,_~er of processors. 

It is not efficient to parallelize the other stages by using macrotasking techniques since the 
granularity is small and the overhead of macrotasking is high. Microtasking is preferable in 
this case, since microtasking permits multiple processors to work on the code at the do-loop 
level where the task size, or granularity is small and the mierotasking overhead is generally 
much smaller than the macrotasking overhead. 

Speed-up is often defined to be the ratio of the execution time for the best serial algorithm 
and the parallel algorithm. However, it is not a trivial task to determine an optimal serial 
algorithm for a particular application and computer architecture. Following [59, 60], the 
meaning of the speed-up reported here refers to measurements relative to the uni- and 
multi-processor implementation of the domain decomposition algorithm. 

We applied the multitasking techniques to the algorithm MIMA II. Large granularity 
problems, such as solving the subdomain problems, are macrotasked. Small granularity 
problems in each subroutine are microtasked. Since microtasking is not allowed in the main 
program, the autotasking preprocessor has been invoked to split the loops which appear in the 
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Fig. 15. A comparison of the wall-clock times required for a 1 h model integration for the serial and parallel 
computations by using the MIMA II algorithm and speed-up due to the parallelization of MIMA II versus the mesh 
resolutions in the entire domain, where the horizontal coordinates n, for n = 51, 5 5 , . . . ,  83, stand for n x n mesh 
resolutions in the original domain. 

main program among processors. The results of the parallel implementation for various mesh 
resolutions are presented graphically in Fig. 15. 

We wish to point out here the existence of an inherent parallelism in most of the 
computational stages listed above. The assembly process, for example, is independent of the 
order in which individual element matrices are added into the global matrix and each element 
matrix makes its own independent contribution to the global stiffness matrix. The loop 
splitting (as has been applied here) or even the self-scheduling technique, see [61], may be 
used. 

The important issue here is to prevent any particular entry in the global matrix from being 
modified simultaneously. An interprocess synchronization mechanism, the lock, must be 
invoked in order to guard the corresponding critical region in the code. 

Many recurrence relations which appeared in the original single domain finite element code 
(see [25]) are not intrinsic and have been removed. For example, the global nodal numbers 
are fully determined by the local element nodal numbers, once a particular element has been 
selected. Hence the relations between the global numbering of the nodes, local numbering of 
the element vertices and element numbering can be calculated indepcndem of the calculations 
made for the previous elements. 

10. Conclusions 

In this paper, we applied nonoverlapping domain decomposition techniques to the parallel 
processing of a two-stage Numerov-Galerkin finite element model of the 2-D shallow water 
equations on a limited-area domain, a channel on the rotating earth. The techniques based on 
the substructuring ideas, including both the SCMA and MIMA, prove to be applicable and 
efficient for the parallel processing of the finite element model. They provide logical structures 
for mapping a whole computational effort to a number of processors for concurrent pro- 
cessing. 

SCMA is a divide-and-feedback process. One of the most important factors which de- 
termine the efficiency of this approach is the preconditioning on the interfaces for the iterative 
solution of the Schur complement matrix linear system. The boundary probe preconditioners, 
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proposed by Chan in [30], prove to be robust and applicable to more complicated operators 
like those of the shallow water equations. 

The MIMA approach differs from the SCMA approach in that the former iteratively 
approximates the subdomain and the interface solutions successively. The efficiency of this 
approach relies on the modified interface matrix, which should be a good approximation of the 
Schur complement matrix in the sense that the spectral radius given in (8.4) is small. Two 
possibilities were given in Section 8.2 for the construction of the modified interface matrix. 
For the construction based on the MILU factorizations in the subdomains, an order of 10 -3 of 
the spectral radii was obtained. We plan to explore, in the near future, the possibility of other 
efficient approximation techniques. 

For more realistic applications where fast subdomain solvers are not available, it is 
necessary to solve the subdomain problems by either direct or by iterative solvers. If iterative 
subdomain solvers are used, the MIMA approach is capable of improving iteratively the initial 
guesses in both the subdomains and on the interfaces. Thus it is less expensive to obtain 
solutions in the subdomains as well as on the interfaces and the M I M A  is preferred to the 
SCMA. 
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