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SUMMARY

A reduced order model (ROM) based on proper orthogonal decomposition (POD) has been presented and

applied to solving eigenvalue problems. The model is constructed via the method of snapshots which is

based upon the singular value decomposition of a matrix containing the characteristics of a solution as it

evolves through time. Part of the novelty of this work is in how this snapshot data is generated, and this

is through the recasting of eigenvalue problem, which is time-independent, into a time dependent form.

Instances of time dependent eigenfunction solutions are therefore used to construct the snapshot matrix.

The reduced order model’s capabilities in efficiently resolving eigenvalue problems that typically become

computationally expensive (using standard full model discretisations) has been demonstrated. Whilst the

approach can be adapted to most general eigenvalue problems, the examples presented here are based on

calculating dominant eigenvalues in reactor physics applications. The approach is shown to reconstruct

both the eigenvalues and eigenfunctions accurately using a significantly reduced number of unknowns in

comparison to ’full’ models based on finite element discretisations. The novelty of this paper therefore

includes a new approach to generating snapshots, POD’s application to large scale eigenvalue calculations,

and ROM’s application in reactor physics.
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1. INTRODUCTION

Eigenvalue problems arise in many fields of mathematics, science and engineering and are important

as they characterise system properties and yield key information of their state. Their uses and

applications are diverse (a review is not provided here) but their computation can, in many instances,

be prohibitively expensive. Even with today’s computational resources, eigenvalue problems prove

challenging as they quite often involve complex, coupled and multi-dimensional systems that require

discretisations involving a large number of variables. Much effort has therefore been placed in

solving these type of problems, typically with the aid of computers, where algorithm design and

efficient/accurate discretisation schemes have all played a central role. The use of reduced order

models (ROM) [1, 2, 3] can potentially be of great benefit in solving eigenvalue problems, as they

reduce the problem sizes by several order of magnitude with minimal loss of accuracy. In this article

a new reduced order model is presented for eigenvalue problems, and whilst it is demonstrated

through the solving of reactor physics (RP) applications, it is designed to be general in the sense

that its re-application to other fields can follow a similar path. The method proposed is based on

proper orthogonal decomposition (POD) technologies [4, 5] which are formed via the method of

snapshots [6], and these have been adapted to specifically solve eigenvalue problems.

Proper orthogonal decomposition has evolved under a number of aliases, and so is also known

as Karhunen-Loeve expansions in signal analysis and pattern recognition [7], principal component

analysis in statistics [8], the method of empirical orthogonal functions in geophysical fluid dynamics

[9] and meteorology [10]. All these methods, however, are model reduction techniques that offer

adequate approximations of dynamical systems using a reduced number of degrees of freedom, that

is, with lower-dimensional models [11, 12, 13]. The fundamental mechanics of POD are to generate

optimal basis functions that represent and capture the energy, or dynamics, of a system of interest,

and a way of achieving this is through the method of snapshots. This involves taking snapshots of the

system’s state at various time instances [6], and from this data a set of POD functions are formed that

provide an optimal representation. This means that the snapshot data can be reconstructed with the

smallest error using a basis formed from a subset of these POD functions. Using only a small number

of these optimal functions, the POD method then recasts the complex partial differential equations

(describing the system of interest) into a set of much simpler ordinary differential equations. In the

process an efficient reduced order model is created that alleviates both the computational load and

the memory requirements in comparison to the full model.
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The origins of POD dates back some way to the early 1900’s in the work of Pearson [14], but

following the pioneering work of Lumley [15] it has received a considerable amount of attention

from within the fluid dynamics community. Early applications include the work of Bakewell [16]

and Payne [17] who respectively applied the techniques in turbulent pipe flow and wakes behind

cylinders. In fact, it is POD’s ability to capture the dynamics of eddies and turbulent flows that

continually form and perish during a simulation that has proved highly beneficial. Its use soon

extended to other applications including the modelling of flows around air foils [18] and through

channels [19], the mixing of fluid layers [20], thermal currents [21, 22] and ocean models [23]. It

has been applied to the shallow water equations [24], the Euler equations [25], the full Navier Stokes

equations [26] and the various reduced versions of it, e.g. the parabolized Navier Stokes [27, 28].

POD has been applied to many other fields which are covered extensively in the references of the

articles listed here.

POD’s application to such a range of fields demonstrates the need to form reduced order

models for complex physical phenomena. However, its application to solving eigenvalue problems

is somewhat limited since the method of snapshots require a time dependent and dynamically

evolving system. A problem therefore immediately arises because the eigenvalue problem is time

independent, but this issue is resolved by introducing within the equation a fictitious dimension that

resembles time. By doing so the eigenvalue problem is transformed into a time dependent problem

and, in its limit as time tends to infinity, the new representation of the eigenvalue converges to the

exact solution. When solving this time dependent problem, the evolving solution can now be taken

at various time instances to form the snapshots. The inspiration for this comes from the work in

[29, 30], which introduced a fictitious time variable to solve the stochastic eigenvalue problem.

However, in the formulation presented in this article, a different time dependent equation is formed.

This was in order to overcome a singularity that was inherent within the previous work’s derivation

for non-fissile materials. Finally, it is also important to note that this approach has similarities

with that of [27], which solved the two dimensional time independent parabolized Navier-Stokes

equation. In this previous work snapshots were constructed by solving the problem using one of the

spatial dimensions as though it were time.

To demonstrate the new POD model proposed in this article, the approach has been applied

to reactor physics applications. In this field one is primarily concerned with determining the

distribution of the free moving neutrons within a nuclear system [31, 32, 33]. Knowledge of their

distribution and population growth yields information about a reactor’s power distribution and
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determines whether the system is in a super, sub or critical state. In fact, their population growth

is one of the most important characteristics of a nuclear system, and this is determined through the

solving of an eigenvalue problem which, in the reactor physics community, is referred to as Keff

[33].

Determining eigenvalues associated with reactor physics involves solving the associated

differential equation describing the transport of neutral particles, namely the Boltzmann Transport

Equation (BTE) [33]. This is a particularly demanding equation as it requires the description of the

particles’ direction of travel to be known in addition to their energies (or spectrum). This additional

information adds three dimensions to the standard space-time, which in turn greatly increases the

complexity in obtaining its solution. Although some relief can be gained by recasting this equation

into its diffusion form, which is the approach used here, (whereby two of the additional dimensions

are eliminated) [31], the problem domains associated with RP are still complex and challenging to

resolve. For example, whole reactor cores are typically several meters in size, but they are formed

from structures with length scales many orders of magnitude smaller - such as in modern generation

IV designs that contain fuel composed of pellets just a few millimeters in diameter. To resolve such

domains using either a finite element or finite difference scheme would require enormous spatial

meshes if the fine scale structures were resolved. Techniques that resolve these domains efficiently

have therefore always taken a central role in this area of research. These include technologies

spanning adaptive resolution schemes [34, 35, 36], multi-scale resolution, acceleration techniques

[37] as well as the recasting of the equations into more efficient forms [31, 33, 38]. However, the

vast majority of these technologies are always reliant on the solving of a full scale model. That is,

even when done efficiently, one is typically dealing with a discretisation scheme that requires a very

large number of unknowns to be resolved during the solving process. Reactor physics is therefore

quite an unexplored area of POD application where, to the authors knowledge, the only other related

work is that of [39]. In this previous work POD models were formed to simulate the dynamics of

an accelerator driven system (ADS) in shut down (a non-eigenvalue problem), the results of which

were shown to be quite promising.

The remaining sections of this article are set out as follows. Section 2 presents the eigenvalue

problem for reactor criticality together with the details of its time-dependent formulation and

its time and spatial discretisation. Section 3 present the POD formulation for the reduced order

model eigenvalue problem. In section 4 two numerical examples are presented to demonstrate the
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capabilities of the method presented. Finally section 5 completes this article with a conclusion of its

findings.

2. THE PSEUDO-TIME DEPENDENT FORMULATION FOR THE EIGENVALUE PROBLEM

The focus of this article is on solving the eigenvalue problem expressed in form,

Lφ = λQφ, (1)

for which the terms L and Q denote differential operators, φ is the system’s eigenfunction and λ is

the associated eigenvalue. Whilst the POD model will be developed here on the eigenvalue problem

associated with reactor physics, its re-application to other fields in the form of 1 should be fairly

straight forward. That is, similar paths of derivation could follow that what is presented here since

regular differential operators and boundary conditions, that occur in many applications, are involved.

In the eigenvalue problem for reactor physics, one solves for the eigenfunction and eigenvector

φ(v) and λ respectively, where φ(v) denotes the density of the free moving neutrons’ distribution

over a spatial domain v. The eigenvalue problem reads as,

−∇D(v).∇φ(v) + Σa(v)φ(v) = λν̂Σf (v)φ(v), (2)

for which the diffusion coefficient is expressed as,

D(v) =
1

3Σt
=

1

3(Σa + Σf )
. (3)

In equations 2 and 3 the Σ terms denote the material cross-sections, and these are probabilities that

describe how the neutrons interact with the materials of the problem. The term Σf is the cross-

section for a neutron causing fission, Σa is the cross-section that a neutron is absorbed, and Σs is

the cross-section that a neutron will scatter in a different direction. The term ν̂ denotes the average

number of neutrons released per fission event. The three terms in equation 2 therefore describe

the transport of the neutrons, their removal by absorption and their production (or source) through

fission, respectively.

The eigenvalue value λ can be seen to multiply against the neutron source in equation 2. Its value

balances the terms that produce neutrons with those that account for their losses, and this denotes

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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the reciprocal of the value keff ,

keff =
1

λ
. (4)

The value of keff determines whether a system is in a supercritical (keff > 1), subcritical(keff < 1)

or critical (keff = 1) state, i.e. whether the neutron population continuously increases, decrease or

remains constant, respectively.

The diffusion equation is supplemented with two main boundary conditions. One condition

represents a surface on which neutrons are reflected back into the domain (reflective condition)

and the other which represents surfaces that allow neutrons to escape out of the system (vacuum or

bare condition). These are both satisfied by relating the flux solution to its gradient on the boundary

by,

−1

2
Dn.∇φ(v) =

 1
4φ(v) bare surface

0 reflective surface.

In standard nuclear engineering procedures, one normally employs an eigenvalue solver directly

to equation 2, such as the power method, to solve the eigenvalue problem. However, in order to

formulate the reduced order POD formulation a new pseudo time dependent equation is used. This

equation is formulated by introducing to the eigenvalue equation a fictitious independent variable

that can be considered to represent time t. The eigenvalue λ is then considered to be a time dependent

and nonlinear variable, λ(t, φ), and a time dependent eigenvalue problem can be formulated as,

∂φ(v, t)

∂t
−∇D(v).∇φ(v, t) + Σa(v)φ(v) = λ(t, φ)ν̂Σf (v)φ(v, t). (5)

If one now selects an expression for λ(t, φ) such that in the limit of time the condition,

∂φ(v, t)

∂t
→ 0, t→∞, (6)

holds, then the steady state solution of equation 5 will generate both the eigenvalue and

corresponding eigenfunction. That is, as time t→∞ one obtains,

0 = −∇D(v).∇φ(v, t) + Σa(v)φ(v)− λ(t, φ)ν̂Σf (v)φ(v, t), (7)

which is the solution to the original problem. To formulate an expression for λ(t, φ) it is assumed

that it is a slowly varying function of time, which will certainly be the case when the solution

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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attains its steady state. The time derivative in equation 5 can therefore drop out of consideration,

and the resulting equation is integrated over the spatial domain v. This gives the expression for the

eigenvalue λ(t, φ) as,

λ(t, φ) =

∫
V
−∇D(v).∇φ(v, t) dv +

∫
V

Σa(v)φ(v) dv∫
V
ν̂Σf (v)φ(v, t) dv

. (8)

This expression can now be simplified by applying the divergence theorem to the integral involving

the diffusion term,

λ(t, φ) =

∫
Γ
−D(v)n.∇φ(v, t) dΓ +

∫
V

Σa(v)φ(v) dv∫
V
ν̂Σf (v)φ(v, t) dv

, (9)

and thus transforming it into a surface integral. By inspecting the expression within this integral to

that of the boundary conditions specified in equation 2, one sees that there are similar expressions

involving the flux gradient. These gradient terms can therefore be replaced with expression of the

flux for bare surfaces, or simply a zero for reflecting boundaries. The resulting expression for the

eigenvalue is therefore given as,

λ(t, φ) =


1
2

∫
Γ
φ(v,t) dΓ+

∫
V

Σa(v)φ(v) dv∫
V
ν̂Σf (v)φ(v,t) dv

bare surface∫
V

Σa(v)φ(v) dv∫
V
ν̂Σf (v)φ(v,t) dv

reflective surface
(10)

2.1. Time and spatial discretisation

The discretisation of the time and spatial dimensions start with a simple time stepping treatment

of the temporal derivative. This is given by ∂φ(v,t)
∂t = (φk+1 − φk)/∆t where the flux is expressed

at the two time instances k and k + 1 that are separated by the time interval ∆t. When applied to

equation 5 the resulting equation states,

1

∆t
φk+1(v)−∇D(v).∇φk+1(v) + Σa(v)φk+1(v) = λkν̂Σf (v)φk(v) +

1

∆t
φk(v), (11)

where the eigenvalue λk can be calculated from equation 10 using the flux expressed at time instance

k. From equation 11 a finite element discretisation of the spatial dimension is applied. This uses a

basis of FE functionsNi(v), i ∈ {1, 2 . . . n} to approximate the flux through the summation φk(v) =∑
j φ

k
jNj(v). The coefficients of the expansion φkj are obtained through a weighted residual method.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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Equation 11 is therefore multiplied by Ni,∀i ∈ {1, 2 . . . n}, and integrated over space to give,

∫
V

Ni
1

∆t
φk+1(v) dv −

∫
V

Ni∇D(v).∇φk+1(v) dv +

∫
V

NiΣa(v)φk+1(v) dv =

λk
∫
V

Niν̂Σf (v)φk(v) dV +

∫
V

Ni
1

∆t
φk(v) dV. (12)

One can now apply Green’s theorem to the integral involving the diffusion operator to form a volume

and surface integral, through which the appropriate boundary conditions can be applied. Finally,

upon substituting the FE expansion into discretised equations, the following linear system results,

Aφk+1 = λkMΣfφk +Mφk. (13)

In this system φk denotes the vector of coefficients at time instance k. The term A denotes a matrix

of dimension n× n and contains the discretised time, diffusion and absorption terms in the left hand

side of equation 12. The termsM andMΣf are also matrices of dimension n× n. M is the standard

mass matrix, Mi,j =
∫
v
Ni(v)Nj(v) dv and MΣf denotes the mass matrix that includes the fission

cross section within the integrals, i.e. MΣf

i,j =
∫
v
Ni(v)ν̂Σf (v)Nj(v) dv. Using this formulation one

may march through time, solving the flux for each time step and generating the updated eigenvalue.

This process can be continued until steady state is attained at which point the keff eigenvalue of the

problem will be found.

3. THE REDUCED ORDER POD FORMULATION

In the reduced order formulation a new basis of POD functions are constructed from a collection of

snapshots taken a various time instances of the full model solution. That is, the model described in

equation 13 is solved for a set of different problems, and snapshots of their solutions are taken as

they evolve to their steady state. In the finite element framework, each snapshot is simply the value

of the solution at the nodes of the finite element mesh. Each snapshot is therefore a vector of size

n, and the series of all these snapshots are collected together to form a matrix A. The dimensions

of A is n× ns, where ns is the total number of snapshots taken, typically one finds that ns << n.

Once the full set of snapshots have been collated, it is then custom to remove from each snapshot

the mean value of all snapshots. That is, a modified snapshot matrix is generated by,

Ai,j → Ai,j − Φ̄i, (14)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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where Φ̄i = 1
ns

∑
j Ai,j is the mean value of the snapshots at point i.

A POD basis set is now constructed through the singular value decomposition (SVD) of the matrix

A. That is, A is represented by,

A = UΣV t (15)

where U and V are unitary matrices of dimension n× n and ns × ns, respectively. Σ is a matrix of

size n× ns and has non zero values only along its diagonal elements. These non zero values are the

singular values of A, and these are assumed to be listed in order of their magnitude.

A POD basis set {Φk}, k ∈ {1, 2, . . . np} consisting of np basis functions is constructed from a

reduced form of the SVD in equation 15. The first, and largest, np singular values in the matrix Σ

are used to form a reduced matrix Σnp ,

Σ
np

i,i =

 Σi,i , i ≤ np

0 , i > np

(16)

and this is used to form an approximation of A in its SVD form,

Anp
= UΣnpV t. (17)

It is shown in many of the texts referenced in this article that this representation is the closest

possible to that of the matrix A using np basis vectors. There is also a convenient error measure of

the approximation which is given as the sum of all singular values removed from the original matrix

Σ. Finally, by keeping in line with the conventional POD construction, the np POD basis functions

are now defined to be the first np columns of the matrix U. That is, the POD basis set is expressed

in vector form by,

Φj = U:,j , for j ∈ {1, 2 . . . np}. (18)

These vectors represent the POD functions over the spatial domain v, and these can now be

constructed using the original finite elements,

Φj(v) =
∑
i

Ui,jNi(v), for j ∈ {1, 2 . . . np}. (19)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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3.1. Forming the reduced system

The reduced order representation of the solution variables of equation 13 takes the form of an

expansion of the POD basis functions defined in equation 18. This expansion is given for each time

instance k by,

φk = Φ̄ +

np∑
j

Φjψkj = Φ̄ +

np∑
j

U:,jψj = Φ̄ + Uψk, (20)

where, as previously stated, Φ̄ is the vector of size n holding the average value of all snapshots. The

terms ψj , j ∈ {1, 2, . . . np}, denote the POD basis expansion coefficients and ψ denote these values

in vector form. U is the n× np matrix containing the first np column vectors of U in equation 15.

A reduced system of equations can now be constructed by inserting the expression of the full flux,

equation 20, into equation 13, and then pre-multiplying the system by U t.

U tA(Φ̄ + Uψk+1) = λkU tMΣf (Φ̄ + Uψk) + U tM(Φ̄ + Uψk+1). (21)

This can be rearranged to,

U tAUψk+1 = −U tAΦ̄ + λkU tMΣf Φ̄ + U tM Φ̄ + λkU tMΣfUψk + U tMUψk, (22)

which expresses the POD coefficients at the next time step in terms of a reduced system of equations.

In total, there are three reduced system matrices required in this formulation, namely U tAU ,

U tMΣfU and U tMU . Each is of size np × np and, since being linear, can be precomputed and

stored in memory ready for use when the reduced system is solved. There are also three matrix

systems that multiply with the average snapshot vector Φ̄. Once again these can be precomputed

and fed into the solving procedure as a fixed source term.

The matrices in the reduced system above are obtained by Galerkin projections (in the L2 sense)

of the original differential operators using the bases of POD functions. This can be demonstrated for

the left hand matrix of equation 22 containing the discretised time, diffusion and absorption terms. If

one considers these terms to be encapsulated within the operator L = ∂
∂t −∇D(v).∇+ Σa(v), then

when it operates on the solution, followed by its weighting with the POD function Φi and finally its

integration over space, the following Galerkin projection is formed,

∫
v

ΦiLψdv. (23)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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If the solution is now represented via the POD functions (where the average vector Φ̄ is not included

in these terms) the Galerkin projection reads as,

np∑
j

∫
v

ΦiLΦjdv ψj . (24)

Replacing each POD function in the above expression with its representation of finite elements, i.e.

Φi =
∑n

k=1 Uk,iNk =
∑n

k=1(U t)i,kNk, the following expression results,

np∑
j

{
∫
v

n∑
k=1

(U t)i,kNkL

n∑
l=1

Ul,jNldv} ψj . (25)

This can be re-arranged to read as,

np∑
j

{
n∑
k=1

n∑
l=1

(U t)i,k

∫
v

NkLNldvUl,j} ψj , (26)

for which the term contained within the integral is simply the differential operator discretised

through the original finite elements, i.e. it is equal to Ak,l in equation 13. The terms contained

within the brackets are therefore (U tAU)i,j . Considering now the Galerkin weighting involving all

POD basis functions Φi, i = {1, 2, . . . np}, the following systems results,

U tAUψ . (27)

This, of course, is the system defined in equation 22, and so this demonstrates its equivalence to a

Galerkin projection using the POD basis functions. Similar arguments can be applied to all other

terms in equation 21 to demonstrate their equivalence to Galerkin projections.

3.2. Calculation of the eigenvalue from the reduced order eigenvector

It now only remains to calculate the eigenvalue that corresponds to the reduced order eigenfunction

for a given time step k. This can be calculated using the formulation in equation 10 and recasting

each term in terms of the reduced order approximation. This is demonstrated first for the volume

integral involving the fission cross-section (where it suffice to consider only one volume integral)

which is given as,

∫
V

Σf (v)φ(v, t) dv, (28)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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in the full approximation space. In this expression, the flux is replaced with its expansion of POD

basis functions given in equation 20,

∫
V

Σf (v)φ(v, t) dv =

∫
V

Σf (v)(Φ̄ +

np∑
j

Φjψkj ) dv. (29)

Each POD basis function is then represented by its finite element expansion of equation 18, and

together with a little re-arranging, the following is obtained,

∫
V

Σf (v)φ(v, t) dv =

∫
V

Σf (v)(
∑
i

Φ̄iNi(v) +

np∑
j

ψkj
∑
i

Ui,jNi(v)) dv (30)

=

∫
V

Σf (v)
∑
i

Ni(v)(Φ̄i +

np∑
j

ψkjUi,j) dv

=
∑
i

∫
V

Σf (v)Ni(v)dvΦ̄i +

np∑
j

ψkj

(∑
i

∫
V

Σf (v)Ni(v)dvUi,j

)
.

In this final form the first term has formed a scalar, and this is constant in value as it involves only

the average snapshot vector Φ̄. The second term involves a summation over the POD coefficients,

and these are multiplied by the integrals contained within the large brackets. Both the scalar and

the np integrals can be precomputed prior to solving the reduced order model due to them being

independent of the POD solution. The integral expression can therefore be written as,

∫
V

ν̂Σf (v)φ(v, t) dv = Φ̄f +

np∑
j

ψkjΦfj , (31)

where the precomputed values Φ̄f and Φfj are given by,

Φ̄f =
∑
i

∫
V

ν̂Σf (v)Ni(v)dvΦ̄i, (32)

and

Φfj =
∑
i

∫
V

ν̂Σf (v)Ni(v) dvUi,j . (33)
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respectively. Similar expressions can also be formed for the other terms in equation 10. That is, the

integral involving the cross section Σa is expressed as,

Φ̄a +

np∑
j

ψkjΦaj , (34)

given the precomputed quantities,

Φ̄a =
∑
i

∫
V

Σa(v)Ni(v)dvΦ̄i, (35)

and

Φaj =
∑
i

∫
V

Σa(v)Ni(v) dvUi,j . (36)

In addition, the surface integral is computed by,

Φ̄bc +

np∑
j

ψkjΦbcj , (37)

using the the precomputed quantities,

Φ̄bc =
∑
i

∫
Γ

Ni(v) dΓΦ̄i, (38)

and

Φbcj =
∑
i

∫
Γ

Ni(v) dΓUi,j . (39)

These expressions can now be combined to form the reduced order eigenvalue at a time step k,

λk =
1
2 (Φ̄bc +

∑np

j ψkjΦbcj ) + Φ̄a +
∑np

j ψkjΦaj

Φ̄f +
∑np

j ψkjΦfj
. (40)

In this form it is important to note that once the precomputed stage is complete, the computation of

the eigenvalue is of order np, i.e. the size of the POD expansion.
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4. NUMERICAL EXAMPLES

This section presents two numerical examples to demonstrate the capabilities of the POD method in

solving the eigenvalue problem. The first problem, presented in section 4.1, is a 1 dimensional

example that is used to demonstrate the basic principals of the reduced order method working

as intended. In section 4.2 the second example is presented which demonstrates the method’s

capabilities when applied to more demanding two dimensional domains. Section 4.3 completes

this demonstration with a review of the efficiency of the POD formulation.

4.1. The one dimensional slab reactor

This example attempts to emulate a simple slab reactor which consists of a 10 cm domain bounded

by bare surfaces, as shown in figure 1. The reactor’s domain contains a homogeneous fissile material

that is divided up by two small regions 2.5 cm from the each boundary. In these two regions the

material properties are varied, and in the examples presented their neutron absorbing properties

have been increased. This is to mimic what would be the insertion of a control rod.

To generate the snapshots used in constructing the reduced order model, solutions from the full

model were computed using three different control rod configurations. The three simulations were

designed to model the reactor with: 1) Both rods withdrawn; 2) Only the left rod inserted and; 3)

Only the right rod inserted; these problems have been labelled F1, F2 and F3, respectively. The

material cross-sections used in these simulation, together with the computed eigenvalues, are listed

in table I. The scalar flux solutions of the three problems are shown in figure 2. Each solution

has been normalised and were obtained using a sufficiently resolved mesh consisting of 600 finite

elements. A constant time step of 0.5 seconds was used for the time-dependent eigenvalue solver,

and each simulation was allowed to run for 750 seconds at which point steady-state was attained.

Initially, four snapshot matrices were created using the simulations generated from the full model.

Each snapshot matrix was built by taking solutions from the full model at equal time intervals

during each simulation. The time intervals were taken at every 2, 4, 8 and 16 time steps, and these

snapshot matrices have been labeled s1, s2, s3 and s4, respectively. In total the four snapshots

matrices consisted of 2235, 1128, 565 and 282 snapshots and from these 20 POD functions were

constructed. The largest singular values for each snapshot matrix are presented in the graph of figure

3. This shows them all to exhibit steep declines in their singular values which decrease by 5 orders

of magnitude by the 12th-16th value. The first 10 POD functions generated from snapshot set s4 are

presented in figure 4. It is interesting to note that the low order functions show much slower varying
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profiles in comparison to the higher order ones. This gives the indication that whilst the low order

POD functions capture the general profiles of a solution, the solution’s fine detail is filled in by the

POD functions located further down the expansion. Thus the POD formulation should act much like

a multi-resolution approach.

The POD functions generated from the snapshots were used to form reduced order models for

four problems, labelled problems R1-R4. Problems R1-R3 have the same geometric structure to

that used in the full model simulation, and their material properties are listed in table I. Problem

R1 is in fact the same as the full model problem F1, i.e. the simulation with both control rods

withdrawn. This was used to determine how well the reduced order model reconstructs a problem

that was used in constructing the original snapshot matrix. The remaining problems are however

different from those used in building the snapshots. Problem R2 resembles the reactor with both

control rods inserted. In problem R3, the control rods are configured to resemble a heavily inserted

left control rod and slightly inserted right control rod. This is to generate a highly asymmetric flux

profile that is quite different to those of the full problems F1-F3. Finally, problem R4’s geometry

does not share the same structure as that of the slab reactor. Instead, the problem has been split in

half, with one half being significantly more reactive than the other (the material cross sections are

listed in table I). This is used as a stress test of the reduced order model as the problem’s solution

is quite different from those used in the POD construction. Table I list the reference eigenvalues for

each of these problem setups, and these were generated using the full diffusion model.

The graphs presented in figure 5 show the POD eigenvalues and respective errors for each test

problem R1-R4. The results show the evolution of the eigenvalues as the POD basis sets are varied

in size from 1 to 20 functions. They also show how each calculation is affected when the POD bases

are generated from different snapshot sets s1-s4. The graph presenting the results for problem R1

(graph a) shows that a rapid reduction in the eigenvalue error is obtained using all POD basis sets.

In fact, for all POD bases, just 5 POD functions were sufficient to produce an eigenvalue estimate

with error less than 1× 10−5, which is well within an acceptable range for criticality calculations.

The results do however exhibit an unexpected behavior over the range of 5-10 POD basis functions.

In this range the error in the eigenvalue increases with respect to an increased POD basis size. The

reasons for this behavior is not clear, however, the error does remain within an acceptable error

margin. The model also recovers very well and mitigates the eigenvalue error to less than 1× 10−9

using around 15 functions. This small anomaly is therefore considered not to be a cause for concern.
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The graphs b-d of figure 5 show encouraging signs that the POD formulation is performing well

at generating eigenvalue solutions to ’unseen’ problems. Graph b shows that for the problem with

both control rods inserted (R2), the eigenvalue is calculated to a high degree of accuracy. In fact,

the error is shown to have been mitigated to less than 1× 10−8 using just 12 POD functions. The

more challenging problem, R3, has also been approximated accurately using the POD model. All

POD bases formulated from snapshot sets s1-s4 are shown to perform equally well, and each has

produced eigenvalue estimates with errors less than 1× 10−4 when 20 POD functions are used. A

similar result is seen in the final graph d, which shows the eigenvalue computed for the problem

with a significant change in its geometry (R4). Again, the estimated eigenvalue tends towards the

reference value with increased POD expansion size, and their errors approach 1× 10−4 when the

full 20 POD functions are used. When the differences in the geometric structure of problems R3 and

R4 are taken into consideration, these results are highly encouraging as the eigenvalue errors are

within an acceptable bound. A final point these results highlight is that there is only a small change

in POD’s performance when constructed through the different snapshot sets s1-s4. Therefore, the

remaining results of this section will only use the POD sets generated from the smallest snapshot

matrix s4.

The graphs presented in figure 6 show the eigenfunction solution generated by POD for problems

R1-R3. The results show the reduced order solutions using 1, 2, 5, 10, 15 and 20 POD functions.

It is shown that problem R1 can be reconstructed almost exactly using just 5 POD functions,

and a similar observation is found when inspecting the graphs corresponding to problem R2. The

POD formulation has performed very well at reconstructing the eigenfunction of problem R3. The

asymmetric profile is already forming in the low order POD expansions consisting of 1 and 2

functions. However, once again it seems that 5 POD functions are sufficient to capture the majority

of the true solution’s profile. The corresponding solution profiles to problem R4 are presented in

figure 7. Again the asymmetric solutions are already beginning to form in the low order POD

representations. In fact, using just 1 or 2 POD functions yield a basic outline of the reference solution

profile. It is shown that the higher order POD expansions are capturing the profile of the reference

solution with ever increasing accuracy as the POD basis set increase in size. The zoomed in graphs

show that using the full 20 POD basis functions has yielded a very close representation of the true

solution.
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The errors of the POD eigenfunction solutions, with respect to the reference solutions, are shown

in figure 8. Again these highlight the previous findings and illustrate the strong convergence rates

of the POD solutions for each test problem.

4.2. A two dimensional reactor

In this example a two dimensional mock reactor was modelled and its eigenvalue estimated using the

POD formulation described in this article. The domain of the reactor is presented in figure 9 where

it is shown to have a square geometry with sides that are of length 90cm. A fuel region occupied

the main bulk of the reactor, but within its central region there were 4 locations where control rods

could be inserted and withdrawn. In the case where the rods were inserted a set of absorbing cross-

sections that mimicked a control rod were used. However when the rods were withdrawn these

regions were replaced with a set of cross sections resembling water (which is often the case in many

reactor designs). Surrounding the reactor was a neutron reflector, i.e. a high neutron scatterer, which

was meant to resemble a graphite material that acted as a neutron shield. The cross-section data for

each of the materials are listed in table II. These have been selected to resemble the properties of

fuel, water and graphite, and so have been based on the cross-sections used in IAEA benchmarks

[40]. Included in this data are two sets of material cross-sections for the fuel. Fuel type 1 defines the

standard fuel that was used in all problems during the POD construction phase. Fuel type 2 defines

an adjusted fuel makeup, and this was used in some of the the subsequent reduced order modelling

analysis.

To construct the POD basis functions 5 full models (labelled F1-F5) of the reactor were

performed. These resolved the reactor first with all rods removed, and then with one single rod

inserted at a time. The materials for the fuel and control rods for each calculation is presented in

table III and this table also lists the corresponding eigenvalues. Each calculation was run through

the full model using a regular mesh of 32,400 quadrilateral finite elements. A time step of 4.0

seconds was used and 4000 time steps were performed to ensure the eigenvalues were sufficiently

converged. A snapshot set was then constructed by taking the solution at each 250th time instance.

This resulted in 16 snapshots for each of the full simulations, thus 80 snapshots were recorded in

total. From these snapshots a basis set consisting of 12 POD functions were generated, and these

are illustrated in figure 10. The corresponding first 12 singular values of the snapshot matrix are

presented in figure 11. It is shown that their values fall by nearly 5 orders of magnitude by the 12th

singular value.
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Using the reduced order model 7 configurations of the reactor were resolved, and these have been

denoted problems R1-R7. Problems R1 and R2 were identical to the full model problems F1 and

F2, and these were used to examine how well the POD model reproduces solutions for already seen

problems. Problems R3-R6 used different combinations of inserted and rejected control rods, and

these configurations are listed in table III. In problem R7 the material configuration was varied by

some considerable margin to those used in the POD generation. In the control rod regions, a mix

of control rod and water materials were used to represent partially inserted control rods. This was

achieved by taking linear combinations of the water and control rods cross-sections, the details of

which are listed in table III. In addition, to ensure that there were significant differences to the full

model problems, the fuel composition of problem R7 was also changed to that of fuel type 2. Table

III lists the reference eigenvalues for each of the 7 test problems.

The POD predicted eigenvalues and corresponding errors for each of the 7 test problems are

presented in the graphs of figure 12. The results for problems R1 and R2 show that the reconstruction

of the problems used in constructing the POD basis functions can be performed accurately and

efficiently. The eigenvalue’s error in both these problems dip below 1×10−7 using only 5 POD

functions, and the errors continue to reduce as the expansion size is increased. The problems

involving varying combinations of control rod configurations (R3-R6) have also been predicted

accurately. It is shown that the eigenvalue errors reduce monotonically with POD expansion size

and that they can be reduced to approximately 1×10−4 to 1×10−5 using the full set of 12 functions.

Results for problem R7 have also shown very encouraging signs that the reduced order model

can reconstruct problems that vary considerably to those used in the POD’s construction. For this

problem the eigenvalue is reconstructed to within an error of 0.1% using the 12 POD functions, and

this is certainly within an acceptable margin for scoping calculations.

The reduced order fluxes for problems R5 and R7 are presented in figures 13 and 14 respectively.

By comparing against the reference solution included in the figures, the POD models are shown to

capture the fine details of the solution quite quickly. For problem R5 the POD expansion using 6

functions has captured the general details of the full solution, and there is little visible difference

between the reference solution and that of POD when 12 basis functions are used. Similarly, the

POD representation of problem R7 compares closely to the reference solution using just 6 functions.

Again, the visible differences between the solution of the POD model, using 12 functions, and the

reference solution is minimal. One can quite clearly see that POD has captured the detail of the

neutron distribution within the bulk of the reactor as well as in and around the control rod regions.
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4.3. Review of the efficiency and performance of POD

The previous numerical examples have provided an illustration of POD’s capabilities at resolving

the eigenvalue problem, and so this sub-section completes the discussion by providing an overview

of the performance and efficiency of the formulation. One of the first points to note is that the

reformulation of the original eigenvalue problem into a time dependent form is, perhaps, not as

efficient as solving the problem through a more traditional approach - such as the power method. By

solving the time dependent formulation, the fast convergence properties inherent in other methods

are not guaranteed, and so this may result in longer computational times to run the full model.

However, this is not considered an issue since the full model will only be computed a small number

of times.

Another important point to note is that the reduced order model requires significantly less

time to solve in comparison to the full models. In the 2D examples of the previous section, the

computational time required to solve the reduced model remained below 0.008 seconds for the

largest expansion size. To generate the reduced system required longer times, but these were still

quite small and ranged between 1.2×10−2 and 0.14 seconds as the POD expansions varied between

the smallest and largest sizes. Comparing these times against those required to solve the full model,

which was 10.35 seconds (on the same computer), show that the POD formulation can provide

significant efficiency gains. It should also be kept in mind that the full model times just stated

were provided using an established code, and not the time dependent formulation presented here.

The times stated therefore provide a fair comparison since the established code is efficiently coded

and uses the most appropriate algorithms for these problem types (that is, it is very close to being

optimal).

5. CONCLUSION

This article has presented a new reduced order modelling technique for solving general eigenvalue

problems. The method is general in that it can be extended to other fields and applications, but

here its use has been demonstrated in the calculation of the eigenvalue (Keff ) for reactor criticality

problems. The reduced order model was based on POD technologies whereby the basis functions

of the new model were generated from the singular value decomposition of a snapshot matrix. In

order to generate the snapshot matrix an unorthodox approach was used in solving the full model

eigenvalue problem. Here a time dependent form of the eigenvalue problem was developed and
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resolved. Whilst this pseudo time approach has been used in previous work (unrelated to reduced

order methods) cited in this article, the equation used in this work is of a different form. Using a

time dependent equation enabled one to create a snapshot matrix by taking the solutions at various

time instances of the full model as it evolved to its steady state. From here on, one could then follow

the traditional POD route in generating the reduced basis functions. In the formulation presented,

this was carried out within a framework where the full model was resolved using finite elements.

To demonstrate the capabilities of the reduced order model, 2 numerical examples have been

presented. The first was a 1D example and this was used to demonstrate the general properties of the

reduced model to be working. The second example used a mock 2D reactor with a more demanding

geometry that is typically seen in reactor physics applications. A number of important points were

highlighted in the numerical examples. One was that the POD models could efficiently reproduce the

eigenvalues for the problems used in generating the POD functions, as one would expect. However,

when the materials properties were varied to pose new, or unseen, problems, the POD formulation

could still generate accurate estimates of the eigenvalues. To add further encouragement, the POD

bases performed very well in reproducing problems that had significant changes in their geometry

in comparison to the problems used in the POD generation. This was observed in both numerical

examples, for which the eigenvalue estimates were still within an acceptable margin of error. In

addition to this, the eigenfunctions, of fluxes, were also reproduced to a high degree of accuracy.

Even in the more demanding problems the fluxes were shown to capture the features of the reference

solutions. However there were a few issues raised in the examples shown. In addition to method

using the more expensive time dependent full model formulation, the POD eigenvalues occasionally

showed rising errors with increased expansion size. However this issue appears to be rare and so

should not distract from the main results showing the method to be working well.
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test case Σa (cm−1) Σs (cm−1) ν̂Σf (cm−1) Keff

region 1 0.4 2.0 0.5
F1 region 2 0.4 2.0 0.5 1.2126921450105688

region 3 0.4 2.0 0.5
region 1 0.4 2.0 0.5

F2 region 2 0.6 2.0 0.3 1.1981929650253054
region 3 0.4 2.0 0.5
region 1 0.4 2.0 0.5

F3 region 2 0.4 2.0 0.5 1.1981929650253043
region 3 0.6 2.0 0.3
region 1 0.4 2.0 0.5

R1 region 2 0.4 2.0 0.5 1.2126921450105688
region 3 0.4 2.0 0.5
region 1 0.4 2.0 0.5

R2 region 2 0.6 2.0 0.3 1.1747386315568560
region 3 0.6 2.0 0.3
region 1 0.4 2.0 0.7

R3 region 2 0.5 2.0 0.4 1.1575393638624507
region 3 0.5 2.0 0.4
Left half 0.4 2.0 0.7

R4 Right half 0.6 2.0 0.5 1.5963896505339461

Table I. The table lists the 3 sets of material cross-section used in generating the snapshots matrix together
with the 4 sets of material cross-sections used to test the reduced order solver. The resulting Keff solutions

using the full model have also been listed.
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Material Σa (cm−1) Σs (cm−1) ν̂Σf (cm−1)
Fuel 1 0.075 0.53 0.079
Fuel 2 0.072 0.53 0.085
Water 0.01 0.89 0.0

Control Rod 0.38 0.2 0.0
Graphite 0.15 0.5 0.0

Table II. The cross section data for the various materials used in the 2D numerical example

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)

Prepared using nmeauth.cls DOI: 10.1002/nme

Page 24 of 39

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

25

Problem Fuel
type

C-R1 C-R2 C-R3 C-R4 Keff

F1 Fuel 1 W W W W 1.0117683356042249
F2 Fuel 1 CR W W W 1.0051523782732303
F3 Fuel 1 W CR W W 0.99997463450337276
F4 Fuel 1 W W CR W 1.0078716937581611
F5 Fuel 1 W W W CR 1.0051523782732201
R1 Fuel 1 W W W W 1.0117683356042249
R2 Fuel 1 CR W W W 1.0051523782732303
R3 Fuel 1 W CR CR W 0.99201388156849468
R4 Fuel 1 W W CR CR 1.0017067353596756
R5 Fuel 1 CR CR W CR 0.97787588014093285
R6 Fuel 1 CR CR CR CR 0.9666724139312
R7 Fuel 2 1

2CR + 1
2W 1

10CR + 9
10W 3

10CR + 7
10W 1

5CR + 4
5W 1.1017019903545371

Table III. The reactor’s problem material configurations used in the generation of the POD functions (F1-F5)
as well as the reduced order models (R1-R7). The control rod regions are denoted by C-R, CR denotes a
control rod material, W denotes water and F denotes fuel type. Reference eigenvalues for both the POD

generation and the reduced model problems are listed.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)

Prepared using nmeauth.cls DOI: 10.1002/nme

Page 25 of 39

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

26 A. G. BUCHAN ET AL.

10cm

2.2cm

2.5cm

7.8cm

Region 3Region 2

Region 1
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Figure 1. The problem domain of problem 1.
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Figure 2. The 3 normalised scalar flux solutions used to generate the snapshots for the POD construction.
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Figure 3. The singular values corresponding to the four snapshot matrices.
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Figure 4. The POD functions generated from snapshot matrix s4. Graph a shows POD functions 1-5, graph
b shows POD functions 1-10.
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Figure 5. The graphs show the eigenvalues together with their errors when problems R1-R4 were solved
using the reduced order models with varying POD basis sizes. Graphs (a-d) correspond to the results for

solving problems R1-R4, respectively.
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Figure 6. The reduced order solutions of the normalised scalar flux eigenfunction for problems R1 (a,b), R2
(c,d) and R3 (e,f). Both the full solutions are shown together with their localised views which aim to highlight
the regions with the largest errors. The numbers in the legend indicates the number of POD functions used

in the reduced order model.
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Figure 7. The reduced order solution of the normalised scalar flux eigenfunction of problem R4. The full
solution is shown (a) together with local views of the high error regions (b-d). The numbers in the legend

indicates the number of POD functions used in the reduced order model.
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Figure 8. These graphs show the errors in the eigenfunction for varying POD basis expansion sizes (POD
sizes are indicate by the numbers in the legends). The results in graphs (a-d) correspond to the reduced
order solutions of problems R1-R4, respectively. The numbers in the legend indicates the number of POD

functions used in the reduced order model.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)

Prepared using nmeauth.cls DOI: 10.1002/nme

Page 33 of 39

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

34 A. G. BUCHAN ET AL.

Figure 9. The domain of the 2D reactor.
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Figure 10. The 12 POD basis functions generated in the 2D numerical example. The POD functions 1-12
are ordered from top to bottom, left to right.
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Figure 11. The first 12 singular values of the snapshot matrix.
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Figure 12. The eigenvalues and corresponding errors for each of the 7 numerical examples.
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Figure 13. The reference solution of problem R5 together with its POD representation using varying
expansion sizes.
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Figure 14. The reference solution of problem R7 together with its POD representation using varying
expansion sizes.
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