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Abstract A new parameter estimation algorithm based

on ensemble Kalman filter (EnKF) is developed. The de-

veloped algorithm combined with the proposed problem

parametrization offers an efficient parameter estimation

method that converges using very small ensembles and with-

out any tuning parameters. The inverse problem is formu-

lated as a sequential data integration problem. Gaussian Pro-

cess Regression (GRP) is used to integrate the prior knowl-

edge (static data). The search space is further parameter-

ized using Karhunen-Loève expansion to build a set of ba-

sis functions that spans the search space. Optimal weights

of the reduced basis functions are estimated by an iterative

regularized ensemble Kalman filter algorithm. The filter is

converted to an optimization algorithm by using a pseudo

time-stepping technique such that the model output matches

the time dependent data. The EnKF Kalman gain matrix is

regularized using truncated SVD to filter out noisy correla-

tions. Numerical results show that the proposed algorithm

is a promising approach for parameter estimation of subsur-

face flow models.
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Loève expansion

A.H. Elsheikh
Department of Earth Science and Engineering,
Imperial College London,
Prince Consort Road, London, SW7 2BP, UK
Tel.:+44 20 759 47325
E-mail: a.el-sheikh@imperial.ac.uk

C.C. Pain · F. Fang · J.L.M.A. Gomes
Department of Earth Science and Engineering,
Imperial College London, SW7 2BP, UK

I.M. Navon
Department of Scientific Computing,
Florida State University,
Tallahassee, FL, 32306-4120, USA

1 Introduction

Inference of subsurface geological properties is essential

for many fields. Accurate prediction of groundwater flow

and the fate of subsurface contaminants is one example

(McLaughlin and Townley, 1996; Carrera et al, 2005).

The multiphase flow of hydrocarbons in an oil reservoir

is another example where accurate predictions have large

economic impact (Naevdal et al, 2005; Fu and Gomez-

Hernandez, 2008). Subsurface domains are generally het-

erogeneous and shows wide range of heterogeneities in

many physical attributes such as permeability and porosity

fields. In order to build high-fidelity subsurface flow models

a large number of parameters have to be specified. These pa-

rameters are obtained through a parameter estimation step.

However, the amount of available data to constrain the in-

verse problem is usually limited in both quantity and quality.

This results in an ill-posed inverse problem that might admit

many different solutions.

Two types of data are available to constrain subsurface

flow models. Static data collected at well bores and dynamic

data measured as a time series of observations at few loca-

tions in the model. In the context of model calibration, there

are two difficulties to consider (Fu and Gomez-Hernandez,

2008, 2009). The first is to build a model that produces re-

alizations conforming to static data. The second problem is

to sample from these realizations in order to build a pos-

terior distribution conforming to dynamic production data.

For the first problem, Geostatistical analysis is commonly

used to generate a set of subsurface models assuming a cer-

tain correlation length between the samples. These mod-

els are good initial solutions for the inverse problem. For

the second problem, different parameter estimation tech-

niques can be applied. These techniques can be classified

into Bayesian methods based on Markov Chain Monte Carlo

(MCMC) methods (Oliver et al, 1997; Ma et al, 2008; Fu
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and Gomez-Hernandez, 2008, 2009), gradient based opti-

mization methods (McLaughlin and Townley, 1996; Carrera

et al, 2005) and ensemble Kalman filter methods (Morad-

khani et al, 2005; Naevdal et al, 2005; Chen and Zhang,

2006).

Ensemble Kalman Filter (EnKF) is a parallel sequen-

tial Monte Carlo method (SMC) for data assimilation. EnKF

was introduced by Evensen (Evensen, 1994) and since then

have been used for subsurface model update (Moradkhani

et al, 2005; Naevdal et al, 2005; Chen and Zhang, 2006).

Both model parameters (e.g. permeability and porosity) and

state variables (e.g. phase saturation and pressure values)

can be updated by EnKF. In EnKF a number of simula-

tions are run in parallel and are sequentially updated based

on their average response and the measured data. Standard

implementation of EnKF methods incorporates time depen-

dent data in an online fashion during the flow simulation as

observations become available.

Different variations of ensemble filters have been pro-

posed (Pham et al, 1998; Bishop et al, 2001; Ott et al, 2004;

Tippett et al, 2003). These methods differ in how the ensem-

ble members are updated (i.e., the analysis step) and can

be generally categorized into perturbation-based or deter-

ministic filters (Sun et al, 2009b). Perturbation-based en-

semble filters add random noise to each observation and

this added observation noise, becomes an extra source of

inaccuracy. Deterministic ensemble filters apply linear al-

gebraic transformations to produce analysis ensembles that

match the desired sample mean and covariance. It was ob-

served that deterministic ensemble filters are more robust

than perturbation-based methods especially for small-sized

ensembles (Tippett et al, 2003; Sun et al, 2009b). The use

of relatively small ensemble size might results in overshoot-

ing of the estimated parameters due to sampling errors in

the estimated covariance matrices. Techniques to solve this

problem include covariance localization (Gaspari and Cohn,

1999; Houtekamer and Mitchell, 2001), local approximation

of the state error covariance using Local Analysis (LA) (An-

derson, 2003; Ott et al, 2004; Sakov and Bertino, 2011) and

covariance inflation (Anderson and Anderson, 1999; Ander-

son, 2001). EnKF algorithms are limited to Gaussian sys-

tem as they rely on the first two moments of the ensemble

statistics. Several studies were carried out to extend EnKF to

handle non-Gaussian estimation problems (Bengtsson et al,

2003; Smith, 2007; Sun et al, 2009a; Zhou et al, 2011).

In this paper, a flexible parameter estimation algorithm

is developed. The algorithm starts with a stochastic interpo-

lation using Gaussian process regression (GPR) (Rasmussen

and Williams, 2005) to integrate prior knowledge about the

unknown field. Following that, the search space is parame-

terized using a Karhunen-Loève (KL) dimension reduction

technique (Kac and Siegert, 1947; Loève, 1948; Karhunen,

1947). The parameter estimation problem is then solved

by an iterative regularized EnKF algorithm on the reduced

space. EnKF for parameter estimation uses a pseudo-time

stepping technique and time dependant data are matched in

a batch mode to evaluate the likelihood of the estimated pa-

rameters. This algorithm requires repeated flow simulations

of the entire simulation time. A Kalman gain regularization

based on truncated singular value decomposition (TSVD)

(Hansen, 1998) is used to filter out noisy correlations and to

deal with the estimated covariance matrix rank deficiency.

SVD is used in square root filters (Tippett et al, 2003) to

generate new ensemble members that preserve the forecast

covariance. However, TSVD is used in the proposed algo-

rithm for regularization instead of the Bayesian regulariza-

tion via the measurement error covariance matrix and stan-

dard covariance localization techniques. The resulting algo-

rithm offers a flexible and efficient alternative to gradient

based optimization techniques. It converges after small num-

ber of iterations while using very small ensemble sizes.

The proposed algorithm have several novelties that dif-

ferentiate it from previously published work. First, EnKF

is applied iteratively in a batch mode for parameter estima-

tion. This is inspired by related methods for converting fil-

ters into optimization methods (Zhou et al, 2008; Wan and

Van Der Merwe, 2000; Zupanski et al, 2008). However, it is

different from ensemble Kalman smoothers that operate on

the state variables (Evensen and van Leeuwen, 2000). The

proposed algorithm have some similarities with Maximum

Likelihood Ensemble Filter (MLEF) (Zupanski et al, 2008)

but the error covariance is not updated using an analysis step

as in filtering methods. Instead, a random perturbation is ap-

plied to mimic a random stencil in a stochastic Newton like

method. The perturbation magnitude is reduced as the solu-

tion approaches the optimal solution. Second, the proposed

algorithm utilizes GPR for static data integration instead of

kriging (Chilès and Delfiner, 1999). In kriging, models are

usually fitted using a variogram which measures the dissim-

ilarity between samples versus the separating distance. This

fitting is commonly performed using a least square method.

However, GPR with Gaussian measurement noise have an-

alytically tractable integrals over the parameter space. This

enables an efficient solution of the model comparison prob-

lem. The optimal correlation length can be evaluated effi-

ciently by maximizing the logarithm of the marginal likeli-

hood. Thirdly, model reduction using KL expansion is ap-

plied at the start of the algorithm to parametrize the un-

known field. This step is similar to KL used in (Efendiev

et al, 2005; Dostert et al, 2009; Zeng and Zhang, 2010).

However, in these studies pre-set correlation lengths were

used. In the current work, the mean and covariance matrices

are obtained by the static data integration step using GPR.

In the numerical testing we use very limited amount of dy-

namic data to constrain the subsurface flow models as it is

the case for many practical problems. The efficiency of the
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proposed algorithm is evident in the size of ensembles used

in the presented numerical testing as it is an order of mag-

nitude lower than any previously published results. These

small ensembles enable extensive exploration of the param-

eter space for uncertainty quantification for subsurface flow

models.

The organization of this paper is as follows: section 2

presents two tools for parametrizing the search space, Gaus-

sian process regression for static data integration and KL-

dimension reduction technique. Section 3 provides a simple

description of the standard EnKF algorithm followed by a

full description of EnKF method for parameter estimation

and the TSVD regularization as it is used within the devel-

oped algorithm. Section 4 presents a brief formulation of

the subsurface flow problem followed by an application of

the proposed algorithm on several test problems. Section 5

utilizes the EnKF parameter estimation algorithm for an un-

certainty quantification study to produce a diverse ensemble

of models for future forecast. The conclusions of the current

work are drawn in section 6.

2 Search space parameterization

In this section we present two parameterization techniques

for the subsurface flow inverse problem. Trying to solve the

inverse problem on a the simulation grid results in a very

large search space. Further, it neglects any spatial correla-

tions between the unknown field values. In subsurface flow

problems, the unknown field is usually known at few points

where well bores exits. Accounting for these point data is

commonly denoted as a static data integration process. We

utilized Gaussian process regression for solving the static

data integration problem. The output of the GPR is then sub-

jected to a dimension reduction technique using Karhunen-

Loève expansion. The combined used of these two methods

provide a consistent and straight forward method for param-

eterizing the inverse problem.

2.1 Gaussian process regression

In the context of regression problems, it is required to find

a function that maps from the spatial coordinate x to a real

value y. For example, y could be the log-permeability field

and it is required to find its value over the domain of interest.

Formally, the input data D for the regression problem, is

a set of data pairs of observation {(xi, yi)|i = 1, . . . , n},

where n is the number of observations and yi is the target or

collected data at the spatial position xi ∈ R2. The objective

of the regression is to make predictions about new targets

ỹ given the corresponding input x̃. In addition to the input

data set, one has to make additional assumptions about the

distributions of the data points to get a well-posed problem.

A Gaussian process (GP) is a collection of random vari-

ables, any finite number of which have a joint Gaussian dis-

tribution (Rasmussen and Williams, 2005). If we assume a

set of data points {(xi, yi)}ni=1, where yi = y(xi) are sam-

ples form y = (y1, . . . , yn)T , then GP is defined as

y ∼ N (µ,C), µ ∈ R
n,C ∈ R

n×n, (1)

where µ is the mean function andC is the covariance matrix.

The covariance matrix is specified as [C]i,j = cov(yi, yj) =
C(xi,xj), where C defines the covariance function. The co-

variance function specifies the similarity between two func-

tion values y(xi) and y(xj) based on their correspond-

ing spatial vectors xi,xj . The covariance function can take

many forms and one of widely used functions is the squared

exponential function defined as

CSE(xi,xj) = σ2
c exp

(
−1

2

(xi − xj)2

l2

)
(2)

where σc is the signal variance and l is a normalization

length that defines the global smoothness of the function y.

The set of covariance function parameters and the measure-

ment noise variance σn are known as the hyperparameters

of the Gaussian process ψ = 〈σc, l,σn〉.
Making predictions using a Gaussian process is equiv-

alent to estimating p(ỹ|x̃,D), where ỹ is the new function

value at the location x̃. Using vector notations, the input data

is defined as X = [x1,x2, . . . ,xn] and y = [y1, y2, . . . , yn].
Assuming a predefined mean and covariance functions for

GP with the associated hyperparameters, the inference prob-

lem on the new data set X̃ is defined using the following

distribution[
y

ỹ

]
∼ N

([
m

m̃

]
,

[(
Cxx + σ2

nI
)
Cxx̃

Cx̃x Cx̃x̃

])
(3)

where, m is a vector of means corresponding to the in-

put data vector X, m̃ contains prior mean values for the

new data points X̃, ỹ is a vector of the posterior means

for each new data points, Cxx is the covariance matrix of

the input data, Cxx̃,Cx̃x are the two cross covariance ma-

trices, Cx̃x̃ is the prior covariance matrix for the new data

points, and I is the identity matrix. The conditional distri-

bution p(ỹ|x̃,y,X) is a normal distribution with the mean

µ̃ = m̃ + Cx̃x(Cxx + σ2
nI)

−1(y − m) and covariance

C̃ = Cx̃x̃ − Cx̃x(Cxx + σ2
nI)

−1Cxx̃ (Appendix A.2 in

(Rasmussen and Williams, 2005)). Obtaining a realization

from this distribution involves generating correlated Gaus-

sian random numbers.

2.1.1 Covariance function specification

The covariance function C(xi,xj) controls the correlation

and dependence of the function values y(xi) and y(xj)
on the spatial input vectors xi,xj . The covariance func-

tion must be symmetric positive semi-definite function (i.e.,
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αTCα ≥ 0 for all α ∈ Rn, where αT denotes the transpose

of α). In the current work, we use the Matérn covariance

function (Rasmussen and Williams, 2005) defined as

CMatern(r) =
21−ν

Γ (ν)

(√
2ν

r

l

)ν
Jν

(√
2ν

r

l

)
(4)

where ν is an order parameter, Γ denotes the Gamma func-

tion, Jν is the modified Bessel function of the second kind

of order ν > 0, r = ‖x − x′‖ is the Euclidean distance

between two points and l is the correlation length.

Learning a Gaussian process model is the process of

finding appropriate kernel for the problem at hand as well as

the covariance function parameterization. This process falls

in the class of model selection. Given a parametric covari-

ance function, model selection tries to find the hyperparam-

eters vector ψ = 〈ν, l,σn〉 that maximizes the conditional

evidence

ψ∗ = argmax
ψ

p(y|X,ψ) (5)

If the elements of y are independent samples from the

Gaussian process, the distribution p(y|X,ψ) is a multivari-

ate Gaussian density defined as (Rasmussen and Williams,

2005)

p(y|X,ψ) =
(
(2π)

n

2 |Cy|
1

2

)−1

× exp

(
−1

2
(y −m)TC−1

y (y −m)

)
(6)

where Cy = Cxx + σ2
nI, σn is the measurement noise vari-

ance. The logarithm of the marginal likelihood is simple to

evaluate as

ln p(y|X,ψ) = −n

2
ln 2π − 1

2
ln|Cy|

− 1

2
(y −m)TC−1

y (y −m) (7)

This value is also called the logarithm of the evidence and is

maximized with respect to the hyperparameters to obtain an

optimal set of parameters given the observed data (see Ras-

mussen and Williams, 2005, algorithm 5.1). The estimated

optimal set of hyperparameters is called the Maximum Like-

lihood type II (ML-II) estimate. These parameters are found

by solving a non-convex optimization problem using conju-

gate gradient optimization with random restarts (MacKay,

1999). In this paper, the order parameter ν of the Matérn

covariance function was set to 3.

2.2 Karhunen-Loève dimension reduction

The Karhunen-Loève expansion (KL) (Kac and Siegert,

1947; Loève, 1948; Karhunen, 1947), is a classical method

for Gaussian random vectors quantization. It is also known

as proper orthogonal decomposition (POD) or principal

component analysis (PCA) in the finite dimensional case

(Berkooz et al, 1993). The results of the GPR is a real-valued

random field K with mean µ(x) and a covariance function

C(x1,x2). Let K(x, ξ) be a function of the position vector x

defined over the problem domain and ξ belonging to space

of random events. Karhunen-Loève expansion provides a

Fourier-like series form of K(x, ξ) as

K(x, ξ) = µ(x) +
∞∑

k=1

√
λkξkψk(x) (8)

where ξk is a set of random variables, λk is a set of real

constants and ψk(x) are an orthonormal set of determinis-

tic functions. The covariance function C is symmetric and

positive semidefinite and has the spectral decomposition:

C(x1,x2) =
∞∑

k=1

λkψk(x1)ψk(x2) (9)

where λk > 0 are the eigenvalues, ψk are the corresponding

eigenvectors. The orthogonal basis functions ψk(x) satisfy

the following equation (Ghanem and Spanos, 1991):

∫

Ω

C(x1,x2)ψk(x2)dx2 =

λkψk(x1), k = 1, 2, . . . (10)

The basis functions ψk, are the eigenvectors of the co-

variance matrix and can be obtained by principal compo-

nent analysis (PCA) or solving an eigenvalue problem. The

eigenvectors are orthogonal and are normalized as follows

∫

Ω

ψk(x)ψj(x)dx = δkj (11)

where δkj is the Kronecker delta. The random variables ξk
are uncorrelated with zero mean and unit variance (E[ξk] =
0, E[ξkξj ] = δkj ). For the case where K is a Gaussian pro-

cess, ξk is an i.i.d sequence of normal random variables with

zero mean and unit varianceN (0, 1), the general form for ξn
can be obtained from

ξk =
1

λk

∫
(K(x, ξ) − µ(x))ψk(x)dx (12)

KL expansion using the eigenvectors of the covariance ker-

nel is optimal in minimizing the mean-square-error from a

finite representation of the process (Ghanem and Spanos,

1991). This property makes KL expansion an efficient

method for model reduction by truncating the summation

in Eq. 8 to a finite set of n-terms as

Kn(x, ξ) = µ(x) +
n∑

k=1

√
λkξkψk(x) (13)
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Due to the orthogonality of the basis functions, the total vari-

ance (energy) of the truncated K converges to the complete

version as n tends to infinity.

∫
E[Kn(x, ξ) − µ(x)]2dx =

∫
Cn(x,x)dx =

n∑

k=1

λk (14)

The summation of the eigenvalues represents the amount of

variance explained by the structure associated to the cor-

responding eigenvectors. The logarithm of the permeability

field can be parameterized using a limited number of eigen-

vectors as in Eq. 13. Different realizations can be gener-

ated for different values of ξk. The dynamic data integration

problem is concerned with finding values of ξk such that the

measured production data matches the simulation results.

3 Ensemble Kalman filter (EnKF)

The Ensemble Kalman Filter (EnKF) is a parallel sequen-

tial Monte Carlo method (SMC) for data assimilation. This

method was introduced by Evensen (Evensen, 1994). En-

semble Kalman Filter relies on two steps: prediction and

update (Gillijns et al, 2006). For a discrete time nonlinear

system:

xt+1 = M(xt) + wt (15)

yt+1 = H(xt) + rt (16)

where x is the state vector, y is the observation vector, wt

and rt are zero-mean white noises with covariance matrices

W and R, respectively and M,H are the parameter update

and the measurement operator, respectively. For an ensem-

ble of size n, at each time step, a set of realizations of the

state vector Xt = [x1
t ,x

2
t , . . . ,x

n
t ] are generated and the

corresponding measurements are Yt = [y1
t ,y

2
t , . . . ,y

n
t ].

The matrix Y is of size n × p where n is the ensemble

size and p is the number of observations. The state vari-

ables are updated using the following steps (Houtekamer

and Mitchell, 2005):

x
f
i = M(xa

i (t− 1)) + wi, i = 1, . . . , n (17)

wi ∼ N (0,W) (18)

K = Cxy(Cyy +R)−1, (19)

yoi = yo + ri, i = 1, . . . , n, (20)

ri ∼ N (0,R) (21)

xa
i (t) = x

f
i +K(yoi −H(xf

i )), i = 1, . . . , n (22)

where the superscripts a and f are for the analysis and fore-

cast steps respectively, Cxy is state-measurement cross co-

variance matrix, Cyy is the measurement covariance matrix,

K is the Kalman gain matrix and the overbar denotes the

ensemble mean.

3.1 EnKF for parameter estimation

The objective of the current paper is to calibrate the model

parameters (i.e. permeability field) to conform with the dy-

namic (production) data. The time stepping in data assimi-

lation EnKF will be used as a pseudo time stepping to repre-

sent the iterative nature of the solution. Similar formulation

was used for modifying filtering algorithms to solve opti-

mization and parameter estimation problems (Zhou et al,

2008; Wan and Van Der Merwe, 2000). The proposed

method is also related to parameter estimation by extended

Kalman filter as highlighted in (Navon, 1998). However, the

state variables are limited to only the model parameters. The

unknown field (permeability in this study) will be assigned

to the state vector x in Eq. 15 and the state update equation

will have the form x
f
i = xa

i + εkwi where, εk is a scaling

factor in the iteration k and wi is a zero-mean white noise

sampled from a Gaussian distribution N (0, 1). In the cur-

rent study, a scaling factor of the form εk = c/log (k + 1)
is used, where c is a user input constant (e.g. 0.01) and k is

the iteration number. The measurement Eq. 16, corresponds

to the simulator output of the production data:

y
f
i = SIM(xf

i ), i = 1, . . . , n (23)

where SIM represents the nonlinear operator defined by

the numerical simulator. Given a set of n realizations of the

state parameters, the covariance between the different pro-

duction data generated by the simulator can be calculated

using the sample covariance matrix as:

Cyy =
1

n− 1
Yf (In − 1

n
11T )(Yf )T (24)

where n is the ensemble size, In is an identity matrix of size

n, 1 is a vector of n ones and Yf is the output matrix. Simi-

larly, the cross covariance between the different realizations

of the field xf
i arranged as rows of Xf and the correspond-

ing outputs Yf is defined as:

Cxy =
1

n− 1
Xf (In − 1

n
11T )(Yf )T (25)

At the analysis step each ensemble member is updated using

the Kalman gain relation:

xa
i (t) = x

f
i +K(dobs − y

f
i ), i = 1, . . . , n (26)

where dobs is the observed data and K is the Kalman gain

matrix defined as:

K = Cxy(Cyy +R)−1 (27)

The measurement error covariance matrix R will be elim-

inated from the Kalman gain matrix as the measurement

errors are set to zero for the optimization algorithm. The

Kalman gain equation can be thought of as a corrector step

utilizing an approximate Hessian based on the Kalman gain
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matrix (Sivia and Skilling, 2006). In the current paper, the

parameter space is modeled with reduced order basis and no

clear distance function can be assumed for covariance local-

ization methods (Gaspari and Cohn, 1999; Houtekamer and

Mitchell, 2001). A standard regularization based on trun-

cated SVD is proposed as a reliable general method for fil-

tering spurious correlations in the covariance matrix.

3.2 Truncated SVD regularization

Regularization was developed to solve ill-posed problems

of the form Az = b (Hansen, 1998). The matrix A can

be decomposed using singular value decomposition SVD,

to obtain a set of orthogonal basis functions satisfying

A = USVT (28)

where U and V are orthogonal matrices, satisfying UUT =
Ik, VTV = Ik and S is a diagonal matrix with non-negative

entries σ1 ≥ σ1 ≥ · · · ≥ σk ≥ 0 corresponding to the sin-

gular values. The matrix A will have a condition number

cond(A) = σ1/σk. Given the SVD decomposition the so-

lution of the system is equal to

z = A−1b = VS−1UTb =
k∑

i=1

uT
i b

σi
vi (29)

If A has some small singular values, the solution z will be

dominated by the corresponding singular vectors vi. Regu-

larization methods attempt to reduce the effects of the small

singular values on the solution vector z. This can be done by

truncated SVD (TSVD) (Golub, G. H. and Kahan, W., 1965;

Hanson, 1971) or by Tikhonov Regularization (Tikhonov

and Arsenin, 1977). In the TSVD, all terms corresponding

to small singular values are truncated from the calculation of

the solution vector. TSVD can be reduced to the following

form (Hansen et al, 2006):

zf =
k∑

i=1

φi
uT
i b

σi
vi (30)

where zf is the filtered solution and 0 ≤ φi ≤ 1 is a filter

factor. The filtering factor is defined as

φi ≡
{
1, i = 1, 2, . . . , t

0, i = t+ 1, t+ 2, . . . , k
(31)

The parameter t is the number of SVD components main-

tained in the regularized solution. In the current study, we

retain a number of SVD components corresponding to 99%
of the total variance.

3.3 Regularization of the Kalman gain matrix

The Kalman gain matrix has two components, the cross co-

variance and the output covariance matrix. Stabilizing the

inverse of the output covariance matrix C̃yy is essential such

that small singular values do not dominate the solution. The

output matrix Y will be regularized using TSVD as follows

Ỹ = (Uy(ΦSy)V
T
y ) (32)

where Φ is a diagonal matrix, with diagonal values corre-

sponds to the regularization parameters φ. Using this reg-

ularized (filtered) matrix, the regularized covariance matrix

C̃yy can be estimated. The inverse of the covariance matrix

C̃yy can be efficiently evaluated as:

(C̃yy)
−1 = (n− 1)

(
Uy(Φ(Sy)

−2)UT
y

)
(33)

The current application of TSVD for covariance regulariza-

tion has some similarities with recent work by (Dovera and

Della Rossa, 2011) but they were concerned with initial en-

semble generation which is different from the current work.

The regularized Kalman gain matrix is defined as:

K̃ = Cxy(C̃yy)
−1 (34)

The TSVD regularization solves the problem of rank defi-

ciency with the added cost of calculating SVD for the matrix

Y. However, the size of the observations vector is usually

limited and efficient methods for SVD calculations can be

used (Golub and Van Loan, 1996).

4 Problem formulation and numerical testing

A two-phase immiscible flow in a heterogeneous porous

subsurface region is considered. For clarity of exposition,

gravity and capillary effects are neglected. However, the

proposed model calibration algorithm is independent of the

selected physical mechanisms. The two phases will be re-

ferred to as water with the subscript w for the aqueous phase

and oil with the subscript o for the non-aqueous phase. This

subsurface flow problem is described by the mass conserva-

tion equation and Darcy’s law

∇ · vt = q, vt = −Kλt(Sw)∇p over Ω (35)

where vt is the total Darcy velocity of the engaging fluids,

q = Qo/ρo+Qw/ρw is the normalized source or sink term,

K is the absolute permeability tensor, Sw is the water satura-

tion, λt(Sw) = λw(Sw) + λo(Sw) is the total mobility and

p = po = pw is the pressure. In which, ρw, ρo are the water

and oil fluid densities, respectively. These equations can be

combined to produce the pressure equation

−∇ · (Kλt(Sw)∇p) = q (36)
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The pore space is assumed to be filled with fluids and thus

the sum of the fluid saturations should add up to one (i.e.,

So + Sw = 1). Then, only the water saturation equations is

solved

φ
∂Sw

∂t
+∇ · (f(Sw) vt) =

Qw

ρw
(37)

where φ is the porosity, f(Sw) = λw/λt is the fractional

flow function. The relative mobilities are modeled using

polynomial equations of the form

λw(Sw) =
(Snw)2

µw
, λo(Sw) =

(1− Snw)2

µo
,

Snw =
Sw − Swc

1− Sor − Swc
(38)

where Swc is the connate or irreducible water saturation,

Sor is the irreducible oil saturation and µw, µo are the wa-

ter and oil fluid viscosities, respectively. The pressure Eq.

36 is discretized using standard two-point flux approxima-

tion (TPFA) method and the saturation Eq. 37 is discretized

using an implicit solver with standard Newton-Raphson it-

eration (Chen, 2007). For simplicity, we limit the parameter

estimation to the subsurface permeability map K. We also

assumed this permeability map as a lognormal random vari-

able as it is usually heterogeneous and shows a high range

of variability.

The proposed parameter estimation algorithm will be ap-

plied to three test cases. All three test cases simulate wa-

ter flooding with an injector-producer pattern. The injec-

tion of water is done at the first grid block (south-west) and

the production well is located at the last grid block (north-

east). No flow boundary conditions is applied on the domain

boundaries. The true permeability map is sampled at certain

number of locations and these values are used to construct

the Gaussian process. The Matérn covariance is used for all

GPR analysis and the value of ν = 3 is selected. Dynamic

data is obtained by running the simulator on the reference

permeability map and the resulting water-cut curve is con-

sidered to be true and replaces real observation in our test-

ing.

4.1 Test case 1

In this test case, the model is based on a 2D regular grid of

41 × 41 blocks in the x and y directions, respectively. The

size of each grid block is 10 meters in each direction and

a unit thickness in the z direction. The porosity is constant

in all grid blocks and equals 0.2. The water viscosity µw

is 0.3 × 10−3 Pa.s and the oil viscosity µo is set to 0.3 ×
10−3 Pa.s. The irreducible water saturation and irreducible

oil saturation are set as Sor = Swc = 0.2.

Fig. 1(a) shows the logarithm of the reference perme-

ability field (permeability units is Darcy = 9.869233 ×

10−13m2). This field was sampled at 15 points and the

sampled values are used as an input to the GPR for static

data integration. The correlation lengths are optimized us-

ing the ML-II estimator and Fig. 1(b) shows the mean log-

permeability field obtained from the GP regression. The

mean values along with the ±2 standard deviations bounds

are shown in Fig. 2, where the reference field is plotted in

red and the interpolated mean value is shown in blue color.

The first six scaled eigen modes of the GPR covariance ma-

trix are shown in Fig. 3. The first 40 modes obtained by KL-

expansion were retained and all higher order modes were

truncated. This limits the search space to only 40 dimen-

sions. This represents a significant reduction of search-space

size in comparison to direct parameter estimation techniques

where the size of the search space corresponds to the number

of grid blocks in the model.

Fig. 4 shows the water fraction flow curve at the pro-

duction cell for a set of ensembles with different sizes. The

results are shown in terms of dimensionless time defined

by the pore volume injected (PVI). It is noted that the wa-

ter fraction flow curves converges to the reference data af-

ter 100 forward runs regardless of the ensemble size. Fig.

5 shows the optimized log-permeability field at the end of

the EnKF iterations for three different ensemble sizes. This

figure shows that different ensembles have recovered differ-

ent modes of the solution as the problem is ill-posed and

might admit different solutions. Fig. 6 shows the root-mean-

square error (RMSE) in the water fractional flow curve ver-

sus the number of EnKF forward runs. The ensemble of 5
members showed the best performance and did converge to

reference solution significantly faster than larger ensemble

runs. This can be attributed to the smoothness of the prob-

lem. However, all ensembles have shown significant reduc-

tion in the RMSE with the increase of the number of for-

ward runs. The difference in performance between small en-

sembles and large ensembles might suggest running smaller

ensembles for the first few iterations followed by running

larger ensemble for fine tuning the optimized parameters.

The results from this example show that the proposed

method for integrating static data using GP regression along

with the regularized EnKF for dynamic data integration is

successful for conditioning the permeability maps to all

measured and observed data. The ensemble regularization

using TSVD is also successful in guiding the optimization

iteration from the mean GPR values to a solution that fits

the production data.

4.2 Test case 2

This problem uses layer 20 of the Tenth SPE compara-

tive test case (Christie and Blunt, 1995) as the reference

permeability field. The porosity is set to 0.2 over all grid

blocks and the parameters µw = 0.3 × 10−3 Pa.s and
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(a) (b)

Fig. 1 Log-permeability map for test case 1: (a) Reference and (b) GPR mean value.

Fig. 2 GP regression result along with the two standard deviations
bounds for test case 1 (reference field in red, estimated mean in blue
and two standard deviations bounds in white).

µo = 3 × 10−3 Pa.s are used. The irreducible water and

oil saturations are set as Swc = Sor = 0.2. Fig. 7(a) shows

the logarithm of the reference permeability field (in Darcy

= 9.869233× 10−13m2). This field is sampled at 24 points

and these values are used to constrain the Gaussian process

regression. The mean regression results obtained from the

GPR is shown in Fig. 7(b). The KL-expansion was applied

to reduce the search space to the first 40 eigen modes as they

retain most of the variance of GPR solution.

Fig. 7 parts (c),(d) and (e) show the optimized log-

permeability map after running the EnKF using ensembles

of 5, 10 and 20 members. All runs were terminated after

100 forward runs regardless of the ensemble size. The corre-

sponding optimized fractional flow curves are shown in Fig.

8. The water-cut curve fully matches the reference water cut

curve after the optimization run. Fig. 9 shows the RMSE in

the fractional flow curve versus the number of EnKF iter-

ations. A smooth convergence is observed for all ensemble

sizes, however the very small ensemble of 5 members shows

some instability in error reduction. This instability can be

eliminated by augmenting the algorithm with a line search

step. The ensembles of 10 member performed much better

than larger ensembles. This is attributed to the success of the

TSVD regularization in identifying the major search direc-

tions at each iteration. These search directions are adaptively

updated at each iteration and smaller ensembles perform this

step more frequently than larger ensembles.

The regularized EnKF algorithm relies on the state up-

date step (Eq. 15) that has a random component. This ran-

dom component is scaled by a constant that vanishes with

the number of EnKF iterations. However, the initial value of

the scaling factor depends on the constant c which is set to

0.01 in all our testing. In order to study the effect of c on the

convergence of the algorithm two different runs were per-

formed using different values of c. Fig. 10 shows the RMSE

of the water-cut curve for multiple runs with two different

values for c = 0.01, 0.04. An ensemble of 10 members was

used and all runs were initialized by the GPR mean. The

convergence of the mean from different runs is observed for

both cases. However, some runs showed local divergence. In

order to increase the reliability of the algorithm, an adaptive
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(a) mode 1 (b) mode 2 (c) mode 3

(d) mode 4 (e) mode 5 (f) mode 6

Fig. 3 First six eigen Modes obtained by KL-expansion of the GPR covariance matrix for test case 1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pore Volume Injected (PVI)

W
at

er
 F

ra
ct

io
na

l F
lo

w

 

 

reference
prior mean
EnKF (n=5)
EnKF (n=10)
EnKF (n=20)
EnKF (n=25)

Fig. 4 Reference, initial and optimized water fractional flow curves
using different ensemble sizes for test case 1.

step size might be applied within a line search strategy using

Wolfe or Goldstein condition (Nocedal and Wright, 2006).

4.3 Test case 3

This problem uses layer 80 of the Tenth SPE comparative

test case as the reference permeability field. The porosity is

set to 0.2 over all grid blocks and the water viscosity µw

is set to 0.3 × 10−3 Pa.s and the oil viscosity µo is set to

3× 10−3 Pa.s. The irreducible water and oil saturations are

Swc = Sor = 0.2. This test case has a channel along the

length of the model as shown in Fig. 11(a) . A set of 24
values of the permeability field are used for the GPR. The

resulting mean field is shown in Fig. 11(b) and the EnKF op-

timized log-permeability fields are plotted in Fig. 11(c),(d)

and (e) for ensembles of size 5, 10 and 20 members, respec-

tively.

The EnKF optimized water-cut curves are shown in Fig.

12 and shows a full agrement with the reference water-cut

curve. The regularized EnKF algorithm successfully solved

the inverse problem and converged to the true curve regard-

less of the utilized ensemble size. Fig. 13 shows RMSE in

the water-cut curve versus the number of EnKF iterations

and a clear convergence is observed after few iterations. The

initial performance of the very small size ensemble with 5
members is very good. However, after 20 forward runs it

fails in further reduction of the errors. This can be attributed

to the addition of the noise at each update step and that

amount of noise needs to be reduced at a higher rate for

small ensembles. It is also observed that ensembles of 10
members did show faster convergence rates than ensembles

with more members.

5 Uncertainty quantification

In this section we use the iterative regularized EnKF algo-

rithm for an uncertainty quantification study. The proposed

algorithm, similar to gradient based algorithms, might be at-
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(a) (b) (c)

Fig. 5 Optimized Log-permeability map for test case 1 with different ensemble sizes: (a) n = 5, (b) n = 10 and (c) n = 20.
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Fig. 6 RMSE in water fractional flow curve versus the number of for-
ward runs using different ensemble sizes for test case 1.

tracted to a local minimum of the solution. A standard way

to solve this problem is to restart the parameter estimation

algorithm with different random initial values. In our setting,

due to the limited amount of data, the inverse problem might

admit many different solutions. Here, the objective is not to

find the global minimum, instead we are interested in explor-

ing the search space and recovering many different models

that can be used for subsequent uncertainty quantification

and future forecasts. Problems 2 and 3 were tested using a

set of independent runs initialized by values that are differ-

ent from the mean permeability maps obtained by GPR. The

40 parameters were initialized using random numbers fol-

lowing the Gaussian distribution N (0, 1). These initial real-

izations conforms to all static data even if it is different than

the GPR mean.

Fig. 14 shows the initial ensemble water fractional flow

curves versus the optimized curves for test case 2. Ensem-

bles of 10 members were used and the optimization was

done using the data up to PVI = 0.32. This is marked by

a black vertical line in Fig. 14(b). The rest of the fractional

flow curve is an out-of-sample data that can be used effec-

tively for future forecasts . All plotted curves represent the

ensemble mean response and each curve represents a differ-

ent run of the algorithm. Similarly, parallel simulations with

random starting points were performed for test case 3. The

results are shown in Fig. 15 in terms of water cut curves.

The accuracy of the optimized ensembles is evident in the

out-of-sample data. The ensemble predictions via the esti-

mated sample mean and associated variance can be used for

uncertainty quantification as a simple Monte Carlo method.

It can be also used as an input for a non-intrusive stochastic

collocation method (Xiu, 2009).

6 Conclusions

In this paper, a new parameter estimation for subsurface flow

models was presented. This algorithm can be applied to any

simulator and eliminates the need for expensive derivative

evaluation required for gradient based algorithms. The al-

gorithm relies on a novel combination of GPR, KL model

reduction and TSVD regularized EnKF. Gaussian process

regression provided an easy method for incorporating static

data into the model. Correlation lengths are obtain by max-

imizing the logarithm of the model evidence. KL expansion

(aka. POD) is used as an effective dimension reduction tool.

The use of GPR estimated mean field and covariance ma-

trix for the KL dimension reduction eliminates the need for

pre-set parameters. These parameterization techniques are

essential for the smooth convergence of the inverse problem.

The inverse problem solution (dynamic data integration)

was performed using an iterative regularized EnKF algo-
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(a) (b) (c) (d) (e)

Fig. 7 Log-permeability map for test case 2: (a) Reference, (b) GPR mean value, (c) EnKF optimized n = 5, (d) EnKF optimized n = 10 and (e)
EnKF optimized n = 20.

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pore Volume Injected (PVI)

W
at

er
 F

ra
ct

io
na

l F
lo

w

 

 

reference
prior mean
EnKF (n=5)
EnKF (n=10)
EnKF (n=20)
EnKF (n=25)

Fig. 8 Reference, initial and optimized water fractional flow curves
using different ensemble sizes for test case 2.

rithm. The proposed EnKF algorithm is used in an batch

mode where each time step corresponds to an iteration of a

Newton like optimization algorithm. These iterations are re-

peated until convergence or a maximum number of steps is

reached. The Kalman gain matrix was filtered using TSVD

to eliminates spurious correlations. This method is auto-

matic and is based upon a standard and reliable regulariza-

tion technique. Other methods based on covariance localiza-

tion cannot be easily adopted as the de-correlation length is

hard to define once the KL model reduction is applied. Reg-

ularization based on re-sampling methods as introduced in
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Fig. 9 RMSE in water fractional flow curve versus the number of for-
ward runs using different ensemble sizes for test case 2.

(Zhang and Oliver, 2010) might not be applicable for small

ensembles.

The algorithms showed smooth convergence for very

small ensembles of 5 or 10 members. These ensembles are

an order of magnitude smaller than those used in related

published work. The use of small ensembles enables exten-

sive search space exploration for uncertainty quantification

studies as demonstrated in the examples. As a general opti-

mization tool, this algorithm can get trapped at local minima

similar to any gradient based algorithm. Also, the conver-

gence of the algorithm will be dependent on step size. Here,

we used a unit step size in all our numerical testing. Aug-
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Fig. 10 RMSE in water fractional flow curve versus the number of forward runs using different magnitudes of the random perturbation for test
case 2 with ensembles of 10 members, (a) c = 0.01 and (b) c = 0.04

(a) (b) (c) (d) (e)

Fig. 11 Log-permeability map for test case 3: (a) Reference, (b) GPR mean value, (c) EnKF optimized n = 5, (d) EnKF optimized n = 10 and
(e) EnKF optimized n = 20.

menting the algorithm with a line search step to automati-

cally adjust the update step size can solve this problem.
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Fig. 14 Results of a UQ study for test case 2. EnKF optimized versus initial ensemble fractional flow curves obtained using ensembles of 10
members, (a) Initial ensembles means and (b) Optimized ensembles means.
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Fig. 15 Results of a UQ study for test case 3. EnKF optimized versus initial ensemble fractional flow curves obtained using ensembles of 10
members, (a) Initial ensembles means and (b) Optimized ensembles means.
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