
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/,

Comparing ensemble data assimilation methods for

the shallow water equations model

M.Jardak,
1

I.M.Navon,
1

and M.Zupanski
2

M.Jardak, Department of Scientific Computing, Florida State University,

Tallahassee, FL 32306-4120, USA

(mjardak@scs.fsu.edu)

I.M. Navon, Department of Scientific Computing, Florida State University,

Tallahassee, FL 32306-4120, USA

(navon@scs.fsu.edu)

M.Zupanski, Cooperative Institute for Research in the Atmosphere,

Colorado State University, 1375 Campus Deliver,

Fort Collins, CO 80523-1375, USA

(ZupanskiM@cira.colostate.edu)

1Department of Scientific Computing,

Florida State University, Tallahassee, FL

32306-4120, USA

2CIRA,Colorado State University, 1375

Campus Deliver, Fort Collins, CO

80523-1375, USA

D R A F T November 21, 2008, 2:27pm D R A F T



X - 2 JARDAK ET AL.: DATA ASSIMILATION

Abstract. Many problems in the geosciences require estimation of the

state of a system that changes over time using a sequence of noisy measure-

ments made on the system. Data assimilation is the process of fusing obser-

vational data and model predictions to obtain an optimal representation of

the state of the atmosphere. A new comparison of three frequently used se-

quential data assimilation methods illuminating their strengths and weak-

nesses in the presence of linear and nonlinear observation operators is pre-

sented. The ensemble Kalman filter (EnKF), the particle filter (PF) and the

Maximum Likelihood Ensemble Filter (MLEF) methods were implemented

and the spectral shallow water equations model in spherical geometry model

was employed using the Rossby-Haurwitz Wave no 4 as initial conditions.

Conclusions are drawn as to the performance of the above filters for the above

test case with both linear and nonlinear observation operators.
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1. Introduction and motivation

Sequential data assimilation fuses observations of the current (and possibly, past) state

of a system with results from a mathematical model (the forecast) to produce an analysis,

providing ”the best” estimate of the current state of the system. Central to the concept of

sequential estimation data assimilation is the propagation of flow dependent probability

density function (pdf) given an estimate of the initial pdf.

In sequential estimation, the analysis and forecasts can be viewed as probability dis-

tributions. The analysis step is an application of the Bayes theorem. Advancing the

probability distribution in time, for the general case is done by the Chapman-Kolmogorov

equation, but since it is unrealistically expensive, various approximations operating on

representations of the probability distributions are used instead. If the probability distri-

butions are normal, they can be represented by their mean and covariance, which gives

rise to the Kalman filter (KF). However, due to the high computational and storage over-

heads required, various approximations based on Monte-Carlo ensemble calculations have

been proposed by [Evensen 94]. Research on ensemble Kalman filtering (EnKF) started

with the work of [Evensen 94], [Evensen and Van Leeuwen 96], [Burgers et al. 98] and

[Houtekamer and Mitchell 98]. The method is essentially a Monte-Carlo approximation of

the Kalman filter which avoids evolving the covariance matrix of the pdf of the state vec-

tor. A second type of EnKF filter consists of the class of square root filters of [Anderson

and Anderson 03] see also [Bishop et al. 01]. The review of [Tippett et al. 03] consists of

a single analysis based on the ensemble mean, and where the analysis perturbations are

obtained from the square root of the filter analysis error covariance. See also the paper
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of [Nerger 05] where the (EnKF) filter, the singular evolutive extended Kalman (SEEK)

filter, and the less common singular evolutive interpolated Kalman (SEIK) filter were

reviewed and compared.

Particle filters, also known as sequential Monte-Carlo (SCM) methods as well as

Bayesian filters, are sophisticated model estimation techniques based on simulation. A

precursor to particle filter method tested [ Jardak et al. 08], [Xiong et al. 06] is due to the

pioneering contribution of [Gordon et al. 93]. Initially the SCM focused on applications

to tracking and vision, these techniques are now very widespread and have been used in a

variety of applications linked to Bayesian dynamical models see [Doucet et al. 01]. These

methods utilize a large number N of random samples named particles to represent the

posterior probability distributions. The particles are propagated over time using a com-

bination of sequential importance sampling and resampling steps. Resampling for PF is

used to avoid the problem of degeneracy of this algorithm that is, avoiding the situation

that all but one of the importance weights are close to zero. The performance of the

PF algorithm can be crucially affected by judicious choice of a resampling method. See

[Arulampalam et al. 02] for a listing of the most used resampling algorithms. A major

drawback of particle filters is that they suffer from sample degeneracy after a few filtering

steps. The PF suffers from ”the curse of dimensionality” requiring computations that

increase exponentially with dimension as pointed out by Silverman [Silverman 86]. This

argument was enhanced and amplified by the recent work of [Bengtsson et al. 08] and

[Bickel et al. 08] and finally explicitly quantified by [Synder et al. 08]. They indicated

that unless the ensemble size is greater than exp(τ 2/2), where τ 2 is the variance of the

observation log-likelihood, the PF update suffers from a ”collapse” in which with high
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probability only few members are assigned a posterior weight close to one while all other

members have vanishing small weights. This issue become more acute as we move to

higher spatial dimensions.

The Maximum Likelihood Ensemble Filter of [Zupanski 05]; [Zupanski and Zupanski

06], does not calculate a sample mean from the ensemble members. The analysis state that

the MLEF seeks is the mode, which reduces to the mean in the case of linear dynamics

and Gaussian statistics. The mode is found through minimizing a cost function, similar

to that in the three-dimensional variational assimilation method, 3D-Var, of [Lorenc 86],

but projected into ensemble space, rather than modal space. Hence MLEF can be viewed

as a hybrid filter. The method comprises of three steps, a forecast step that is concerned

with the evolution of the forecast error covariances, an analysis step based on solving a

non-linear cost function and on updating step.

In this paper data assimilation experiments are performed using the ensemble Kalman

filter (EnKF), the particle filter (PF) and the Maximum Likelihood Ensemble Filter

(MLEF). These methods were tested on the spectral shallow water equations model using

the Rossby-Haurwitz test case for both linear and nonlinear observation operators. To

the best of our knowledge this contribution in the context presented is novel.

The same model of Williamson[Williamson 92] and [Jakob et al.95] is used to generate

a true solution and to generate forecasts. To improve EnKF analysis errors and avoid

ensemble errors that generate spurious corrections, a covariance localization investigated

by [Houtekamer and Mitchell 1998,2001]. is incorporated. To improve both the analysis

and the forecast results, the forecast ensemble solutions are inflated from the mean as

suggested in [Anderson and Anderson 99] and reported in [Hamill et al. 2001], [Constan-
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tinescu et al. 07A 07B] and [Uzunoglu et al. 07]. Finally a parallel implementation similar

to the one of [Keppenne 2000] is used to render the algorithm computationally feasible.

Since the resampling is a crucial step for (PF) method, the systematic, multinomial and

the merging resampling methods [Arulampalam et al. 02],[Doucet et al. 01] and [Nakano

and al. 07] were tested. We also assess numerically the latest argument of [Snyder et al.

08] that unless the ensemble size greater than exp(τ 2/2), where τ 2 is the variance of the

observation log-likelihood, the PF update suffers from a ”collapse” in which, with high

probability, a single member is assigned a posterior weight close to one, while all other

members have vanishing small weights. In order to render algorithm computationally

feasible a parallel MPI implementation is used.

The paper is structured as follows. Section 2 presents the Shallow-Water model and the

numerical methods used for its resolution. In section 3 we present each of the data as-

similation methods. Section 4 we present the numerical results and discuss them. Finally

section 5 is reserved for the conclusion.

2. Shallow-Water equations in spherical geometry

The shallow water equations are a set of hyperbolic partial differential equations that

describe the flow below a pressure surface in a fluid.

The equations are derived from depth-integrating the Navier-Stokes equations, in the case

where the horizontal length scale is much greater than the vertical length scale. Under

this condition, conservation of mass implies that the vertical velocity of the fluid is small.

It can be shown from the momentum equation that vertical pressure gradients are nearly

hydrostatic, and that horizontal pressure gradients are due to the displacement of the

pressure surface, implying that the velocity field is nearly constant throughout the depth
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of the fluid. Taking the vertical velocity and variations throughout the depth of the fluid

to be exactly zero in the Navier-Stokes equations, the shallow water equations are derived.

Shallow water equations are especially suitable to model tides which have very large length

scales, as well as to model Rossby and Kelvin waves in the atmosphere, rivers, lakes and

oceans as well as gravity waves.

The shallow-water equations in spherical geometry are given by
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∂u
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]
= 0

(1)

where V = u~i + v~j is the horizontal velocity vector ( with respect to the surface of the

sphere), gh is the free surface geopotential, h is the free surface height, g is the gravity

acceleration. f = 2Ω sin θ is the Coriolis parameter, Ω is the angular velocity of the earth.

θ denotes the angle of latitude, µ = sin θ is the longitude. λ the longitude,and a is the

radius of the earth.

The Rossby-Haurwitz waves are steadily propagating solutions of the fully nonlinear

nondivergent barotropic vorticity equation on a sphere [ Haurwitz 40]. They are described

exactly by analytic solutions and so they are useful test cases for numerical models.

Although the shallow water equations do not have analogous analytic solution, a Rossby-

Haurwitz wave initial condition is expected to evolve in a very similar way to that in

the non divergent barotropic vorticity equation case. The initial velocity field for the
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Rossby-Haurwitz wave is defined as




u = aω cos φ + aK cosr−1 φ(r sin2 φ− cos2 φ) cos(rλ)

v = −aKr cosr−1 φ sin φ sin(rλ)
(2)

The initial height field is defined as,

h = h0 +
a2

g
[A(φ) + B(φ) cos(rλ) + C(φ) cos(2rλ)] (3)

where the variables A(φ), B(φ), C(φ) are given by




A(φ) =
ω

2
(2Ω + ω) cos2 φ +

1

4
k2 cos2r φ[(r + 1) cos2 φ + (2r2 − 2r − 2)− 2r2 cos2 φ]

B(φ) =
2(Ω + ω)k

(r + 1)(r + 2)
cosr φ[(r2 + 2r + 2)− (r + 1)2 cos2 φ]

C(φ) =
1

4
k2 cos2r φ[(r + 1) cos2 φ− (r + 2)]

(4)

In here, r represents the wave number,h0 is the height at the poles. The strength of the

underlying zonal wind from west to east is given by ω and k controls the amplitude of the

wave.

2.1. Solution method

As in [Williamson 92, 97, 07] and [Jakob et al.95], the grid representation for any

arbitrary variable φ is related to the following spectral decomposition

φ(λ, µ) =
M∑

m=−M

N(m)∑

n=|m|
φm,nPm,n(µ)eimλ, (5)

where Pm,n(µ)eimλ are the spherical harmonic functions [Boyd 01]. Pm,n(µ) stands for

the Legendre polynomial. M is the highest Fourier wavenumber included in the east-west

representation, N(m) is the highest degree of the associated Legendre polynomials for

longitudinal wavenumber m.

The coefficients of the spectral representation (5) are determined by

φm,n =

∫ 1

−1

1

2π

∫ 2π

0

φ(λ, µ)e−imλPm,n(µ)dλdµ (6)
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The inner integral represents a Fourier transform,

φm(µ) =
1

2π

∫ 2π

0

φ(λ, µ)e−imλdλ (7)

which is evaluated using a fast Fourier transform routine. The outer integer is evaluated

using Gaussian quadrature

φm,n =
J∑

j=1

φm(µ)Pm,n(µ)ωj, (8)

where µj denotes the Gaussian grid points in the meridional direction and ωj is the

Gaussian weight at point µj. The meridional grid points are located at the Gaussian

latitudes θj, which are the J roots of the Legendre polynomial Pj(sin θj) = 0. The

number of grid points in the longitudinal and meridional directions are determined so as

to allow the unaliased representation of quadratic terms,




I ≥ 3M + 1

J ≥ 3N + 1

2

where N is the highest wavenumber retained in the latitudinal Legendre representation

N = max N(m) = M . The pseudospectral method, also known as the spectral transform

method in the geophysical community, of [Orszag 1969, 1970] and [Eliassen et al. 1970]

has been used to tackle the nonlinearity.

In conjunction with the spatial discretization described before, the time discretization,

two semi-implicit time steps have been used for the initialization. Because of the hyper-

bolic type of the shallow water equations, the centered leapfrog scheme

φk+1
m,n − φk−1

m,n

2∆t
= F(φk

m,n) (9)
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has been invoked for the subsequent time steps. After the leapfrog time-differencing

scheme is used to obtain the solution at t = (k + 1)∆t, a slight time smoothing is applied

to the solution at time k∆t.

φ̄k
m,n = φk

m,n + α
[
φk+1

m,n − 2φk
m,n + φ̄k−1

m,n

]
(10)

replacing the solution at time k. The added term acts as a smoother in time. It reduces

the amplitude of different frequencies ν by a factor 1− 4α sin2(ν∆t
2

).

3. Sequential Bayesian Filter- theoretical setting

This applies to all 3 sequential data assimilation methods discussed herein. The sequen-

tial Bayesian filter employing a large number N of random samples advanced in time by

a stochastic evolution equation, to approximate the probability densities. In order to an-

alyze and make inference about the dynamic system at least a model equation along with

an observation operator are required. First, a model describing the evolution of the state

with time, and an observation operator for noisy observations of the state. Generically,

stochastic filtering problem is a dynamic system that assumes the form

ẋt = f(t,xt, ut,vt) (11)

zt = h(t,xt, ut,nt) (12)

The equation (11) is the state equation or the system model, (12) is the observation

operator equation, xt is the state vector, zt the observation vector and ut is the system

input vector serving as the driving force. vt and nt are the state and observation noises,

respectively. In practical application, however, we are more concerned about the discrete-

time filtering, and we consider the evolution of the state sequence {xk, k ∈ N}, given
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by

xk = fk(xk−1,vk−1), (13)

where the deterministic mapping fk : Rnx ×Rnd −→ Rnx is a possibly non-linear function

of the state xk−1, {vk−1, k ∈ N} is an independent identically distributed (i.i.d) process

noise sequence, nx, nd are dimensions of the state and process noise vectors, respectively,

and N is the set of the natural numbers. The objective is to recursively estimate xk from

observations

zk = hk(xk,nk), (14)

where hk : Rnx × Rnn −→ Rnz is a possibly non-linear function, {nk, k ∈ N} is an i.i.d.

observation noise sequence, and nx, nn are dimensions of the state and observation noise

vectors, respectively.

We denote by z1:k the set of all available observations zi up to time t = k, z1:k =

{zi|i = 1, · · · , k}. From a Bayesian point of view, the problem is to recursively calculate

some degree of belief in the state xk at time t = k, taking different values, given the

data z1:k up to the time t = k.Then the Bayesian solution would be to calculate the PDF

p(xk|z1:k). This density will encapsulate all the information about the state vector xk

that is contained in the observations z1:k and the prior distribution for xk.

Suppose that the required PDF p(x|z1:k−1) at time k − 1 is available. The prediction

stage uses the state equation (13) to obtain the prior PDF of the state at time k via the

Chapman-Kolmogorov equation

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (15)
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The probabilistic model of the state evolution, p(xk|xk−1), is defined by the state equation

(13) and the known statistics of vk−1.

At time t = k, a measurement zk becomes available, and it may be used to update the

prior via the Bayes rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (16)

where the normalizing constant

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk. (17)

depends on the likelihood function p(zk|xk), defined by the measurement equation (14)

and the known statistics of nk.

The relations (15) and (16) form the basis for the optimal Bayesian solution. This

recursive propagation of the posterior density is only a conceptual solution.One cannot

generally obtain an analytical solution. Solutions exist only in a very restrictive set of

cases like that of the Kalman filters for instance. (namely, if fk and hk are linear and both

vk and nk are Gaussian). Particle filters provide a direct approximation to the Bayes rule

outlined above.

3.1. Particle Filters

Particle filters (see [Doucet 2000, Doucet 2001, Arulampalam 02 and Berliner 07A])

approximate the posterior densities by population of states. These states are called ”par-

ticles”. Each of the particles has an assigned weight, and the posterior distribution can

then be approximated by a discrete distribution which has support on each of the parti-

cles. The probability assigned to each particle is proportional to its weight. The different

(PF) algorithms differ in the way that the population of particles evolves and assimilates
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the incoming observations. A major drawback of particle filters is that they suffer from

sample degeneracy after a few filtering steps. exp(τ 2/2),

In this 2-D plus time problem the common remedy is to resample the prior PDF when-

ever the weights focus on few members of the ensemble assuming that our experiments

do not encounter the exponential collapse. Here we use several strategies such as System-

atic Resampling (SR), Residual Resampling (RR) and or the Bayesian bootstrap filter

of Gordon et al. [Gordon 93] see also [Berliner and Wikel 07A and 07B ]. Multinomial

Resampling (MR) The SIR algorithm generates a population of equally weighted particles

to approximate the posterior at some time k. This population of particles is assumed to

be an approximate sample from the true posterior at that time instant.

The PF algorithm proceeds as follows:

• Initialization: The filter is initialized by drawing a sample of size N from the prior

at the initial time. The algorithm is then started with the filtering step.

• Preliminaries: Assume that {xi
k−1}i=1,···,N is a population of N particles, approxi-

mately distributed as in an independent sample from p(xk−1|z1:k−1)

• Prediction Sample N values, {q1
k, · · · , qN

k }, from the distribution of vk. Use these

to generate a new population of particles, {x1
k|k−1,x

2
k|k−1, · · · ,xN

k|k−1} via the equation

xi
k|k−1 = fk(x

i
k−1,v

i
k) (18)

• Filtering: Assign each xi
k|k−1, a weight qi

k. This weight is calculated by

qi
k =

p(zk|xi
k|k−1)∑N

j=1 p(zk|xj
k|k−1)

(19)

This defines a discrete distribution which, for i ∈ {1, 2, · · · , N}, assigns probability mass

qi
k to element xi

k|k−1
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• Resampling: Resample independently N times, with replacement, from the dis-

tribution obtained in the filtering stage. The resulting particles, {xi
k}i=1,···,N , form an

approximate sample from p(xk|z1:k) .

The method outlined above can be justified as follows. If the particles at time t = k−1

were an i.i.d sample from the posterior at time t = k − 1, then the predictive stage

just produces an i.i.d. sample from the prior at time t = k. The filtering stage can be

viewed as an importance sampling approach to generate an empirical distribution which

approximates the posterior.

The proposal density is just the prior p(xk|z1:k−1), and as a result of Bayes formula, we

obtain

p(xk|z1:k−1, zk) ∝ p(xk|z1:k−1)p(zk|xk), (20)

the weights are proportional to the likelihood p(zk|xk). As N tends to infinity, the discrete

distribution which has probability mass qi at point xi
k|k−1, converges weakly to the true

posterior. The resampling step is a crucial and computationally expensive part in a parti-

cle filter. It is used to generate equally weighted particles aimed at avoiding the problem

of degeneracy of the algorithm, that is, avoiding the situation that all but one of the

weights are close to zero. The resampling step modifies the weighted approximate density

p(xk|zk) to an unweighted density p̂(xk|zk) by eliminating particles having low importance

weights and by multiplying particles having highly importance weights. Formally:

p(xk|zk) =
N∑

i=1

qiδ(xk − xk
i) (21)

is replaced by

p̂(xk|zk) =
N∑

i=1

1

N
δ(xk − xk

?) =
N∑

i=1

ni

N
δ(xk − xk

i) (22)
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where ni is the number of copies of particle xk
i in the new set of particles {xk

?}.

Generically, it is implemented as follows:

• Draw N particles {x̃i
k}i=1,···,N from the uniform distribution.

• Assign the resampled particles {x̃i
k}i=1,···,N to {xi

k}i=1,···,N and assign equal weights

1

N
to each particle.

3.2. The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) was first proposed by Evensen 28 [@] and further

developed by [Burgers et al. 98] and [Evensen 03, Evensen07]. It is related to particle

filters in the context that a particle is identical to an ensemble member. EnKF is a se-

quential filter method, which means that the model is integrated forward in time and,

whenever observations are available, these are used to reinitialize the model before the

integration continues. The EnKF originated as a version of the Extended Kalman Filter

(EKF) [Jazwinski 70],[Bucy 65] for large problems. The classical KF [Kalman 60] method

is optimal in the sense of minimizing the variance only for linear systems and Gaussian

statistics. Similar to the particle filter method, the EnKF stems from a Monte Carlo inte-

gration of the Fokker-Planck equation governing the evolution of the PDF that describes

the prior, forecast, and error statistics. In the analysis step, each ensemble member is

updated according to the KF scheme and replaces the covariance matrix by the sam-

ple covariance computed from the ensemble. However, the EnKF presents two potential

problems namely:

1) Even though the EnKF uses full non-linear dynamics to propagate the forecast error

statistics, the EnKF assumes that all probability distributions involved are Gaussian.

2) The updated ensemble preserves only the first two moments of the posterior.
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Let p(x) denote the Gaussian prior probability density distribution of the state vector x

with mean µ and covariance Q

p(x) ∝ exp

(−1

2
(x− µ)TQ−1(x− µ)

)

We assume the data z to have a Gaussian PDF with covariance R and mean Hx, where

H is the so-called the observation matrix, is related to h of equation (12), and where the

valueHx assumes the value of the data z would be for the state x in absence of observation

errors. Then the conditional probability or likelihood p(z|x) assumes the form

p(z|x) ∝ exp

(−1

2
(z−Hx)TR−1(z−Hx)

)
.

According to the Bayes theorem the posterior probability density follows from the relation

p(x|z) ∝ p(z|x)p(x). (23)

There are many variants of implementing the EnKF of various computational efficiency

and in what follow we employ standard formulation of the EnKF for linear and nonlinear

observation operators with covariance localization. See [Evensen 94, Burgers et al. 98,

Mandel 06, Mandel 07 and Lewis et al.06], also see [Nerger et al. 05]. The implementation

of the standard EnKF may be divided into three steps, as follows:

• Setting and matching

¥ Define the ensemble

X = [x1, · · · ,xN ] (24)

be an nx × N matrix whose columns are a sample from the prior distribution. N being

the number of the ensemble members.
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¥ Form the ensemble mean

X̄ = X · 1N , (25)

where 1N ∈ RN×N is the matrix where each element is equal to 1.

¥ Define the ensemble perturbation matrix X ′ and set the Rnx×nx ensemble covariance

matrix C

X ′ = X − 1

N
X̄ , (26)

C =
X ′X ′T

N − 1
, (27)

• Sampling

¥ Generate

Z = [z1, · · · , zN ] (28)

be an nz × N matrix whose columns are a replicate of the measurement vector z plus a

random vector from the normal distribution N (0,R).

¥ Form the Rnz×nz measurement error covariance

R =
ZZ t

N − 1
, (29)

• Updating Obtain the posterior X p by the linear combinations of members of the

prior ensemble

X p = X + CHT (HCHT +R)−1(Z −HX ) (30)
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The matrix

K = CHT (HCHT +R)−1 (31)

is the Kalman gain matrix. SinceR is always positive definite( i.e. covariance matrix), the

inverse (HCHT +R)−1 exists. An easy computation shows that the mean and covariance

of the posterior or updated ensemble are given by

X̄ p = X p +K [z− (HX p + d)] , (32)

and

Cp = C − K [HCHT +R]KT , (33)

the vector d which appears in (32) stems from the affine measurement relation

h(x) = Hx + d. (34)

In the case of nonlinear observation operators, a modification to the above algorithm is

advised. As presented in Evensen [Evensen 03], let x̂ the augmented state vector made of

the state vector and the predicted observation vector (nonlinear in this case).

x̂ =

(
x

H(x)

)
. (35)

Define the linear observation operator Ĥ by

Ĥ
(

x
y

)
= y (36)

and carry out the steps of the EnKF formulation in augmented state space x̂ and Ĥ

instead of x and H. Superficially, this technique appears to reduce the nonlinear problem

to the previous linear observation operator case. However, whilst the augmented problem,

involving linear observation problem, is a reasonable way of formulating the EnKF, it is
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not as well-founded as the linear case, which can be justified as an approximation to the

exact and optimal KF.

To prevent the occurrence of filter divergence usually due to the background-error co-

variance estimates from small number of ensemble members as pointed out in [Houtekamer

and Mitchell 98], the use of covariance localization was suggested. Mathematically, the co-

variance localization increases the effective rank of the background error covariances. See

the work of [ Gaspari and Cohn 99] also [Hamill and Snyder 2000, 2006] and [Ehrendor-

fer 07]. The covariance localization consists of multiplying point by point the covariance

estimate from the ensemble with a correlation function that is 1.0 at the observation lo-

cation and zero beyond some prescribed distance. Mathematically, to apply covariance

localization, the Kalman gain

K = CHT (HCHT +R)−1

is replaced by a modified gain

K̂ = [ρ ◦ C]HT (H [ρ ◦ C]HT +R)−1 (37)

where ρ◦ denotes the Schur product ( The Schur product of matrices A and B is a matrix

D of the same dimension, where dij = aijbij) of a matrix S with local support with

the covariance model generated by the ensemble. Various correlation matrices have been

used, for horizontal localization [Gaspari and Cohn 99 ] constructed a Gaussian-shaped

function that is actually a fourth-order piece-wise polynomial. [Houtekamer and Mitchell

98] and [Evensen 03] used a cut-off radius so that observations are not assimilated beyond

a certain distance from the grid points.
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3.3. The Maximum Likelihood Ensemble Filter

The Maximum Likelihood Ensemble Filter (MLEF) proposed by [Zupanski 05], [Zupan-

ski and Zupanski 06] is a hybrid filter combining the 4-D Var method with the EnKF.

It maximizes the likelihood of posterior probability distribution which justifies its name.

The method comprises three steps, a forecast step that is concerned with the evolution of

the forecast error covariances, an analysis step based on solving a non-linear cost function

and updating step.

• Forecasting: It consists of evolving the square root analysis error covariance matrix

through the ensembles. The starting point is from the evolution equation of the discrete

Kalman filter described in [Jazwinski 70]

P k
f = Mk−1,kP

k−1
a MT

k−1,k + Qk−1, (38)

where P
(
fk) is the forecast error covariance matrix at time k, Mk−1,k the non-linear model

evolution operator from time k − 1 to time k, and Qk−1 is the model error matrix which

is assumed to be normally distributed. Since P k−1
a is positive matrix for any k, equation

(38) could be factorized and written as

P k
f =

(P k−1
f )1/2

︷ ︸︸ ︷(Mk−1,k(P
k−1
a )1/2

) (Mk−1,k(P
k−1
a )1/2

)T
+ Qk−1 (39)

where (P k−1
a )1/2 is of the form

(P k−1
a )1/2 =




pk−1
(1,1)p

k−1
(2,1) · · · pk−1

(N,1)

pk−1
(1,2)p

k−1
(2,2) · · · pk−1

(N,2)

pk−1
(1,n)p

k−1
(2,n) · · · pk−1

(N,n)


 , (40)

as usual N is the number of ensemble members and n the number of state variables.

Using equation(40), the square root forecast error covariance matrix (P k−1
f )1/2 can then

D R A F T November 21, 2008, 2:27pm D R A F T



JARDAK ET AL.: DATA ASSIMILATION X - 21

be expressed as

(P k−1
f )1/2 =




bk−1
(1,1)b

k−1
(2,1) · · · bk−1

(N,1)

bk−1
(1,2)b

k−1
(2,2) · · · bk−1

(N,2)

bk−1
(1,n)b

k−1
(2,n) · · · bk−1

(N,n)


 , (41)

where for each 1 ≤ i ≤ N

bk−1
i =




bk−1
(i,1)

bk−1
(i,2)
...

bk−1
(i,n)


 = Mk−1,k




xk−1
1 + pk−1

(i,1)

xk−1
2 + pk−1

(i,2)
...

xk−1
n + pk−1

(i,n)


−Mk−1,k




xk−1
1

xk−1
2
...

xk−1
n


 . (42)

The vector xk−1 =




xk−1
1

xk−1
2
...

xk−1
n


 is the analysis state from the previous assimilation cycle.

which is found from the posterior analysis pdf as presented in [Lorenc 86].

• Analyzing: The analysis step for the MLEF involves solving a non-linear minimiza-

tion problem. As in [Lorenc 86], the associated cost function is defined in terms of the

forecast error covariance matrix and is given as

J (x) =
1

2
(x− xb)

T
(
P k

f

)−1
(x− xb) +

1

2
[y − h(x)]T R−1 [y − h(x)] (43)

where y is the vector of observations, h is the non-linear observation operator, R is the

observational covariance matrix and xb is a background state given by

xb = Mk−1,k(x
k−1) + Qk−1. (44)

Through a Hessian preconditioner we introduce the change of variable

(x− xb) = (P k−1
f )1/2(I + C)−T/2ξ (45)

where ξ is vector of control variables, C is the Hessian matrix of J and I is the identity

matrix.
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The Hessian matrix C is provided by

C = (P k−1
f )T/2HTHR−1H(P k−1

f )T/2 = (R−1/2H(P k−1
f )1/2)T (R−1/2H(P k−1

f )1/2) (46)

here H is the Jacobian matrix of the non-linear observation operator h evaluated at the

background state xb.

To overcome the difficulty of calculating C, which is principally due to the non-linear

observation operator, (P k−1
f ) is used.

Let Z the matrix defined by

Z =




z(1,1)z(2,1) · · · z(N,1)

z(1,2)z(2,2) · · · z(N,2)

z(1,n)z(2,n) · · · z(N,n)


 , zi =




z(i,1)

z(i,2)
...

z(i,n)


 = R−1/2Hbk−1

i , (47)

using the approximation

zi ≈ R−1/2
[
h(x + bk−1

i )− h(x)
]
, (48)

the matrix C can then be approximated by

C =< ZZT >=




z1
T z1z1

T z2 · · · z1
T zN

z2
T z1z2

T z2 · · · z2
T zN

zN
T z1zN

T z2 · · · zN
T zN




(49)

• Updating: The final point about MLEF is to update the square root analysis error

covariance matrix

(P k
a )T/2 = (P k−1

f )T/2(I + C(xopt))
−T/2, (50)

where xopt is approximately the minimum of the cost function J given by (43).

R2(ũ, ut) =

{Nu

Nu∑
i=1

(ũiu
t
i)−

Nu∑
i=1

ũi

Nu∑
i=1

ut
i}2

{Nu

Nu∑
i=1

ũ2
i − (

Nu∑
i=1

ũi)
2}{Nu

Nu∑
i=1

ut
i
2 − (

Nu∑
i=1

ut
i)

2}
(51)
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Figure 1. The locations of the grid and observation points
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Figure 2. EnKF filter: velocity field, geopotential, and divergence after 1 day. 200

ensemble members and 1% perturbation
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Figure 3. EnKF filter: velocity field, geopotential, divergence and vorticity after 1 day.

200 ensemble members and 10% perturbation
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Figure 4. EnKF filter: velocity field, geopotential,divergence and vorticity after 5 days.

200 ensemble members and 1% perturbation
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Figure 5. EnKF filter: velocity field, geopotential,divergence and vorticity after 10

days. 200 ensemble members and 1% perturbation
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Figure 6. EnKF geopotential, linear observation operator case after 12 days
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Figure 7. EnKF analysis velocity field, linear observation operator case after 12 days
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Figure 8. MLEF background velocity field, linear observation operator case after 5

days
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Figure 9. MLEF background geopotential, linear observation operator case after 5 days
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Figure 10. MLEF analysis velocity field, linear observation operator case after 5 days
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Figure 11. MLEF analysis geopotential, linear observation operator case after 5 days
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