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Abstract 
 

During the last 20 years data assimilation has gradually reached a mature center stage 

position at both Numerical Weather Prediction centers as well as being at the center of 

activities at many federal research institutes as well as at many universities.  

The research encompasses now activities which involve, beside meteorologists and 

oceanographers at operational centers or federal research facilities, many in the 

applied and computational mathematical research communities.  

Four-Dimensional Variational Data Assimilation ( 4-D VAR) extends now also to 

other geosciences fields such as hydrology and geology and results in the publication 

of an ever increasing number of books and monographs related to the topic.  

In this short survey article we provide a brief introduction providing some historical 

perspective and background, a survey of data assimilation prior to 4-D VAR and basic 

concepts of data assimilation.  

I first proceed to outline the early 4-D VAR stages (1980-1990) and addresses in a 

succinct manner the period of the 1990’s that saw the major developments and the 

flourishing of all aspects of 4-D VAR both at operational centers and at research 

Universities and Federal Laboratories. Computational aspects of 4-D Var data 

assimilation addressing computational burdens as well as ways to alleviate them are 

briefly outlined . 

Brief interludes are provided for each period surveyed allowing the reader to have a 

better perspective. A brief survey of different topics related to state of the art 4-D Var 

today is then presented and we conclude with what we perceive to be main directions 

of research and the future of data assimilation and some open problems. We will 

strive to use the unified notation of Ide et al. [87]   
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1. Introduction 

Data assimilation in atmospheric sciences started from the fact that NWP is an initial 
value problem. This since we start at whatever constitutes the present state and use the 
NWP model to forecast its evolution. Early work by Richardson [160] and Charney 
[31] were based on hand interpolations [92]. This was done in order to combine 
present and past observations of the state of the atmosphere with results from the 
model (also referred to as "Mathematical" model).Since this was a rather tedious 
procedure, efforts to obtain "automatic" objective analysis-the first methods have 
been developed by Panofsky [145], Gilchrist and Cressman [73], Cressman [39], 
Barnes [9] . Use of prior information to supplement rather insufficient data was 
pioneered by Bergthorsson and Doos [12], Cressman [39] followed by the 
comprehensive work of Lev Gandin [65].  
Early reviews of data assimilation whose purpose is that of "using all available 

information (data) to determine as accurately as possible the state of the atmospheric ( 

or oceanic) flow" ( Talagrand[178]) were provided by Le Dimet and  

Navon[104], an in-depth survey of Ghil and Malanotte-Rizzoli[70] as well as by the 

outstanding book of Daley " Atmospheric Data Analysis"[43].  

A collection of papers by Ghil et al. (1997) in "Data Assimilation in Meteorology and 

Oceanography: Theory and Practice [71] summarizes state of the art of data 

assimilation for that period. See also a short survey by Zupanski and Kalnay [399] 

along with the excellent book of Kalnay [92] "Atmospheric Modeling, Data 

Assimilation and Predictability". An early effort linking Optimal Interpolation (O.I.) 

with the variational method was done by Sasaki [163] [164] and in more final form by 

Sasaki [165,166,167,168,169] which can be viewed as a 3-D- variational (3D-Var) 

data assimilation approach. It was Lorenc [115] that showed that optimal interpolation 

(OI ) and 3-D VAR were equivalent provided the cost functional assumes the form:  
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The first term measures the distance of forecast field x  to observations oy  and the 

second term measures the distance to background bx .  

The analysis x  is obtained by adding the innovation to the model forecast with 

weights  based on estimated statistical error covariances of forecast and 

observations.  
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Theoretical material related to the set-up that led to modern data assimilation may be 

found in the " Inverse Problem Theory" of Tarantola[179], the optimal control book 

of Lions[113], the " Perspectives in Flow Control and Optimization" by Max 

Gunzburger[79] along with "Inverse Modeling of the Ocean and Atmosphere" by 

Andrew Bennett [11] and "Dynamic Data Assimilation: A Least Squares Approach" 

by John Lewis et al.[108] ,Cacuci [28] and Cacuci et al [29]).  

In this brief review we first provide some historical background to the data 

assimilation effort along with some basic concepts of data assimilation. We then 

proceed to survey in a section the early stages (1980-1990) of 4-D VAR data 

assimilation with brief interludes summarizing and providing perspectives as we go 

along. In the following section we address some computational aspects of data 

assimilation such as issues of automatic differentiation, and  the incremental method 

which alleviated the computational burden of 4-D VAR and made it operationally 

viable at large operational numerical weather prediction (NWP) centers. A short 

section is dedicated to state-of the art of data assimilation at present time and we close 

with a short section outlining directions of development of 4-D VAR in the future.  

Relationship between OI and 3-D VAR  

The terminology of 4-D VAR (4-dimensional variational data assimilation) was 

originally used in research centers in the context of using continuous data assimilation 

satellite data leading to the First Global Atmosphere Research Program (GARP) 

Global Experiment, Charney, Halem and Jastrow [32].  

Insertion of observations directly into primitive equations models excited spurious 

inertia-gravity oscillations in the model and required the use of damping schemes 

[122] for damping the high-frequency components. A full-account of these techniques 

and the history of continuous data assimilation are provided in the seminal book of 

Daley [43]. This review will survey some aspects of variational data assimilation 

while only providing a brief outline of methodologies that prevailed prior to the 

1980’s. We will rely on work of Kalnay [92], Daley [43], Talagrand [178], Zupanski 

and Kalnay [209], Ghil et al. (Eds) [71], works of the present author and his 

collaborators, the review of Ghil and Malanotte-Rizzoli [70] and an early review that 

remained an unpublished technical report [104].  

Panofsky [145] is credited for pioneering the first objective analysis based on 2-D 

polynomial interpolation. It was followed by Gilchrist and Cressman [73] who put 



forward an interpolation scheme for geopotential field as a quadratic polynomial in x  

and y   
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then minimizing mean square difference between polynomial and observations within 

a radius of influence of the closest grid point,  
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where vp  and  were empirical weights and vq gu  and gv  the components of the 
geostrophic wind obtained from the gradient of geopotential height  at 
observation point .  was total number of observations within the radius of 
influence. The introduction of first guess estimate is credited to have been introduced 
by Bergthorsson and Döös[12]. Usually either climatology or a combination of 

(E x y, )
k K

it with forecast was used in the analysis cycle. See also the influential work of 

Gandin[65], translated from Russian by the Israeli program of Translations in 1965.  

2. Successive correction method 

The first analysis method in 4DDA was the successive correction method developed 

by Bergthorsson and Döös[26] and by Cressman[39]. The field of background was 

chosen as a blend of forecast and climatology with a first estimate given by the first 

guess field  

 0 b
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if  background field estimated at the i -th grid point, 0
if  being the zeroth iteration 

estimate of gridded field. This is hence followed by new iteration obtained by 

"successive corrections"  
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if - -th iteration estimate at th grid point,  n i



0
kf - -th observation surrounding grid point,  k

n
if - value of -th field estimate calculated at observation point  derived by 

interpolation from nearest grid points,  

n k

2ε - estimate of ratio of observation error variance to background error variance.  

The important ingredient is constituted by the weights  which are related to a 

radius of influence. Cressman[39] proposed the following weights in the SCM ( 

Successive Corrections Method).  
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2

ikr  square of distance between observation point  and a grid point at   kr ir .

The controlling parameter is the radius of influence nR , allowed to vary between 

iterations while  is the number of observations within a radius of n
iK nR  of the grid 

point . If one reduces the radius of influence, this results in a field reflecting large 

scales after first iteration -and tends towards smaller scales after additional iterations. 

For additional technical details see Daley [43], Kalnay [92].  

i

Cressman[39]took the coefficient 2ε  to be zero. For noisy data with errors it may lead 

to erroneous analysis. Taking  i.e. assuming observations with errors, allows 

some impact to the background field. Barnes[9] defined the weights to follow a 

Gaussian or normal distribution  
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where  is the radius of influence.  d

It uses an adaptive version where the radius of influence changes by a factor γ   

 0 1γ< < .  (10) 

 

It was shown by Bratseth[21] that with an appropriate choice of weights these SCM 



iterative method analysis increments can be made to be the same as those obtained 

using optimal interpolation (OI). Lewis et al.[108] quote also similar independent 

work done by Franke and Gordon[63], Franke[64] and Seaman[170].  

3. The variational calculus approach  

It was introduced in meteorology by Yoshi Sasaki in his Ph.D Thesis[163] and later 

extended by him to include dynamic model laws [165,166,167,168]. He proposed 

three basic types of variational formalism in the numerical variational analysis 

method . The basic formalisms are categorized into three areas: (1)"timewise 

localized" formalism, (2) formalism with strong constraint, and (3)a formalism with 

weak constraint. Exact satisfaction of selected prognostic equations was formulated as 

constraints in the functionals for the first two formalisms. This approach is now 

generically referred to as three dimensional variational analysis (3-D VAR). 

In 3-D VAR one defines a cost function proportional to the square of the distance 

between analysis and both background and observations, and it was showed by 

Lorenc [114], [115] that the OI and the 3-D VAR approaches are equivalent provided 

the cost function is defined as  
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where  

B  is the background error covariance,  

R  is the observation error covariance,  

H  is an interpolation operator (or observation operator),  
bx  is the first guess or background,  
oy  is the observation,  

( )o by H x−  are the observational increments  

 [ ( )]a b o bx x W y H x= + −  (13) 

 

W  is a weight matrix based on statistical error covariances of forecast and 

observations.  

4. Variational methods 

The start of variational methods is originally attributed to the work of Euler and 



Lagrange the seventeenth and eighteenth century. The Euler-Lagrange equation, 

developed by Leonhard Euler and Joseph-Louis Lagrange in the 1750s, is the major 

formula of the calculus of variations. It provides a way to solve for functions which 

extremize a given cost functional. It is widely used to solve optimization problems, 

and in conjunction with the action principle to calculate trajectories. Variational 

calculus has had a broad appeal due to its ability to derive behavior of an entire 

system without details related to system components. Broadly speaking variational 

calculus involves finding stationary points of functionals written as integral 

expressions. The general theory is rigorously explained in the work by Lanczos[97] 

and Courant and Hilbert [159].  

Basic to the constrained minimization theory is the method of undetermined Lagrange 

multipliers where  
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is a vector of  unknowns for the solution of  n
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and using the first-order conditions for a minimum we obtain using the first 

derivatives of the Lagrangian function  
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The Lagrange multiplier λ  can be viewed as measuring sensitivity of value of 

function f  at a stationary point to changes in the constraint (see also Nocedal and 

Wright [142].  

One can show formally (see any text book on variational methods) that finding in a 

given domain of admissible functions  the continuous first derivatives of a ( )u x



functional I  for which ( ( ))I u x  is a stationary value ( i.e. any function which 

extremizes the cost functional) must also satisfy the ordinary differential equation 

called the Euler-Lagrange equation  
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As an example of a typical application of variational methods, consider work of 

Sasaki[166, 167,168]. Navon [129] used it to enforce conservation of total enstrophy, 

total energy and total mass in one and two-dimensional shallow water equations 

models on a rotating plane.  

5. First interlude 

5.1. Situation in data-assimilation at beginning of 1980’s 

Charney, Halem and Jastrow[32] proposed that numerical models be used to 

assimilate newly available asynoptic data. The idea was to insert asynoptic 

temperature information obtained from satellite-born radiometers into the model at its 

true (asynoptic) time. Continuous data assimilation referred to frequent insertion of 

asynoptic data. Charney et al.[ 32] experiment suggested continuous data assimilation  

I.G. Tadjbakhsh ( 1969) [174]. Problems of real data insertion soon emerged in the 

form of an inertia-gravity wave shock [42] (Daley and Puri) leading to essential 

rejection by the model of the information of real observational data. A remedy for 

continuous data assimilation of real data was to reduce the insertion interval to the 

time step of the model[127] (Miyakoda et al.).  

Other approaches were via geostrophic wind correction outside the tropics or nudging 

also referred to as Newtonian relaxation (Hoke and Anthes)[76], Davis and 

Turner[49]. See also work of Talagrand[176] [177]. Ghil, Halem and Atlas[69], 



Mcpherson[123]. McPherson[235] viewed data assimilation as "a process by 

something is absorbed into something else”. During 1974 Marchuk [119] proposed 

application of adjoint method in meteorology (Russian article of 1967 [118]) and in 

1976 Penenko and Obratsov [148]-used these methods to study adjoint sensitivity.  

In 1969, Thompson[184] had already put forward the idea that incorrect analyses at 

two successive times may be optimally adjusted to maintain dynamical consistency 

with a given prediction model. This may be viewed as a precursor to variational data 

assimilation. Since 1958 Marchuk[117] and collaborators used adjoint methods for 

linear sensitivity analysis problems . Atmospheric issues were also addressed in the 

same fashion ( see Marchuk[119]). Adjoint operators have been introduced by 

Lagrange[96] and  have been used in modern times since Wigner[198] and by many 

others in different domains.  

The advent of optimal control theory of partial differential equations is attributed to 

Bellman starting in the late 50’s Bellman[10] (the Hamilton-Jacobi-Bellman equation) 

and to Pontryagin (Pontryagin’s minimum principle )[150].  

The major impetus in this area came from the monograph of Lions[112] on optimal 

control of partial differential equations. It was to be that a former doctoral student of 

Lions,  Francois Le Dimet, introduced the concepts of optimal control to the 

meteorological community starting in the early 1980’s.  

One major work which impacted in a serious way the adjoint sensitivity analysis was 

the work of Cacuci et al.[23], D.G. Cacuci[24],[25]. Historically one can trace back 

linear adjoint sensitivity to work of Wiener (1940-1942). See Cacuci 2004 lecture, 

[26]. Wiener [197] was the first to interpret physically the adjoint functions (see also 

Lewins, 1962) as importance functions. As mentioned above Cacuci (1979-1981) 

[195] presented a  complete rigorous theory for adjoint sensitivity of general nonlinear 

systems of equations.  

LeDimet[98] was then preparing his technical report at Clermont-Ferrand introducing 

for the first time optimal control methodology with variational adjustment to the 

meteorological community , that led to the seminal paper by LeDimet and Talagrand 

(1986), [101]  

6. Emergence of early data assimilation works 

LeDimet[99], Lewis and Derber[107], Courtier [34], Le Dimet and Talagrand(1986)   

[101] were the first to work on adjoint data assimilation. Cacuci(1981a,1981b) [24,25] 



extended adjoint sensitivity analysis to the fully nonlinear case. Lagrange multiplier 

methods were presented in detail by Bertsekas[14], while Navon and De Villiers[130] 

exhibited the method in detail applied to enforcing conservation of integral invariants.  

7. Optimal interpolation (OI) methods 

Lev Gandin[65] coined the term (OI) but the technique of statistical interpolation can 

be traced back to Kolmogorov[106] and Wiener[197] and the terminology of optimal 

interpolation was apparently due to Wiener[197].  

A review of the work of these two mathematician is provided in the Yaglom[200] 

book on stochastic processes (see Lewis et al.[108]). In atmospheric sciences use of 

statistical interpolation goes back to Eliassen[58] while Krige[94], used it in the 

mining industry.  

Use of least-squares to obtain best estimate of state of the atmosphere by combining 

prior information which can consist of either a first guess or a background with 

observations which have errors. The concept of background field goes back to 

Gauss[66]. We wish to carry out a minimum variance estimation.  

In a general form the optimal least-squares estimation is defined by the following 

interpolation equations  

 ( [a
bX X K y H X ])b= + − ,

)

 (29) 

 

where  is a linear operator referred to as gain or weight matrix of the analysis and is 

given by  

K

 1(T TK BH HBH R −= + ,  (30) 

 

where aX  is the analysis model state,  

H - an observation operator,  

B - covariance matrix of the background errors ( )bX X− ,  

X - being the time model state,  

bX - background model state,  

R - covariance matrix of observation errors.  

The analysis error covariance matrix is  

 1( ) ( )TA I KH B I KH KRK −= − − +  (31) 



 

If  is optimal least-squares gain,  becomes  K A

 ( )A I KH B= −  (32) 

 

(see proof in Bouttier and Courtier[19]).  

One can show that the best linear unbiased estimator [178](Talagrand(1997), Bouttier 

and Courtier[19]) may be obtained as the solution of the following variational 

optimization problem.  

  (33) 1min ( ) ( ) ( ( )) ( ( ))T T
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One notes that if the background and observation error probability functions are 

Gaussian then aX  is also the maximum likelihood estimation of tX  (time). 

Probability density function represents a probability distribution in terms of integrals, 

being non-negative everywhere with an integral from −∞  to +∞  being equal to 1. 

More exactly a probability distribution has density ( )f x , if ( )f x  is a non-negative 

Lebesgue integrable function from R R→  such that the probability of the interval 

 is given by [a b, ] ( )
b

a
f x dx∫  for any two numbers  and .  a b

For a comprehensive examination of OI in meteorology we refer to Lorenc[114] and 

Lorenc[115]. The most important advantage of using statistical interpolation schemes 

such as OI and 3-D VAR instead of empirical schemes such as SCM [39] is the fact 

that they are taking into account the correlation between observational increments.  

How to estimate the prior error covariances B  and R  and the observation operator 

? A difficult issue with observation operator is the case of satellite products such as 

radiances ,a piece of information which cannot be directly used. The observation 

operator performs both interpolation from model grid to satellite observation location 

and then uses physical theory (such as in the case of radiances) to convert model 

column of temperature to synthetic radiances. Observation error covariance matrix 

H

R  

is obtained from instrument error estimates which, if independent mean that the 

covariance matrix R  will be diagonal. This can facilitate computations.  

Assume that background and observation error (covariances) are uncorrelated, the 



analysis error covariance matrix is given as  

 ( ) ( )TA I KH B I KH KRKT= − − + .  (34) 

 

Solution of minimum covariance requires  
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from which we obtain the optimal weight   K

 1(T TK BH HBH R)−= + .  (39) 

 

8. Estimating background error covariances 

The background error covariance is both the most difficult error covariance to 

estimate and it has a most important impact on results (Kalnay)[92], Navon et 

al.[138]. This since it is primarily the background error covariance that determines the 

spread of information as well as allowing observations of wind field to enrich 

information about the mass field and vice-versa.  

In order to render modelling of B  practically feasible some compromises had to be 

made with respect to statistical aspects of the covariance matrix such as anisotropy, 

flow dependence and baroclinicity [61]. The first approach by Hollingsworth and 



Lönnenberg[85] concerned statistics of innovations, namely observation - minus -

background (in short forecasts) and rawinsonde observations. The assumption made 

was that observation errors are spatially uncorrelated and they assigned spatial 

correlations of innovations to the background error. Hidden in this method of use of 

innovation statistics is the implicit assumption of a dense homogeneous observing 

network.  

For 3-D VAR the most popular and universally adopted method does not depend on 

measurements but rather uses differences between forecasts of different time-lengths 

which verify at the same time. It is known as the " NMC” ( National Meteorological 

Center),  now National Centers for Environmental Prediction( NCEP) method having 

been introduced by Parrish and Derber[147]. In an operational numerical weather 

prediction they use  

  (40) {[ (48 ) (24 )][ (48 ) (24 )] }T
f f f fB E X h X h X h X hα≈ − −

 

This provides a multivariate global forecast difference covariance. If this time interval 

is longer than the forecast used to generate background fields then the covariances of 

the forecast difference will be broader than those of the background error.  

A new method based on ensemble of analyses to estimate the background errors is 

described in detail in Fisher [61] who presents also modern approaches to background 

error covariance matrix construction. 

 

 

9. Framework of Variational data Assimilation 

The objective of variational 4-D Var is to find the solution to a numerical forecast 

model that best fits a series of observational fields distributed in space over a finite 

time interval. We are assuming that the model of the atmosphere can be written as  

 ( ) 0dXB A X
dt

+ =  (48) 

 

with B  being identity for a dynamical model or the null operator for a steady state 

model.  can be a linear or nonlinear operator. We have U  defined as a control 

variable which may consist of initial conditions, boundary conditions and/or model 

A



parameters.  

U  should belong to a class admissible controls . We are looking for a unique 

solution 

adU

( )X U  of (48). The major step consists in formulating the cost function  

which measures distance between model trajectory and observations as well as the 

background field at initial time during a finite time-interval, referred to as the time 

window.  

J

Typically in meteorology (see LeDimet and Talagrand[101], Rabier[157]).  
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where  

0X  is the NWP model state as time ,  0t

bX -background state at time , typically a 6  forecast from a previous analysis,  0t h

B -the background error covariance matrix,  

iy -the observation vector at time ,  it

iH -observation operator,  

0 0( )i iX M X,=  model state at time ,  it

iR -observation error covariance matrix at time .  it

where an alternative to writing the NWP model is  

 1 1 ( )i i i iX M X+ + ,=  (50) 

 

1i iM + ,  is the nonlinear NWP model from time  to time it 1it + .  

The minimization of the cost functional can be viewed both in the perspective of 

finding its gradient in (a) Lagrangian approach, (b) adjoint operator approach and (c) 

a general synthesis of optimality conditions in the framework of optimal control 

theory approach. Requiring the gradient of the cost to vanish with respect to initial 

conditions control variable 0X  yields  



 
0 0 0X b

1 1
0

0
( ) ( ) [ ( )

N
T T
i i i i

i
J X B X X R H X y− −

,
=

∇ = − + −∑M H ]i i  (51) 

here we substitute the dynamical constraint  
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hile perturbations of the atmospheric state are obtained b
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tion from time  to time .  

he minimization of the cost functional is obtain

inimization algorithm. Starting from a first guess  

 

is the adjoint model consisting of a backward integra it  0t

T ed using a gradient-based 
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while at each iteration step 
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we compute and store both first guess trajectory
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(where ε  is a predetermined adequately chosen tolerance.) If above criterion is 

satisfied then stop.  

If the above criterion is not satisfied then use a stepsize search algorithm using, say, a 

ubic interpolation usually provided by the gradient based min

ne then updates the first guess, namely  

c imization algorithm.  

O

 1
0 0( ) ( )k k k kX t X t Jρ+ = − ∇  

 

(62) 

where ρ  is a step-size in the direction of descent and find the next minimization 

iterate using a gradient based minimization algorithm.  

All the time we assume that the nonlinear cost function has a unique minimum and 

avoid temporarily addressing the complex issue of the presence of multiple minima.  

0.1. The Lagrangian approach 

ne can consider a model given as in LeDimet and Talagrand[101] by  

10. Variational formalism 

1

O

 ( ) 0F U =  

 

where 

(63) 

 denotes meteorological fields being considered. Suppose we have U



observations Û  occurring at an irregular set of points distributed in both space and 

me.  

e wish to s  the problem of finding a solution that minimizes a cost function  

(64) 

here 

ti

W olve

 2ˆ( )J U U dxdydt= || − ||∫  

 

U

w ,  is a suitable norm and  consists of 

tegr itable finite sums. Here we view the model equation  

Û discrete observations hence the 

in al is replaced by su

 ( ) 0F U =  

 

as a strong constraint on cost function J . Using classical Lagrange multiplier 

technique a Lagrangian of (64) subject to mod

(65) 

el strong constraint allows us to convert 

is constrai  minimization into an unconstrained minim

efining a Lagrangian (see Bertsekas[14]) as  

th ization problem by ned

d

 ( ) ( ) ( ( ))L U J U F Uλ λ, = + ,  

 

(66) 

d inn or a functional space in which  also 

elongs.  

hen finding nima of  subject to  

 ( )F Ufor an adequately define er product f

b

( )J UT  mi

 ( ) 0F U =  (67) 

 equivalent inding the minima of  

 

is  to f

 0 andLλ∇ =  (68) 

 

 0U L∇ =  

 

which taking into account boundary conditions turns out to be the Euler-Lagrange 

equations of the problem. Since the Euler-Lagrange equations can seldom be solved 

directly, we are interested in practical al

(69) 

gorithms for solving the minimization of cost 

functional subject to strong model constraint by transforming it into a sequence of 

unconstrained minimization problems.  

There are many constrained minimization algorithms-but the simplest and most robust 



of them are the penalty and the multiplier (or duality) algorithms. These are presented 

Bertsekas[14] and 

avon and De Villiers[130].  

 the augmented Lagrangian algorithm( where the constrained problem is converted 

 (70) 

 

osed by Hestenes [82] and independently by Powell 

in many numerical minimization text books, (Nocedal and Wright[142], Nash and 

Sofer[132]) For shortcomings of penalty and duality algorithms see 

N

In

into a sequence of unconstrained minimization problems) we have  

 ( ) ( ) { ( )L U J U F Uρ λ λ, , = + , 2} ( )F Uρ+ | |

This algorithm was initially prop

[151]. Here 0ρ >  is the quadratic penalty coefficient.  

11. Optimal control view point 

In optimal control of partial differential equations developed by Lions[112,113] the 

mal 

puting the gradient of a cost  with respect to the contro

variables.  

onsider as in Gunzburger[79] a second order nonlinear elliptic PDE  

Lagrange multiplier is viewed as an adjoint variable. The adjoint method of opti

control allows com l J

C

3
K

 ( )
1

K K
k=

a bφ φ−∇ ∇ f  (73) 

in d

φ α+ ⋅∇ + =∑

 

omain  with boundary conditions   Ω

 0 onφ = Γ  (74) 

 

 and a b, Kf  are given functions defined on Ω .  

e define a cost as  

 

W

2 2
1

1( ) ( ) ( )
2 2

K

KJ d σφ α α φ α
Ω

, , , = −Φ Ω+ ∑∫  (75) 
1

K
k=

 is a given function and 

 

Φ σ  a penalty parameter. We introduce a Lagrange 

r  a imultiplier (here adjoint va iable) ζ nd define a Lagrang an  

 ( ) ( ) ( )TL g J g F gφ ζ φ ζ φ, , = , − ,  (76) 

We aim to find controls , states 

 

g φ  and adjoint states ζ  such that the Lagrangian is 



stationary and we obtain as in the Augmented Lagrangian approach  

0 constraintL
ζ
∂

= ,
∂

  (77) 

 

0 adjoint equationL
φ
∂

= ,
∂

  (78) 

 

 0 optimality conditionL
g
∂

= ,
∂

 (79) 

Taking a first order variation of  with respect to the Lagrange multiplier, we obtain 

 variation in the state yielding an optimality condition  

 

L

a

 ( ) ( )( F ) ( )T T
g g

J
φ φζ

φ φ, ,

∂ ∂
| = |

∂ ∂
 (80) 

rancois LeDimet[98] technical report 

l 

e first to present  application of adjoint 

alysis to a multi-level quasi-geostrophic model.  

 

which yields the optimality condition.  

12. Situation of data assimilation-the early period (1980-1987) of 4-D Var. 

Efforts in early adjoint applications following F

were by Lewis and Derber[107] and LeDimet and Talagrand[101] as well as 

Courtier[34]. These research efforts started  the meteorological optimal contro

application called “adjoint operator” approach.  

Work of Navon and De Villiers[130] on augmented Lagrangian methods  is related to 

the same topic and is referred to in the early work of LeDimet and Talagrand [ 101]  

John Lewis and John Derber[107] were th

method,  having read the report of Francois le Dimet (1982) [99]  and inspired by 

earlier work of Thompson[184] . Lorenc[115] presented a detailed account of state of 

theory in data assimilation for that period.  

It became soon apparent that size and complexity of atmospheric equations is such 

that enormous computational resources were required-limiting applications of 4-D 

VAR to undergo drastic approximations for actual operation forecast circumstances.  

Penenko and Obratsov[148] used adjoint data assimilation to perform simple 

experiments on a linear model ( see Talagrand and Courtier[177]) , while Derber[52] 

used it in his Ph.D thesis to adjust an



Hoffmann[83] was the next to use 4-D VAR (even though he used a simplified 

primitive equation model and in order to estimate the gradient he perturbed in turn all 

the components of the initial state.)  

Talagrand and Courtier[177] presented a more in-depth general exposition of the 

theory of adjoint equations in the framework of variational assimilation and applied it 

 are presented 

tr

to the inviscid vorticity equation and to the Haurwitz wave. Their results

in Courtier and Talagrand[35].  

13. OI, 3-D VAR and Physical Space Analysis Scheme (PSAS). 

Lorenc [115] showed that the optimal weight matrix W  that minimizes the ma ix of 

analysis error covariance solution may be posed in terms of a variational assimilation 

problem, namely that of finding the optimal analysis field aX  that minimizes a cost 

function. The cost ncfu tion measures the distan e field variables ce between th X  and 

the background bX  (the background term of the cost , nam ly the 

distance to the observations 

)-plus another term e

oy  weighted by the inverse of the observation error 

trix R   covariance ma

 1 11( ) ( )
2

T o T o
bJ X X X B− −= − ( ) [ ( )] [ ( )]bX X y H X R y H X− + − −  (97) 

ions to a model state can be derived from the 

ese

s hysical space statistical analysis system 

SAS) (see also report of Aarnes[1]).  

e are considering incrementing background model state 

 

where H  is the forward observational operator. The cost function (97) can also be 

derived based on a Bayesian approach.  

A formalism allowing viewing the assimilation algorithms of O-I, 3-D VAR, PSAS 

and 4-D VAR as a sequence of correct

work of Lorenc[115], Kalnay[92] and Courtier[38]. See also r arch work of Da 

Silva et al.[ 47] who first propo ed the p

(P

bXW  with additional 

atinform ion from the observation z  where  

 ( )a b bX X K z HX= + − .  

 

Here H  is an observation operator mapping the model state on space and time 

locations of the observation, a

(98) 

X  is the analysis and K  is the gain matrix weighting 

the contributions from the new information according to the reliability of the 



observation relative to respective reliability of the model state. Following Kalnay[92], 

Lorenc[115] OI, 3-D VAR, 4-D VAR and PSAS are mathematically equivalent but 3-

D VAR and related PSAS have the advantage with respect to  OI by virtue of the fact 

nimization 

algorithms for 3-D VAR hence all the approximation made in OI are not necessary. 

tages of 3-D VAR are enum

o show equivalence of 3-D VAR and OI we start from the matrix system  

that one can minimize the cost function J  with global unconstrained mi

Other advan erated in Kalnay[92].  

T

 1 0
b

T
a b

WR H z HX
X XH B−

⎛ −⎛ ⎞⎞ ⎛ ⎞
=⎜ ⎜ ⎟⎟ ⎜ ⎟−− ⎠ ⎝ ⎠⎝ ⎠⎝

                                                                       (99) 

 

where R  and B  are the error observation error and background error covariance 

atrices, respectively, assumed to b  symmetric and 

quivalence between OI and 3-D V R statistical problems was proven by 

(100) 

ce of observations ther than in the model space (Since the 

number of observation is usually much smaller than the dimension of model space-

ay turn out to be more efficient than 3-D VAR for obtaining sim

at  

m positive-definite. The e

A

 ra

b

e

Lorenc[115], Kalnay [92] and using suggestion of Jim Purser (see Kalnay [92])  

 ( )T T
OIW K BH R HBH= = +  

 

To see the equivalence between OI and the PSAS scheme where minimization is 

performed in the spa

PSAS m ilar 

results)we note th

1 0a b

W
 T

R H z
X XB−

⎛ −⎛ ⎞ HX
H

⎞ ⎛ ⎞
=⎜ ⎜ ⎟⎟ ⎜− ⎟− ⎠ ⎝ ⎠⎝ ⎠⎝

                                                                 (101) 

                          

 equivalent to  

HX−

 

is

 
W⎛

1

0
0

b
T

a b

W
X XH B−

⎛ ⎞ z⎞ ⎛ ⎞
=⎜ ⎜ ⎟⎟ ⎜−− ⎟

⎠ ⎝ ⎠⎝ ⎠⎝
                                                                                  (102) 

ng  

)  (103) 

and  

 

yieldi
1( bz HX−= −w W 

 



1T
a bX X BH W −− =  (104) 

ne first solves the linear system  

b

 

O

 wW z HX= −  (105) 

nd then interpolates solution onto model space as  

 

a

 T
a bX X BH w= +  (106) 

In PSAS one solves the first step by minimizing the cost functional  

 

1( ) ( )
2

T T
bJ w w Ww w Z HX= − −   (107) 

 

us allowing a better conditioning of the minimization 

 i.e  

th due to smaller dimension of 

W

 dim( ) dim( )W B≤  

 

Courtier[38] has shown that there is a duality between 3-D VAR and the physical 

space statistical analysis system (PSAS). He also showed that the temporal extension 

of 3-D VAR leads to 4-D VAR while the temporal extension of PSAS,4-D VAR 

PSAS is achieved using an algorithm related to the representers technique ( 

Bennett[11]), which is a prac

(108) 

tical algorithm for decoupling the Euler-Lagrange 

problem with weak constraint. (see 

Amodei[3])  

ced an incremental formulation of the 4-D VAR, 

equations associated with the variational 

14. 4-D VAR developments in early 1990’s 

A comprehensive list of adjoint applications to meteorological problem is provided by 

Courtier[36]. The early 1990’s were characterized by publication of many research 

efforts related to extending 4-D VAR data assimilation to multilevel primitive-

equation models using analyses as observations along with other work using synthetic 

observations. See for instance Thepaut and Courtier[181], Navon et al.[ 135] and  

Zupanski[207]. Thepaut et al.[182] used real observations while Rabier and 

Courtier[154] studied the performance of 4-D VAR in the presence of baroclinic 

instability. Courtier et al.[ 37] introdu



a major achievement allowing the 4-D VAR method to become computationally 

feasible on that period’s computers.  

It was perceived rather early by Derber[53] that the perfect model hypothesis is a 

weakness of 4-D VAR. In the above seminal paper he assumed the model error to be 

7] was written by 

W. Yang et al.[201] Aspects of 4-D VAR dealing with boundary conditions as control 

 in the work of Zou et al. [204].  

 and forcing terms. Errors also occur due to numerical discrete 

se the weak constraint 

D-Var.  

Variational data assimilation is based on the minimization of:  

fully correlated in time and solved the problem by including the bias in the control 

variable. Wergen[196] and Miller et al.[125] illustrated how serious the problem is.  

At universities research in 4-D VAR data assimilation proceeded to address issues 

such as the impact of incomplete observations on 4-DVAR (see Zou et al.[205]), 

while at the suggestion and advice of Francois Le Dimet, Zhi Wang completed a 

doctoral thesis on second order adjoint methods (Wang[191]), as well as a first paper 

on second order adjoint data assimilation.( Wang et al.)[192] Initial work on 4-D 

VAR data assimilation with the semi-implicit semi Lagrangian (SLSI) models in 2-D 

and 3-D was using both shallow-water and a  National Aeronautics and Space 

Administration (NASA) multilevel model.( see Li et al.[109,[110],[111]) Basic work 

on optimization methods suitable for 4-D VAR was carried out by Zou et al.[206] 

based on Navon et al.[136],[137]. Application of 4-D VAR to a finite-element model 

of the shallow-water equations was carried out by Zhu et al.[202] while a novel 

Hessian preconditioning method based on an idea of Courtier et al.[3

variables were dealt amongst others

15. Model Error in 4-D VAR 

Numerical weather prediction (NWP) models are imperfect, since they are discretized, 

dissipative and dispersion errors arise, and, moreover subgrid processes are not 

included. In addition, most of the physical processes and their interactions in the 

atmosphere are parameterized and a complete mathematical modeling of the boundary 

conditions and forcing terms can never be achieved. Usually all of these modeling 

drawbacks are collectively addressed by the term model error (ME). The model 

equations do not represent the system behavior exactly and model errors arise due to 

lack of resolution as well as inaccuracies occurring in physical parameters, boundary 

conditions

approximations. A way to take these errors into account is to u

4



1( ) [ ( ) ] [ ( ) ]TJ H y R H y−= − −x x x +  (109) 

)Φ1 1
0 0( ) ( ) ( ) (T T

b bB C− −− − +Φx x x x x x   

 

 

Here x  is the 4D state of the atmosphere over the assimilation window, H  is a 4D 

observation operator, accounting for the time dimension. Φ  represents remaining 

theoretical knowledge after background information has been accounted for (such as 

balance relations or digital filtering initialization introduced by Lynch and 

model M verified exactly although it is not perfect.  

 a constraint in the cost function, in the same way as 

ther sources of information:  

i

Huang[116]). One can see that 

15.1. Weak constraint 4D-Var 

The model can be imposed as

o

1( )i i −Φ = −x x M  (110)  

 

Model error η  is defined as: 1( )i i iη −= −x x M .  

he cost function becomes:  

 

T

1

1

1( ) ( ( ) ) ( ( ) )
2

n
T

i i i i i
i

J H y R H−

=

y= − −∑x x x +  (111) 

1 1
0 0

1

1 1( ) ( )
2 2

n
T T

b b i
i

B Qiη η− −

=

− − + ∑x x x x   

 

 

Another issue requiring attention is that model error co matrix has to be 

defined. S

variance 

trong constraint 4D-Var is obtained when 

 Q  

( ) 0iΦ =x  i.e. 0η =  (perfect 

];Dalcher and Kalnay[41]; Bloom and Shubert[17] and 

model).  

Studies indicate that model error (ME )can severely impact forecast errors, see for 

instance Boer[18

Zupanski[207].  

For early methods on estimating modeling errors in operational NWP models see 

Thiébaux and Morone[183] and Saha[162]. Thus giving up the assumption that the 

model is perfect, in the context of strong constraint VDA leads us to weak constraint 



formulation of VDA, and if we include time evolution of the variables, we could say 

we have a weak constraint 4D-Var (time plus three space dimensions).  

k constraint VDA, in the formulation of former, it is 

assumed that 

Comparing the strong and wea

η  has mean and model error covariance matrix 

( ( ) ( )) 0 andTQ E t t t tη η ′ ′= = ,∀  and model error covariance matrix, [ ]E ⋅  is the 

mathematical expectation operator. It should be noted that if the

(co)variance of a random vector are prescribed to be equal to zero, then all 

realizations of that random vector are identically equal to zero, thus, 0

 mean and 

η ≡ . In the 

weak constraint version of VDA, the mean and covariance of ME have to be 

specified. However exact statistical details of ME are difficult to obtain (Daley[45] 

E.  

 m

[46]; Dee and Da Silva[50] and Zhu and Kamachi[203]) a fact which led researchers 

to suggest a variety of assumptions to approximate  and parameterize the M

Early efforts to odel the systematic component of ME were pioneered by 

Derber[53]. He suggested a simplified approach to model η  to be equal to ( )tλ φ . The 

temporal part, ( )tλ  is a specified function of time alone, while φ  is a spatially 

dependent, control variable. Three different forms of λ  were considered, namely, 

parabolic, delta function and constant in time. It was observed that the parabolic 

variation of λ  provided results comparable to a constant in time λ . Using a similar 

 and 

ichols[75],[77]). Various simple forms of evolution of

y Griffith and Nichols[77],[140], At any time step, , the evolution of ME is  

approach (Wergen[196]; Zupanski[208]) it was shown that inclusion of ME allowed 

significant reduction in forecast  root mean square error (RMSE).  

For dynamically evolving systems such as discrete NWP models, ME is expected to 

depend on the model state and should be evolving in time (Griffith

N  ME in time were considered 

ktb

 ( )k k k kTη = +e q  

 

where kT  describes the distribution of systematic errors in the NWP model equations, 

and kq , (stochastic component) is an unbiased, serially corre

(112) 

lated, normally 

 vector, with known covariance. The evolution of 

od y assuming that it depends on the state vector, ,  

 

distributed random ke , is in-turn 

eled b kxm

1 ( )k k k kg+ = , .e x e  (113) 



 

15.2. Systematic Model error and State Augmentation 

In order to take into account systematic components in the model errors, we assume 

that the evolution of the errors is described by the equations  

k ( )k k kTη = +e q  (114) 

 

 1 ( )k k k k+ = ,e g x e  

where kT describes the distribution of systematic err

(115) 

ors in the NWP model equations, 
stic coand kq  (stocha mponent) is an unbiased, serially uncorrelated, normally 

distributed random vector, with known covariance. 

The vectors r
k R∈e  represent time-varying systematic components of the model 

errors. The distribution of the systematic e

the function r nT R R: → . The functions 

rrors in the model equations is defined by 
r

k k
n rR R R: × →g  describing the systematic 

 and a simple form for the 

ble knowledge needs to be prescribed. 

Examples of simple forms of the error evolution includes:  

error dynamics, are to be specified.  

In practice little known about the form of the model errors

error evolution that reflects any availa

constant bias error: 1k k kT I= , =e e .  

This choice allows for a constant vector 0

+

=e e  of unknown parameters to be found, 

which can be interpreted as statistical biases in the model errors. This form is 

riate for representing the average errors in source terms or in 

boundary conditions.  

ample, for representing discretization error in models that 

approximate continuous dynamical processes by discrete time systems.  

expected to be approp

Evolving error: F T I= , =e e .  

Here n n
kF R ×∈  represents a simplified linear model of the state evolution. This choice 

1k k k k+

is appropriate, for ex

1 ( sin( ) cos( ) )k k kT I k N I k N ISpectral form: τ τ+ = , = , , / .e e   

 cons nt vector 

/

In this case the ta 0≡e e  is partitioned into three components vectors, 

1 2 3( )T T T T= , ,e e e e  and τ  is a constant determined by the timescale on which the model 

errors are expected to vary, for example, a diurnal timescale. The choice approximates 

the first order terms in a spectral expansion of the model error.  



The weak constraint VDA doubles the size of the optimization problem (compared to 

strong constraint VDA), in addition if the stochastic component is included in the ME 

formulation, then one would have to save every random realization at each model 

time step, which amounts to tripling the size of the optimization problem. The 

computational results in [77] were provided by neglecting kq , the stochastic 

component of ME and using the constant and evolving forms of the systematic 

component, see [77] for additional details. Similar approaches for modeling the 

systematic component of ME was considered by Martin et al. (2001) [ 121] and 

reduction of ME control vector size by projecting it on to the subspace of eigenvectors 

corresponding to the leading eigenvalues of the adjoint-tangent linear operators was 

 a weak constraint VDA framework yielded a further reduction in forecast 

ncorporation of ME in such framework was 

considered the state-dependent part of ME and proposed a respective 

illustrated by Vidard et al. [189]  

Other choices can be prescribed, including piecewise constant error and linearly 

growing error (see Griffith[78], Martin et al.[121]and Griffith et al.[77]. These 

techniques have been applied successfully in practice to estimate systematic errors in 

an equatorial ocean model (Martin et al.[121] ) Zupanski et al. (2005)[211] provided 

results obtained used the  CSU-RAMS ( Colorado State University Regional 

Atmospheric Modeling System) model in weak constraint VDA framework. Akella 

and Navon [2] studied in depth the nature of modeling errors and suggested a 

decreasing, constant and increasing in time forms of ME. Implementation of these 

forms in

errors.  

When the number of observations is considerably smaller, the method of representers 

(Bennett 2002)[11] provides a computationally efficient (in storage/ space 

requirements) formulation of VDA.  I

shown by  Uboldi and Kamachi [186].  

Very little is known with certainty about ME spatio-temporal structure since MEs are 

not observable, contrary to forecast errors. The common practice is to assume that 

MEs are white. Daley (1992) [45] suggested use of a first order (in time) linear model 

for MEs. That approach was implemented by Zupanski (1997) [208] in its simplest 

form; the inevitable simplicity is due to the absence of empirical estimates of 

parameters and even structural features of the ME model. DelSole and Hou 

(1999)[51] 

estimator.  



Mitchell and Daley (1997)[126] considered the discretization part of ME and its effect 

on data assimilation. Menemenlis and Chechelnitsky [124] estimated the spatial 

structure of an ME white-noise model for an ocean circulation model. ME models rely 

on hypotheses that have never been checked namely the applicability of a stochastic 

model driven by an additive (and not, say, multiplicative) noise, Gaussianity of ME, 

the white-noise or red-noise hypotheses. Tools needed to use the information on ME ( 

Tsyrulnikov 2005) [185] structure in meteorology and oceanography are available 

such as ensemble forecasting, weak-constraint four-dimensional variational 

assimilation (4D-Var, e.g. Zupanski 1997 [208]; Xu et al. 2005) [199], and Kalman 

filtering (e.g. Cohn 1997) [33]. Empirical approaches have been used only in 

ensemble techniques but cannot be used in the weak-constraint 4D-Var, where one 

must specify an ME spatio-temporal stochastic model.  

s resulting from differentiation the discretized model 

 of 

with inherent shortcomings are symbolic differentiation or use 

fferences suffer from round-off errors 

ata assimilation while reverse 

16. Automatic differentiation 

Automatic differentiation (AD) is a set to techniques based on the mechanical 

application of the chain rule to obtain derivatives of a function given as a computer 

program adjoint equation

equation can be obtained.  

Automatic differentiation exploits fact that a computer code executes a sequence

elementary arithmetic operations consisting of additions or elementary functions.  

By applying the chain rule derivative repeatedly to these operations derivatives of any 

order can be computed automatically .Other classical methods to achieve the same 

goal are available but 

of finite-differences.  

Symbolic differentiation is slow, while finite di

in the discretization process and cancellations.  

Automatic differentiation has the advantage of solving these problems.  

There are essentially two modes of AD, namely forward accumulation and reverse 

accumulation. Forward accumulation is less useful for d

accumulation allows efficient calculation of gradients.  

The first powerful general purpose AD systems was developed at Oak Ridge National 

Laboratory (Oblow [143]) , later endowed with the adjoint variant ADGEN for 

reverse AD (1987) by Pin et al.[149]. Later ADIFOR (Bischof et al.[16]) was 

developed at Argonne National Laboratory , Odyssee was developed at INRIA  and 



TAMC by Giering and Kaminski [72]. In France the TAPENADE code is used (see 

Hascoet and Pascual [81]. There are many more languages. Earlier books on AD are 

ate value is required, the fragment is run a 

f Andreas Griewank [76]  . See also Berz et al.[15] and Griewank and 

Corliss[74] . 

ation higher and in this sense 

by Rall[158] and Kagiwada et al.[90] . 

Checkpointing is a general trade-off technique, used in the reverse mode of AD that 

trades duplicate execution of a part of the program in order to save memory space 

employed to save intermediate results. Checkpointing a code fragment amounts to 

running this fragment without storage of intermediate values, thus saving memory 

space. At a later stage, when the intermedi

second time to obtain the required values.  

Results and application studies of automatic differentiation have been published in 

proceedings of the international workshop on automatic differentiation held in 

Breckenridge ( See Griewank and Corliss [74]). The most comprehensive book and 

work is that o

17. Second Order Adjoint methods 

Behind most of the methods used in meteorology such as: optimal interpolation, 

variational methods, statistical estimation etc., there is a variational principle, i.e. the 

retrieved fields are obtained through minimization of a functional depending on the 

various sources of information. The retrieved fields are obtained through some 

optimality condition which can be an Euler or Euler-Lagrange condition if regularity 

conditions are satisfied. Since these conditions are first order conditions, it follows 

that they involve the first order derivatives of the functional which is minimized. In 

this sense, data assimilation techniques are first order methods. But first order 

methods provide only necessary conditions for optimality but not sufficient ones. 

Sufficient conditions require second order information. By the same token, from the 

mathematical point of view sensitivity studies with respect to some parameter can be 

obtained through Gateaux derivatives with respect to this parameter. Therefore if we 

seek the sensitivity of fields which have already been defined through some first order 

conditions we will have to go to an order of deriv

sensitivity studies require second order information.  

Early work on second order information in meteorology includes Thacker[173] 

followed by  work of Wang et al.[190,191] stimulated by advice and expertise of F.X. 

Le Dimet, Wang[368]. Wang et al.[191] and Wang et al.[194] considered use of 



second order information for optimization purposes namely to obtain truncated -

Newton and Adjoint Newton algorithms using exact Hessian/vector products. 

Application of these ideas was presented in Wang et al.[193]. Kalnay et al.[169] 

introduced an elegant and novel pseudo-inverse approach and showed its connection 

to the adjoint Newton algorithm of Wang et al.[193]. (See Kalnay et al.[91], Pu and 

Kalnay[153], Park and Kalnay[146], Pu et al.[152]). Ngodock[139] applied second 

order information in his doctoral thesis in conjunction with sensitivity analysis in the 

presence of observations and applied it to the ocean circulation. Le Dimet et al.[102] 

presented the basic theory for second order adjoint analysis related to sensitivity 

en by Le 

Dimet et al.  [103] considering all aspects of second order adjoint methods.  

t al. (2002)[103].  

 general we will assume that the model has the gener

0

analysis.  

A comprehensive review paper on second order adjoint methods was writt

18. Computing the second order information 

In what follows we follow closely the presentation in Le Dimet e

In al form:  

( )F , =X U  (116) 

od

. We will assume that  belong to a 

riational principle which can be 

onsidered as the minimization of some functional:  

)

 

 

where X , the state variable, describes the state of the environment, U  is the input of 

the model, i.e. an initial condition which has to be provided to el to obtain 

from Eq. (159) a unique solution ( )X U

 the m

 and X U

space equipped with an inner product.  

The closure of the model is obtained through a va

c

 (J ,X U  (117) 

v e  of the input parameter. Therefore the 

optimal input for the model will minimize .  

 the optimal  minimizes  , then it satisfies the Eu

 

For instance, in the case of variational data assimilation, J  may be viewed as 

representing the cost function measuring the discrepancy between the observation and 

the solution associated with the alu U

J

18.1. First order necessary conditions 

If ler equations given by  U  J



 ( ) 0J∇ =U  (118) 

 g  variables.  

 (directional) derivative of the model and of  in some 

irection . We may write  

 

where J∇  is the radient of J  with respect to control

The gradient of J  is obtained in the following way:  

(i) we compute the Gateaux F

 ud

ˆ 0F F∂ ∂
× + × =

∂ ∂
X u

X U
  (119) 

wh

 

ere ˆ( )  stands for the Gâteaux derivative. Let Z  be an application from nR  into 
nR  with variable U . We define the Gâ aux derivative ofte  Z  in the direction  when 

 li it exists. For a generic function

u

this m  Z  it is gi  by:  ven

0

( ) (ˆ ( ) lim Z ZZ
α

)α
α→

+ −
, =

U u UU u  (120) 

 is linear in  we can write  

 

 ˆ ( )Z ,U u uIf

ˆ ( ) ( )Z Z, =< ∇ , >U u U u  (121) 

 

where Z∇  is the gradient of Z  with respect to U . The Gateaux derivative is also 

called a directional derivative. Here F∂
∂X

 (or F∂
∂U

) is the Jacobian of  with respect to 

 (or ) and  

F

X )U

ˆ ˆ( ) J JJ ∂ ∂
, , =< , > + < , >

∂ ∂
X U u X u

X U
  (122) 

by introducing the adjoint variable 

aking the inner product between (162) and  yields  

 

where <>  stands for the inner product.  

The gradient of J  is obtained by exhibiting the linear dependence of Ĵ  with respect 

to u . This is done P  (to be defined later according 

to convenience).  

 PT

ˆ 0F FP P∂ ∂
< × , > + < × , >=
∂ ∂

X u
X U

  (123) 

 



 ˆ 0( ) ( )
T TF FP P∂ ∂< × , > + < × , >=

∂ ∂
X

X U
u  (124) 

 

Therefore using (165), if  is defined as the solution of the adjoint model  P

 ( )
T JF P ∂∂ × =

∂∂ XX
 (125) 

 

then we obtain  

 ( ) ( )
T JFJ P ∂∂∇ = × +

∂∂
U

UU
 (126) 

 

Therefore the gradient is computed by solving Eq. (168) to obtain , then by applying 

Eq. (169).  

18.2. Second order adjoint 

To obtain second order information we look for the product of the Hessian  of 

 with some vector u  . As before we apply a perturbation to Eqs. (159), (168), and 

from Eq. (168) and (169) we obtain  

( )G U

J

 
2 2

2
ˆˆ ( )( )

T TFF F P ∂∂ ∂ P× + ×× + ×
∂∂ ∂ ∂

X u
XX X U

=  (127) 

 
2 2

2
ˆJ J∂ ∂

× + ×
∂ ∂ ∂

X u
X X U

 

 

 

and  

 
2 2

2
ˆ( ) ( ) ( )TF FJ G P∂ ∂

∇ = × = − × + × ×
∂ ∂ ∂

U U u u X
U U X

−  (128) 

 
2 2

2
ˆ ˆ( )

T J JF P ∂ ∂∂ × + × + ×
∂ ∂ ∂∂

u X
U X UU

 

 

 

We introduce here Q  and R , two additional variables. To eliminate  and , we 

will take the inner product of Eq. (162) and (170) with Q  and 

X̂ P

R  respectively, then 



add the results. We then obtain  

 
2

2
ˆ ˆ( ) ( ) ( )T TF F FQ Q P∂ ∂ ∂

< , × > + < , × > + < , × × >
∂ ∂ ∂

X u
X U X

RX  (129) 

 
2

ˆ( ) ( )F FP R P∂ ∂
+ < , × × > + < , × >

∂ ∂ ∂
u

X U X
R  

 
2 2

2
ˆ ( ) ( )T TJ JR R∂ ∂

=< , × > + < , × >
∂ ∂ ∂

X u
X X U

 

 

 

Let us take the inner product of Eq. (171) with u , then we may write  

 
2 2

2
ˆ( ) ( )TF FG ∂ ∂

< × , >=< − × + × × , >
∂ ∂ ∂

U u u u X u
U X U

P +  (130) 

 
2 2

2
ˆ ˆ( ) )TF J JP ∂ ∂ ∂

< , − × >< × , > + < , × >
∂ ∂ ∂ ∂

u u u X
U U X U

u  

 

 

From (173) we get  

 
2 2

2 2
ˆ ˆ( ) ( )TF F J FQ P R R P R∂ ∂ ∂ ∂

< , × + × × − × > + < , × >=
∂ ∂ ∂ ∂

X
X X X X

 

 

 
2 2

( ) ( )T TF F JQ P R∂ ∂ ∂
< ,− × − × × + × >

∂ ∂ ∂ ∂ ∂
u

U X U X U
R  (131) 

 

Therefore if  and Q R  are defined as being the solution of  

 
2

2( ) ( ) ( ( ) )T T TF F F FQ∂ ∂ ∂ ∂
< ,− × + < ,− × × −

∂ ∂ ∂ ∂
u u

X U X U
P R  (132) 

 
2 2 2

2( ) ( ) ( )T TJ J FR P∂ ∂ ∂
× = × −

∂ ∂ ∂ ∂ ∂
u u

X X U U X
×  

 

 

 ( )F FR∂ ∂
× = − ×

∂ ∂
u

X U
 (133) 

 

then we obtain:  



 
2 2

2 2( ) ( ) ( )TF J FG P∂ ∂ ∂
× = − × × + × − × −

∂ ∂ ∂
U u u u

U U U
Q  (134) 

 
2 2

( )F JP R R∂ ∂
× × + ×

∂ ∂ ∂ ∂X U X U
 

 

 

For equations(168-174) we took into account the symmetry of the matrix of second 

derivative, e.g.  

 
2 2

2 2( )TF F∂ ∂
=

∂ ∂X X
 (135) 

 

leading to some simplifications. The system (131-134) will be called the second order 

adjoint. Therefore we can obtain the product of the Hessian by a vector u  by (i) 

solving the system (131-134). (ii) applying formula (134).  

18.3.  Remarks 

a) The system (131-134) which has to be solved to obtain the Hessian/vector product 

can be derived from the Gateaux derivative (131) which is the same as (134). In the 

literature, the system (131-134) is often called the tangent linear model, this 

denomination being rather inappropriate because it implies the issue of linearization 

and the subsequent notion of range of validity which is not relevant in the case of a 

derivative.  

b) In the case of an -finite dimensional space the Hessian can be fully computed 

after  integrations of vector of the canonical base. Equation 131 differs from the 

adjoint model by the forcing terms which will depend on u  and 

N

N

R .  

c) The system (131-134) will yield the exact value of the Hessian/vector product. An 

approximation could be obtained by using the standard finite differences, i.e.,  

 1( ) [ ( ) ( )]G J α
α

× ≈ ∇ + −∇U u U u UJ  (136) 

 

where α  is the finite-difference interval which has to be carefully chosen. In the 

incremental 3/4D-Var approach the Hessian/vector product can readily be obtained by 

differencing two gradients.  

However several integrations of the model and of its adjoint model will be necessary 



in this case to determine the range of validity of the finite-difference approximation 

(Wang et al. [192] and references therein).  

18.4. Time dependent model 

In the case of variational data assimilation the model  is a differential system on the 

time interval [0 . The evolution of  between 0 and  is governed 

by the differential system,  

F

)]n,]T, [ (0H C T∈X T

 ( )F
t

∂
= + ×

∂
X X B V  (137) 

 

The input variable is often the initial condition,  

 (0) nR= ∈X U  (138) 

 

In this system  is a nonlinear operator which describes the dynamics of the model, 

 is a term used to represent the uncertainties of the model which we 

assume to be linearly coupled through the (

F

)]m,[ (0V C T∈V

)m n,  -dimensional matrix B , U  is the 

initial condition, and the criteria  is the discrepancy between the solution of (137)-

(138) and observations  

J

 2

0

1( )
2

T

obsJ dt, = || − ||∫U V HX X  (139) 

 

where  is the observation matrix, i.e., a linear operator mapping  into . The 

problem consists in determining  and  that minimize .  

H X obsX

U V J

A perturbation  on  and u  on U  gives  and  the Gateaux derivatives of  

and  as solution of  

v V X̂ Ĵ X

J

 
ˆ ˆd F

dt
∂

= × + ×
∂

X X B V
X

 (140) 

 

 ˆ (0) =X u  (141) 

 

 
0

1ˆ( )
2

T

obsJ , , , = < − , >∫U V u v HX X HX̂ dt  (142) 

 



Let us introduce  the adjoint variable, we take the product of (140) with  after a 

summation on the interval [  and an integration by parts followed by identification 

of linearities with respect to U  and V  in (142), we conclude that of  is defined as 

the solution of  

P P

0 ]T,

P

 (
T

T
obs

dP F P
dt

∂= × + −
∂

H H X X
X

)  (143) 

 

 ( ) 0P T =  (144) 

 

and the components of the gradient J∇  with respect to  and  are  U V

 (0)J P∇ = −U  (145) 

 

  (146) TJ∇ = −V B P

 

V  is time dependent, its associated adjoint variable  will be also time dependent. 

Let us remark that the gradient of  with respect to V  will depend on time . From a 

computational point of view the discretization of V  will have to be carried out in 

such a way that the discretized variable remains in a space of "reasonable" dimension.  

Q

J

The second derivative will be derived after a perturbation h  on the control variables 

 and   U V

   U

V

h
h

h
⎛ ⎞

= ⎜ ⎟
⎠⎝

                                                                                                           (147)     

The Gateaux derivatives ,  of  and  in the direction of h , are obtained as the 

solution of the coupled system  

X̂ P X P

 
ˆ ˆ

V
d F h
dt

∂
= +
∂

X X B
X

 (148) 

 

 ˆ (0) Uh=X  (149) 

 

 
2

2

ˆ ˆ( ) ( )T Td F FP P
dt

∂ ∂
+ × × + × =

∂
P X

X X
ˆTH HX  (150) 

 



  (151) ˆ(0)J P∇ = −U

 

  (152) ˆTJ∇ = −V B P

 

We introduce Q  and R , second order adjoint variables. They will be defined later for 

ease use of presentations.  

Taking the inner product of (148) with  and of (150) with Q R , integrating from 0 to 

, then adding the resulting equations, we may write:  T

 
0

ˆ ˆˆ[
T

V
d F dPQ Q h Q
dt dt

∂
< , > − < × , > − < , > + < , > +

∂∫
X X B

X
R  (153) 

 
2

2
ˆ ˆ[ ] [ ] ]T T TF FP R P R R dt∂ ∂ 0< × × , > + < × , > − < , > =

∂ ∂
X H

X X
HX  

 

 

The terms in  and  are collected and after integration by parts and some 

additional transformations we obtain  

P̂ X̂

 
2

20
ˆ [ ] [ ]

T T T TdQ F FQ P R R
dt

∂ ∂
< ,− − × + × × − > +

∂ ∂∫ X
X X

dtH H  (154) 

 
0 0

ˆ ( )
T T T

V
dR FP R dt h Q
dt

dt∂
< ,− + × > − < , × > +

∂∫ ∫ B
X

 

  ˆ ˆ ˆ( ) ( ) (0) (0) ( ) ( )T Q T Q P T R T< , > − < , > + < , > −X X

 ˆ (0) (0) 0P R< , >=  

 

 

Let G  be the Hessian matrix of the cost . We have  J

 UU UV

VU VV

G G
G G
⎛ ⎞

= ⎜ ⎟
⎠⎝

G                                                                                                  (155)  

 

Therefore if we define the second order adjoint as being the solution of  

 
2

2[ ] [ ]T TdQ F FQ P R
dt

∂ ∂
+ × = × −
∂ ∂

H H
X X

T R  (156) 

 



 [ ]dR F R
dt

∂
= ×

∂X
 (157) 

 

and  

 ( ) 0Q T =  (158) 

 

 (0) UR h=  (159) 

 

then we finally obtain  

 ˆ(0) (0) (0)Uh Q P R< − , >=< , >  (160) 

 

  (161) ˆ(0) (0)P Q= −

 

We would like to point out that Eq. (161) follows directly from Eq. (160) by using Eq. 

(159). The product of the Hessian by a vector r is obtained exactly by a direct 

integration of (157) and (159) followed by a backward integration in time of (156) 

and (158).  

One can obtain  by  integrations of the differential system:  G n

 
2

2[ ] [ ]T TdQ F FQ P R
dt

∂ ∂
+ × = × × −
∂ ∂

H H
X X

T R  (162) 

 

 [ ]dR F R
dt

∂
=

∂X
 (163) 

 

with the conditions  

 ( ) 0Q T =  (164) 

 

 (0) iR = e  (165) 

 

where  are the n-vectors of ie nR  the canonical base of thus obtaining  

 (0)UU i Q=G e  (166) 

 



 T
UV i Q= ×G e B  (167) 

 

One then integrates  times the differential system  m

 
2

2[ ] [ ]T TdQ F FQ P R
dt

∂ ∂
+ × = × × −
∂ ∂

H H
X X

T R  (168) 

 

 [ ] j
dR F R
dt

∂
− × =
∂

f
X

 (169) 

 

with initial and terminal conditions  

 ( ) 0Q T =  (170) 

 

 (0) 0R =  (171) 

 

where  are the  canonical base vectors of jf m mR  obtaining  

 T
VV j Q× = ×G f B  (172) 

 

The system defined by these equations is the second order adjoint model. The Hessian 

matrix is obtained via  integrations of the second order adjoint. The second 

order adjoint is easily obtained from the first order adjoint - differing from it only by 

some forcing terms, in particular the second order term. The second equation is that of 

the linearized model (the tangent linear model).  

n m+

One can also obtain the product of a vector of the control space, times the Hessian at 

cost of a single integration of the second order adjoint.  

18.5. Use of Hessian of cost functional to estimate error covariance matrices 

A relationship exists between the inverse Hessian matrix and the analysis error 

covariance matrix of either 3-D VAR or 4-D VAR (See Thacker[173], Rabier and 

Courtier[154], Yang et al.[201], Le Dimet et al.[102]).  

Following Courtier et al.[37] we consider methods for estimating the Hessian in the 

weakly nonlinear problem when the tangent linear dynamics is a good approximation 

to nonlinear dynamics. As a consequence the cost function is near to being quadratic. 

If as Gauthier and Courtier [67] we consider the observations as random variables and 



we look at variational analysis as attempting to solve the minimization problem  

 11 1min ( ) ( ) ( ) ( ) ( )
2 2

T T
b bJ −= − − + − −x x x B x x Hx 1−y O Hx y  (173) 

 

where  is the unbiased background field and bx y  the set of unbiased observations, 

both being realizations of random variables of covariances B  and  respectively and 

where the operator H  computes the model equivalent Hx  of the observation 

O

y  . 

Then the Hessian  of the cost function  at the minimum is given by  J ′′ J

  (174) 1 TJ − −′′ = +B H O H1

1T

 

obtained by differentiating (173) twice.  

Moreover the analysis error covariance matrix is the inverse of the Hessian as shown 

in Appendix B of Rabier and Courtier[154]. Calling  the result of the minimization 

(i.e. the analysis) and  the truth, one has  

ax

tx

 1 1 1[( )( ) ] ( ) ( )T
a t a tx x x x J − − −′′− − = = +E B −H O H  (175) 

 

A requirement is that the background error and the observation error are uncorrelated 

(Rabier and Courtier[154], Fisher and Courtier[59]). See also work of Thepaut and 

Moll[180] pointing out that the diagonal of the Hessian is optimal among all diagonal 

preconditioners.  

19. Hessian Singular Vectors (HSV) 

Computing HSV’s uses the full Hessian of the cost function in the variational data 

assimilation which can be viewed as an approximation of the inverse of the analysis 

error covariance matrix and it is used at initial time to define a norm. The total energy 

norm is still used at optimization time. See work by Barkmeijer et al.[7,8]. The HSV’s 

are consistent with the 3-D VAR estimates of the analysis error statistics. In practice 

one never knows the full 3-D VAR Hessian in its matrix form and a generalized 

eigenvalue problem has to be solved as described below.  

The HSV’s are also used in a method first proposed by Courtier [36] and tested by 

Rabier et al.[155] for the development of a simplified Kalman filter fully described by 

Fisher[60] and compared with a low resolution explicit extended Kalman filter by 

Ehrendorfer and Bouttier[57].  



Let M  be the propagator of the tangent linear model,  a projection operator setting a 

vector to zero outside a given domain. Consider positive-definite and symmetric 

operators including a norm at initial and optimization time respectively. Then the 

SV’s defined by  

P

 2

0 0

( ) ( )
( ) ( )
x t x t

x t x t
λ< , >

=
< , >

P EP
C

 (176) 

 

under an Euclidean norm are solution of generalized eigenvalue problem.  

  (177) 2λ∗ ∗ =M P EPMv Cv

E is the total energy metric,  are the Hessian singular vectors and v 2λ  the Hessian 

eigenvalues. 

In HSV, the operator C  is equal to the Hessian of the 3-D Var cost function. As 

suggested by Barkmeijer et al.[7], one can solve (177) by using the generalized 

eigenvalue algorithm (Davidson [48]). See also Sleijpen and Van der Vorst[172]. 

Using  

  (178) 2 1 1TJ − −≡ ∇ = +C B H O H

 

and carrying out a coordinate transformation  

 1 1− −= , =x L x L L B  (179) 

 

Then we obtain a transformed operator  

  (180) 1( )T−L CL

 

and the Hessian becomes equal to the sum of identity and a matrix with rank less or 

equal to the dimensions of the vector of observations (Fisher and Courtier [59]).  

Veerse[188] proposes to take advantage of this form of the appropriate Hessian in 

order to obtain approximations of the inverse analysis error covariance matrix, using 

the limited memory inverse Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization 

algorithm.  

Let  be H 2( )J 1−∇  the inverse Hessian and +H  the updated version of the inverse 

Hessian.  

 1n+ n= −s x x  (181) 

 



where  is the difference between the new iterate and the previous one in a limited-

memory quasi-Newton minimization procedure.  

s

 1n+ n= −y g g  (182) 

 

is the corresponding gradient increment. One has the formula  

 ( ) ( )+ = , , = −
< , > < , >
⊗ ⊗s y s sH U H y s I
y s y s

 (183) 

 

where  is a scalar product with respect to which the gradient is defined and ⊗  

stands for the outer product.  

<,>

The method is implemented by using the inverse Hessian matrix-vector product built 

in the minimization code and based on Nocedal’s[141] algorithm. These methods are 

useful when the second order adjoint method is not available due to either memory or 

CPU limitations.  

20. 4-D VAR status today 

4-D VAR data assimilation is available and implemented today at several operational 

numerical weather prediction centers starting with European Centre for Medium-

Range Weather Forecasts (ECMWF), (Rabier et al.[156), Klinker et al. [93], while a 

similar system was operational at Meteo-France in 2000 (Janiskova et al.[88], 

Gauthier and Thépaut[68], Desroziers et al.[56]). More recently 4-D VAR was 

implemented at UK Met office, Japan and Canada.  

Park and Zupanski [144] survey the status and progress of the four-dimensional 

variational data assimilation with emphasis on application to prediction of  

mesoscale/storm-scale atmospheric phenomena. 

The impact of adopting 4-D VAR was qualified as a substantial, resulting in an 

improvement in NWP quality and accuracy (see Rabier[157] in  a special issue of 

Quarterly Journal of the Royal Meteorological Society (QJRMS), 2005).  

4-D VAR combined with improvement in error specifications and with a large 

increase in a variety of observations has led to improvements in NWP accuracy 

(Simmons and Hollingsworth[171]).  

Hollingsworth et al. [86] shows how observing system improvements led to 

improvements of forecast scores while Bouttier and Kelly[20] show that the 



improvement of forecast scores for the southern hemisphere are due to satellite data.  

Also, error statistics for different sources of observation constitutes an active field of 

research aimed mainly at obtaining better representation of the specific observation 

operators.  

21. Recent  algorithmic developments of note for 4-D VAR 

Following an idea of Derber, Courtier et al. [37] proposed and developed the 

incremental 4-D VAR algorithm, where minimization is carried out at reduced 

resolution in the inner iteration and on a linear model. The 4-D VAR incremental 

algorithm minimizes the following cost function (Rabier[157])  

 1 1
0 0 0

1

1 1( ) ( ) (
2 2 i

N
T T

i X i i i X i
I

J w w B w H d R H dδ δ δ δ δ− −

=

= + −∑ )
i
−

)

 (184) 

 

Where  0 0( bw X Xδ = −S  is the simplified increment at initial time  and  0t

 ( )  (185) o
i i i id y H X= −

 

is the observation increment at time . S is an operator going from high to low 

resolution. The solution resulting from minimization of the cost function is added to 

the background 

it

bX  to obtain analysis at  i.e  0t

 
00

a b I
wX X S aδ−= −  (186) 

 

where  is the generalized inverse of operator  transforming the field from low to 

high resolution (i.e.  projects from high to low resolution). In an outer loop one 

updates the high resolution reference trajectory and observation departures. A 

refinement of the incremental 4-D VAR was proposed as a multi-incremental 

algorithm by Veerse and Thépaut[187].  

IS − S

S

Physical parameterizations that have been modified to allow use in the linear models 

used in the incremental procedure were implemented by Janiskova et al. [89], Lopez 

and Moreau[105].  

22. Impact of observations 

In view of high density of some observations horizontal thinning is performed on data 



sets, and optimal observation density is found by trial and error.  

Another approach called "super-obbing",i.e. it averages neighboring observations. A 

new advance concerns the information content of the data. While usual method of 

estimating data impact in a forecasting system consists in performing observing 

system experiments (OSE) which turn out computationally expensive. However, 

another diagnostic called the "degrees of freedom for signal (DFS)" has been used by 

Rodgers[161], Fisher[62] and Cardinali et al.[27].  

Given an analysis ax , background bx  and observation oy  we have  

 1 1 1 1( ) (T T o
a b b( ))x x B H R H H R y H x− − − −= + + −  (187) 

 

which can be written compactly as  

 a bx x Kd= +  (188) 

 

B -being the background error covariance matrix, R  the observation error covariance, 

-linearized observation operator of .  is called the Kalman gain matrix and  

innovation vector  ( )

H H K d

d o
by H x= − .  

The DFS is defined as  

 ( )DFS Tr HK=  (189) 

 

where the trace of the matrix  measures the gain in information due to the 

observations of how an assimilation system extracts information signal from the 

background. One way to calculate DFS is the use of estimation the Hessian of the cost 

function provided. Fisher[62] and Cardinali et al.[27] used estimation of Hessian of 

the cost function provided by the minimization algorithm. Chapnik et al.[30] use 

evaluation of trace of the  matrix, using a method put forward by Desroziers and 

Ivanov[55] to evaluate trace of .  

HK

KH

KH

Computing sensitivity of forecast to the observations can be carried out by 

considering the adjoint of data assimilation together with the adjoint of the forecast 

model. This allows use of adaptive observations which is a topic of increased research 

efforts in 4-D VAR data assimilation (Berliner et al [13]), Baker and Daley[4]) 

Daescu and Navon[40], Langland and Baker [95] . 

 



23  Conclusions 
A condensed review of several aspects of 4-D VAR as it evolved in the last 30 
or so years is presented. It aims to present both the history of 4-D VAR as 
well as its evolution by highlighting several topics of its application. 
No attempt was made to cover here the  vast  ensemble Kalman filter data 
assimilation and its various flavors due to space and time limitations. In the same vein 
this review is not exhaustive as it is not covering all the issues dealing with 4-D VAR 
applications. 
It has become amply evident that in the last 15 years major improvements in 
NWP are due to large extent to development of sources of observations and 
that 4-D VAR  and sequential data assimilation can take advantage of them due to 
major research efforts at universities, federal laboratories  and operational centers. 
For new opportunities for research see the article by McLaughlin et al. [212] 
that illuminates and outlines possibilities for enhanced collaboration within 
the data assimilation community . 
It is certain that data assimilation concepts will become widely applied  in all the 
geosciences as more geoscience scientific disciplines gain access to larger amounts of 
data, from satellite remote sensing and from sensor networks, and as Earth system 
models increase in both accuracy and sophistication. 
It is hoped that this review highlights several aspects of 4-D VAR data assimilation 
and serves to attract interest of both atmospheric science practitioners 
as well as real time PDE constrained optimization research  scientists. 
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