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SUMMARY

The Kuramoto-Sivashinsky equation plays an important role as a low-dimensional prototype for
complicated fluid dynamics systems having been studied due to its chaotic pattern forming behavior.
Up to now, efforts to carry out data assimilation with this 1-d model were restricted to variational
adjoint methods domain and only Chorin and Krause [26] tested it using a sequential Bayesian filter
approach. In this work we compare three sequential data assimilation methods namely the Kalman
filter (EnKF) approach the sequential Monte-Carlo particle filter approach (PF) and the Maximum
Likelihood Ensemble Filter methods (MLEF). This comparison is to the best of our knowledge novel.
We compare in detail their relative performance for both linear and nonlinear observation operators.
The results of these sequential data assimilation tests are discussed and conclusions are drawn as to
the suitability of these data assimilation methods in the presence of linear and nonlinear observation
operators. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. Introduction

Sequential data assimilation is a relatively novel and versatile multidisciplinary methodology. It
combines observations of the current (and possibly, past) state of a system with results from a
mathematical model (the forecast) to produce an analysis, providing ”the best” estimate of the
current state of the system. Central to the concept of sequential estimation data assimilation
is the propagation of flow dependent covariance errors.

In sequential estimation, the analysis and forecasts can be viewed of as probability
distributions. The analysis step is an application of the Bayes theorem. Advancing the
probability distribution in time, in the general case is done by the Chapman-Kolmogorov
equation, but since it is unrealistically expensive, various approximations operating on
representations of the probability distributions are used instead. If the probability distributions
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2 M.JARDAK ET AL.

are normal, they can be represented by their mean and covariance, which gives rise to the
Kalman filter (KF). However it is not computationally feasible to store the covariance due
to the large number of degrees of freedom in the state, so various approximations based on
Monte-Carlo ensemble calculations are used instead.

In the present paper we compare standard ensemble Kalman filter (EnKF) along with the
particle filter (PF) using various resampling strategies to the Maximum Likelihood Ensemble
Filter(MLEF) of Zupanski [66]. In addition, we compare the performance of each of the above
mentioned methods in the presence of linear and nonlinear observation operators.

While work on 4-D variational data assimilation using as model the Kuramoto-Sivashinsky
equation has been carried out by very few research workers (see Protas et al. [19]), to the best
of our knowledge only the work of Chorin and Krause [26] has used Bayesian filters.

We further discuss issues of computational efficiency for the above mentioned filters in
terms of CPU time and memory requirements for the three aforementioned methods taking
into account the additional effort required by PF due to various resampling strategies aimed
at preventing filter degeneracy.

The structure of the present work is as follows. After the introduction, we present in section
2 the K-S equation and its numerical solution. In section 3 we present the formulation of the
PF and issues related to various resampling strategies implemented. The formulation of the
standard EnKF is presented as well. Then we present the formulation of the MLEF method
viewed as a hybrid between sequential and 4-D variational data assimilation. Section 4 provides
discussion of the numerical experiments followed by a discussion of their significance. Finally,
section 5 contains summary and conclusions along with directions for further research.

2. The Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky (K-S) equation is an evolution equation in one space dimension,
with a Burgers nonlinearity, a fourth order dissipation term and a second anti-dissipative term.
It assumes the form

ut + uxxxx + uxx + uux = 0, (x, t) ∈ R× R+ u(x, 0) = u0(x), x ∈ R (1)

The K-S equation models pattern formations in different physical contexts and is a paradigm
of low-dimensional behavior in solutions to partial differential equations. It arises as a model
amplitude equation for inter-facial instabilities in many physical contexts. It was originally
derived by Kuramoto and Tsuzuki ([6], [7]) to model small thermal diffusive instabilities
in laminar flame fronts in two space dimensions. It has also been derived in the context of
angular-phase turbulence for a system of reaction-diffusion modeling the Belouzov-Zabotinskii
reaction in three space dimensions. Sivashinsky([8],[9])derived it independently to model small
thermal diffusive instabilities in laminar flame fronts. The equation also arises in modeling
small perturbations from a reference Poiseuille flow of a film layer on an inclined plane [10],
while Babchin et al.[11] derived (1) as a general mechanism modeling the nonlinear saturation
of instabilities in flow films as in the Rayleigh-Taylor-type instability.

The K-S equation is non-integrable, and no explicit solutions exist. It is characterized by a
second-order unstable diffusion term, responsible for an instability at large scales,a fourth-order
stabilizing viscosity term, which provides damping at small scales; and a quadratic nonlinear
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SEQUENTIAL DATA ASSIMILATION FOR THE K-S EQUATION 3

coupling term which stabilizes by transferring energy between large and small scales. This is
readily apparent in Fourier space, where one may write(1)with periodic boundary condition
as

dûk

dt
= (k2 − k4)ûk +

i

2

∑

k′∈Z
k′ûk′ ûk−k′ (2)

where
u(x, t) =

∑

k∈Z
ûk(t) exp(ikx), k = n

2π

L
, k′ = m

2π

L
, m, n ∈ Z, i =

√−1,

The zero solution is linearly unstable to modes with |k| < 1; whose number is proportional
to the bifurcation parameter L, are coupled to each other and to damped modes at |k| > 1
through the non-linear term. In an effort to characterize, understand and predict the spatially
and temporally nontrivial dynamical behavior including chaos of K-S, numerical simulation
has been conducted by Hyman and Nicolaenko [12] and by Kevrekidis et al.[13] to cite but
few.

Foias et al. [14], Nicolaenko et al.[15] and Temam [5] established the existence of a unique
compact inertial manifold for the K-S equation. They also demonstrated that the K-S equation
is strictly equivalent to a low-dimensional dynamical system.That is, all orbits are attracted
exponentially to a finite-dimensional, bounded, compact, smooth manifold and the dynamics
take a place in this “inertial” manifold. This implies that the transition to chaos of the K-S
equation can be analyzed using the tools developed for low-dimensional dynamics systems.

Desertion and Kazantzis [17] used the K-S equation to examine the performance
improvement of a class of nonlinear transport processes subject to spatio-temporally varying
disturbances through the employment of a comprehensive and systematic actuator activation
policy. Lee and Tran [18] obtained a reduced-order system that can accurately describe
the dynamics of the K-S equation by employing an approximate inertial manifold and a
proper orthogonal decomposition. From this resulting reduced-order system, they designed
and synthesized the feedback controller for the K-S equation. Recently, Protas et al.[19] came
up with a comprehensive framework for the regularization of adjoint analysis in multiscale
PDE systems. They examined the regularization opportunities available in the adjoint analysis
and optimization of multiscale, and applied the proposed regularization strategies to the K-S
equation

2.1. Mathematical Formulation

We consider the solutions of

ut + uxxxx + uxx + uux = 0, (x, t) ∈ R× R+ u(x, 0) = u0(x), x ∈ R (3)

which are space periodic of period L, u(x, t) = u(x + L, t), L > 0.

Let Ω ⊂ R, we denote by

L2(Ω) =
{

u|u : Ω −→ R, u measurable and
∫

Ω

|u(x)|2dx < ∞
}

,

the Hilbert space of square integrable function over Ω endowed with the norm

‖u‖2 =
{∫

Ω

|u(x)|2dx

}1/2

,
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and by

H4(Ω) =
{

u|u : Ω −→ R, u measurable and
diu

dxi
∈ L2(Ω), for i = 0, · · · , 4

}
,

the fourth-order Sobolev space with the norm, see Adams [1] and also Mazya [2],

‖u‖4,2 =

{
‖u‖22 +

4∑

i=1

∥∥∥∥
diu

dxi

∥∥∥∥
2

2

}1/2

.

Finally, we denote by H4
per(Ω) the closure of C∞

per(Ω) for the H4-norm. C∞
per(Ω) is the subset

of C∞(R) of Ω-periodic functions.
We set

A =
d4

dx4
, H =

{
u ∈ L2(

−L

2
,
L

2
)
}

and
D(A ) = H4

per(
−L

2
,
L

2
) ∩H , V = D(A 1/2).

H is a Hilbert space, the dissipative operator A is a linear self-adjoint unbounded operator
in H with domain D(A ) and dense in H . Assuming A positive closed and that A −1 is
compact, V is a Hilbert space endowed with the norm |A 1/2 · |. Using Leray’s method (see
Lions[3], Temam[4]), the K-S equation (1) with initial condition u0 ∈ H has a unique solution
defined for all t > 0 and such that

u ∈ C (R+; H ) ∩ L2(0, T ; V ) ∀T > 0.

Moreover, if u0 ∈ V , then

u ∈ C (R+; V ) ∩ L2(0, T ;D(A )) ∀T > 0.

Furthermore, it has been proved in Nicoleanko et al. ([15],[16]) that only the odd solutions of
(1) are stable for large t. Consequently, the subspace H is restricted to

H =
{

u ∈ L2(
−L

2
,
L

2
), u is odd

}

3. Data Assimilation for the K-S Equation

Data assimilation is the process by which observational data distributed in space and time
are fused with mathematical model forecast information aimed at obtaining the best initial
conditions that are as near as possible to observations while satisfying model forecast as
a strong constraint. The probabilistic state space formulation and the requirement for the
updating of information when new observations are encountered are ideally suited for the
Bayesian approach, and thus constitute an appropriate framework for data assimilation. The
Bayesian approach and in particular ensemble or particle filtering methods are a set of efficient
and flexible Monte-Carlo methods to solve the optimal filtering problem. Here one attempts to
construct the posterior probability density function (PDF) of the state based on all available
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SEQUENTIAL DATA ASSIMILATION FOR THE K-S EQUATION 5

information, including the set of received observations. Since this PDF embodies all available
statistical information, it may be considered to be a complete solution to the estimation
problem.

In the field of data assimilation, there are only few contributions in sequential estimation
(EnKF, PF and MLEF ) using the K-S equation. Chorin and Kruse [26] used particle filters and
proposed a strategy for reducing the size of the system of equations to be solved for evolving
the particles by adaptively finding subsets of variables that do not need to be recomputed and
solving only in directions in which the dynamic system is expanding. In the work of Hu and
Temam [27], a robust boundary control method for the K-S equation has been proposed, and
a data assimilation problem corresponding to the K-S equation has been considered.

3.1. Sequential Bayesian Filter- theoretical setting

The sequential Bayesian filter employs a large number N of random samples or “particles”
advanced in time by a stochastic evolution equation, to approximate the probability densities.
In order to analyze and make inference about the dynamic system at least a model equation
along with an observation operator are required. First, a model describing the evolution of the
state with time, and an observation operator for noisy observations of the state. Generically,
stochastic filtering problem is a dynamic system that assumes the form

ẋt = f(t,xt, ut,vt) (4)

zt = h(t,xt, ut,nt) (5)

The equation (4) is the state equation or the system model, (5) is the observation operator
equation, xt is the state vector, zt the observation vector and ut is the system input vector
serving as the driving force. vt and nt are the state and observation noises, respectively. In
practical application, however, we are more concerned about the discrete-time filtering, and
we consider the evolution of the state sequence {xk, k ∈ N}, given by

xk = fk(xk−1,vk−1), (6)

where the deterministic mapping fk : Rnx × Rnd −→ Rnx is a possibly non-linear function of
the state xk−1, {vk−1, k ∈ N} is an independent identically distributed (i.i.d) process noise
sequence, nx, nd are dimensions of the state and process noise vectors, respectively, and N is
the set of the natural numbers. The objective is to recursively estimate xk from observations

zk = hk(xk,nk), (7)

where hk : Rnx × Rnn −→ Rnz is a possibly non-linear function, {nk, k ∈ N} is an i.i.d.
observation noise sequence, and nx, nn are dimensions of the state and observation noise
vectors, respectively.

We denote by z1:k the set of all available observations zi up to time t = k, z1:k = {zi|i =
1, · · · , k}. From a Bayesian point of view, the problem is to recursively calculate some degree
of belief in the state xk at time t = k, taking different values, given the data z1:k up to the time
t = k.Then the Bayesian solution would be to calculate the PDF p(xk|z1:k). This density will
encapsulate all the information about the state vector xk that is contained in the observations
z1:k and the prior distribution for xk.
Suppose that the required PDF p(x|z1:k−1) at time k − 1 is available. The prediction stage
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uses the state equation (6) to obtain the prior PDF of the state at time k via the Chapman-
Kolmogorov equation

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (8)

The probabilistic model of the state evolution, p(xk|xk−1), is defined by the state equation (6)
and the known statistics of vk−1.

At time t = k, a measurement zk becomes available, and it may be used to update the prior
via the Bayes rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (9)

where the normalizing constant

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk. (10)

depends on the likelihood function p(zk|xk), defined by the measurement equation (7) and the
known statistics of nk.

The relations (8) and (9) form the basis for the optimal Bayesian solution. This recursive
propagation of the posterior density is only a conceptual solution.One cannot generally obtain
an analytical solution. Solutions exist only in a very restrictive set of cases like that of the
Kalman filters for instance. (namely, if fk and hk are linear and both vk and nk are Gaussian).
Particle filters provide a direct approximation to the Bayes rule outlined above.

3.2. Particle Filters

Particle filters (see [30], [31], [32] and [28]) approximate the posterior densities by population
of states. These states are called ”particles”. Each of the particles has an assigned weight,
and the posterior distribution can then be approximated by a discrete distribution which has
support on each of the particles. The probability assigned to each particle is proportional to
its weight. The different (PF) algorithms differ in the way that the population of particles
evolves and assimilates the incoming observations. A major drawback of particle filters is
that they suffer from sample degeneracy after a few filtering steps. The PF suffers from ”the
curse of dimensionality” requiring computations that increase exponentially with dimension
as pointed out by Silverman [60]. This argument was enhanced and amplified by the recent
work of Bengtsson et al. [61] and Bickel et al. [62] and finally explicitly quantified by Snyder
et al. [63]. They indicated that unless the ensemble size is greater than exp(τ2/2), where τ2

is the variance of the observation log-likelihood, the PF update suffers from a ”collapse” in
which with high probability a single member is assigned a posterior weight close to one while
all other members have vanishing small weights. This issue become more acute as we move to
higher spatial dimensions.

Nevertheless in this 1-D problem the common remedy is to resample the prior PDF
whenever the weights focus on few members of the ensemble assuming that our experiments
do not encounter the exponential collapse. Here we use several strategies such as Systematic
Resampling (SR), Residual Resampling (RR) and or the Bayesian bootstrap filter of Gordon et
al. [33] see also Berliner and Wikel([28],[29]). Multinomial Resampling (MR) The SIR algorithm
generates a population of equally weighted particles to approximate the posterior at some time

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls



SEQUENTIAL DATA ASSIMILATION FOR THE K-S EQUATION 7

k. This population of particles is assumed to be an approximate sample from the true posterior
at that time instant.

The PF algorithm proceeds as follows:

• Initialization: The filter is initialized by drawing a sample of size N from the prior at
the initial time. The algorithm is then started with the filtering step.

• Preliminaries: Assume that {xi
k−1}i=1,··· ,N is a population of N particles,

approximately distributed as in an independent sample from p(xk−1|z1:k−1)
• Prediction Sample N values, {q1

k, · · · , qN
k }, from the distribution of vk. Use these to

generate a new population of particles, {x1
k|k−1,x

2
k|k−1, · · · ,xN

k|k−1} via the equation

xi
k|k−1 = fk(xi

k−1,v
i
k) (11)

• Filtering: Assign each xi
k|k−1, a weight qi

k. This weight is calculated by

qi
k =

p(zk|xi
k|k−1)∑N

j=1 p(zk|xj
k|k−1)

(12)

This defines a discrete distribution which, for i ∈ {1, 2, · · · , N}, assigns probability mass
qi
k to element xi

k|k−1

• Resampling: Resample independently N times, with replacement, from the distribution
obtained in the filtering stage. The resulting particles, {xi

k}i=1,··· ,N , form an approximate
sample from p(xk|z1:k) .

The method outlined above can be justified as follows. If the particles at time t = k−1 were
an i.i.d sample from the posterior at time t = k−1, then the predictive stage just produces an
i.i.d. sample from the prior at time t = k. The filtering stage can be viewed as an importance
sampling approach to generate an empirical distribution which approximates the posterior.

The proposal density is just the prior p(xk|z1:k−1), and as a result of Bayes formula, we
obtain

p(xk|z1:k−1, zk) ∝ p(xk|z1:k−1)p(zk|xk), (13)

the weights are proportional to the likelihood p(zk|xk). As N tends to infinity, the discrete
distribution which has probability mass qi at point xi

k|k−1, converges weakly to the true
posterior. The resampling step is a crucial and computationally expensive part in a particle
filter. It is used to generate equally weighted particles aimed at avoiding the problem of
degeneracy of the algorithm, that is, avoiding the situation that all but one of the weights
are close to zero. The resampling step modifies the weighted approximate density p(xk|zk) to
an unweighted density p̂(xk|zk) by eliminating particles having low importance weights and
by multiplying particles having highly importance weights. Formally:

p(xk|zk) =
N∑

i=1

qiδ(xk − xk
i) (14)

is replaced by

p̂(xk|zk) =
N∑

i=1

1
N

δ(xk − xk
?) =

N∑

i=1

ni

N
δ(xk − xk

i) (15)

where ni is the number of copies of particle xk
i in the new set of particles {xk

?}.
Generically, it is implemented as follows:
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• Draw N particles {x̃i
k}i=1,··· ,N from the uniform distribution.

• Assign the resampled particles {x̃i
k}i=1,··· ,N to {xi

k}i=1,··· ,N and assign equal weights
1
N

to each particle.

3.3. Merging Particle Filter

To avoid the high cost inherent in recursive resampling (used in order to remove numbers with
very small weights and replenish the ensemble), we test here a method put forward by Nakano
et al. [57] called the Merging Particle Filter (MPF) which is a modification to the PF. The
MPF is similar to the genetic algorithm of Goldberg [59]. A filtered ensemble is constructed
based on samples from a forecast ensemble as in the regular PF with resampling. However,
each particle of a filtered ensemble is generated as an amalgamation of multiple particles (i.e.
ensembles of various sizes). The merging of several particles of a prior ensemble allows the
degeneracy problem to be alleviated. For further details the reader is referred to the paper of
Nakano et al. [57]

3.4. The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) was first proposed by Evensen [37] and further developed
by Burgers et al. [38] and Evensen ([39],[40]). It is related to particle filters in the context
that a particle is identical to an ensemble member. EnKF is a sequential filter method, which
means that the model is integrated forward in time and, whenever observations are available,
these are used to reinitialize the model before the integration continues. The EnKF originated
as a version of the Extended Kalman Filter (EKF) ([43],[44]) for large problems. The classical
KF [36] method is optimal in the sense of minimizing the variance only for linear systems and
Gaussian statistics. Similar to the particle filter method, the EnKF stems from a Monte Carlo
integration of the Fokker-Planck equation governing the evolution of the PDF that describes
the prior, forecast, and error statistics. In the analysis step, each ensemble member is updated
according to the KF scheme and replaces the covariance matrix by the sample covariance
computed from the ensemble. However, the EnKF presents two potential problems namely: 1)
Even though the EnKF uses full non-linear dynamics to propagate the forecast error statistics,
the EnKF assumes that all probability distributions involved are Gaussian.
2) The updated ensemble preserves only the first two moments of the posterior.
Let p(x) denote the Gaussian prior probability density distribution of the state vector x with
mean µ and covariance Q

p(x) ∝ exp

(−1
2

(x− µ)TQ−1(x− µ)
)

We assume the data z to have a Gaussian PDF with covariance R and mean Hx, where H
is the so-called the observation matrix, is related to h of equation (5), and where the value
Hx assumes the value of the data z would be for the state x in absence of observation errors.
Then the conditional probability or likelihood p(z|x) assumes the form

p(z|x) ∝ exp

(−1
2

(z−Hx)TR−1(z−Hx)
)

.

According to the Bayes theorem the posterior probability density follows from the relation

p(x|z) ∝ p(z|x)p(x). (16)
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There are many variants of implementing the EnKF of various computational efficiency
and in what follow we employ standard formulation of the EnKF for linear and nonlinear
observation operators with covariance localization. See ([37], [38], [42] [41], [55]). The
implementation of the standard EnKF may be divided into three steps, as follows:

• Setting and matching

¥ Define the ensemble
X = [x1, · · · ,xN ] (17)

be an nx ×N matrix whose columns are a sample from the prior distribution. N being
the number of the ensemble members.

¥ Form the ensemble mean
X̄ = X · 1N , (18)

where 1N ∈ RN×N is the matrix where each element is equal to 1.

¥ Define the ensemble perturbation matrix X ′ and set the Rnx×nx ensemble covariance
matrix C

X ′ = X − 1
N
X̄ , (19)

C =
X ′X ′T
N − 1

, (20)

• Sampling

¥ Generate
Z = [z1, · · · , zN ] (21)

be an nz ×N matrix whose columns are a replicate of the measurement vector z plus a
random vector from the normal distribution N (0,R).

¥ Form the Rnz×nz measurement error covariance

R =
ZZt

N − 1
, (22)

• Updating Obtain the posterior X p by the linear combinations of members of the prior
ensemble

X p = X + CHT (HCHT +R)−1(Z −HX ) (23)

The matrix
K = CHT (HCHT +R)−1 (24)

is the Kalman gain matrix. Since R is always positive definite( i.e. covariance matrix), the
inverse (HCHT +R)−1 exists. An easy computation shows that the mean and covariance of
the posterior or updated ensemble are given by

X̄ p = X p +K [z− (HX p + d)] , (25)
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and
Cp = C − K [HCHT +R]KT , (26)

the vector d which appears in (25) stems from the affine measurement relation

h(x) = Hx + d. (27)

In the case of nonlinear observation operators, a modification to the above algorithm is
advised. As presented in Evensen [39], let x̂ the augmented state vector made of the state
vector and the predicted observation vector (nonlinear in this case).

x̂ =
(

x
H(x)

)
. (28)

Define the linear observation operator Ĥ by

Ĥ
(

x
y

)
= y (29)

and carry out the steps of the EnKF formulation in augmented state space x̂ and Ĥ instead of
x and H. Superficially, this technique appears to reduce the nonlinear problem to the previous
linear observation operator case. However, whilst the augmented problem, involving linear
observation problem, is a reasonable way of formulating the EnKF, it is not as well-founded
as the linear case, which can be justified as an approximation to the exact and optimal KF.

To prevent the occurrence of filter divergence usually due to the background-error covariance
estimates from small number of ensemble members as pointed out in Houtekamer and
Mitchell [47], the use of covariance localization was suggested. Mathematically, the covariance
localization increases the effective rank of the background error covariances. See the work of
Gaspari and Cohn [50] also Hamill and Snyder [48],Hamill [49] and Ehrendorfer [53] . The
covariance localization consists of multiplying point by point the covariance estimate from the
ensemble with a correlation function that is 1.0 at the observation location and zero beyond
some prescribed distance. Mathematically, to apply covariance localization, the Kalman gain

K = CHT (HCHT +R)−1

is replaced by a modified gain

K̂ = [ρ ◦ C]HT (H [ρ ◦ C]HT +R)−1 (30)

where ρ◦ denotes the Schur product ( The Schur product of matrices A and B is a matrix D of
the same dimension, where dij = aijbij) of a matrix S with local support with the covariance
model generated by the ensemble. Various correlation matrices have been used, for horizontal
localization Gaspari and Cohn [50] constructed a Gaussian-shaped function that is actually
a fourth-order piece-wise polynomial. Houtekamer and Mitchell [47] and Evensen [39] used a
cut-off radius so that observations are not assimilated beyond a certain distance from the grid
points.

3.5. The Maximum Likelihood Ensemble Filter

The Maximum Likelihood Ensemble Filter (MLEF) proposed by Zupanski [66], and Zupanski
and Zupanski [67] is a hybrid filter combining the 4-D variational method with the EnKF.
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It maximizes the likelihood of posterior probability distribution which justifies its name. The
method comprises three steps, a forecast step that is concerned with the evolution of the
forecast error covariances, an analysis step based on solving a non-linear cost function and
updating step.

• Forecasting: It consists of evolving the square root analysis error covariance matrix
through the ensembles. The starting point is from the evolution equation of the discrete
Kalman filter described in Jazwinski [43]

P k
f = Mk−1,kP k−1

a MT
k−1,k + Qk−1, (31)

where P
(
fk) is the forecast error covariance matrix at time k, Mk−1,k the non-linear

model evolution operator from time k− 1 to time k, and Qk−1 is the model error matrix
which is assumed to be normally distributed. Since P k−1

a is positive matrix for any k,
equation (31) could be factorized and written as

P k
f =

(P k−1
f )1/2

︷ ︸︸ ︷(
Mk−1,k(P k−1

a )1/2
)(
Mk−1,k(P k−1

a )1/2
)T

+ Qk−1 (32)

where (P k−1
a )1/2 is of the form

(P k−1
a )1/2 =




pk−1
(1,1) pk−1

(2,1) · · · pk−1
(N,1)

pk−1
(1,2) pk−1

(2,2) · · · pk−1
(N,2)

pk−1
(1,n) pk−1

(2,n) · · · pk−1
(N,n)


 , (33)

as usual N is the number of ensemble members and n the number of state variables.
Using equation(33), the square root forecast error covariance matrix (P k−1

f )1/2 can then
be expressed as

(P k−1
f )1/2 =




bk−1
(1,1) bk−1

(2,1) · · · bk−1
(N,1)

bk−1
(1,2) bk−1

(2,2) · · · bk−1
(N,2)

bk−1
(1,n) bk−1

(2,n) · · · bk−1
(N,n)


 , (34)

where for each 1 ≤ i ≤ N

bk−1
i =




bk−1
(i,1)

bk−1
(i,2)

...
bk−1
(i,n)




= Mk−1,k




xk−1
1 + pk−1

(i,1)

xk−1
2 + pk−1

(i,2)

...
xk−1

n + pk−1
(i,n)



−Mk−1,k




xk−1
1

xk−1
2
...

xk−1
n


 . (35)

The vector xk−1 =




xk−1
1

xk−1
2
...

xk−1
n


 is the analysis state from the previous assimilation cycle.

which is found from the posterior analysis pdf as presented in Lorenc [45].
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• Analyzing: The analysis step for the MLEF involves solving a non-linear minimization
problem. As in Lorenc [45], the associated cost function is defined in terms of the forecast
error covariance matrix and is given as

J (x) =
1
2
(x− xb)T

(
P k

f

)−1
(x− xb) +

1
2

[y − h(x)]T R−1 [y − h(x)] (36)

where y is the vector of observations, h is the non-linear observation operator, R is the
observational covariance matrix and xb is a background state given by

xb = Mk−1,k(xk−1) + Qk−1. (37)

Through a Hessian preconditioner we introduce the change of variable

(x− xb) = (P k−1
f )1/2(I +Hess)−T/2ξ (38)

where ξ is vector of control variables, Hess is the Hessian matrix of J and I is the
identity matrix. The Hessian matrix Hess is provided by

Hess = (P k−1
f )T/2H̃T H̃R−1H̃(P k−1

f )T/2 = (R−1/2H̃(P k−1
f )1/2)T (R−1/2H̃(P k−1

f )1/2)
(39)

here H̃ is the Jacobian matrix of the non-linear observation operator h evaluated at the
background state xb.
To overcome the difficulty of calculating Hess, which is principally due to the non-linear
observation operator, (P k−1

f ) is used.
Let Z the matrix defined by

Z =




z(1,1) z(2,1) · · · z(N,1)

z(1,2) z(2,2) · · · z(N,2)

z(1,n) z(2,n) · · · z(N,n)


 , zi =




z(i,1)

z(i,2)

...
z(i,n)


 = R−1/2H̃bk−1

i , (40)

using the approximation

zi ≈ R−1/2
[
h(x + bk−1

i )− h(x)
]
, (41)

the matrix Hess can then be approximated by

Hess = ZZT . (42)

The approximation (42) is not necessary and a derivation of the MLEF not involving
(42) has been recently developed in Zupanski et al. [68]

• Updating: The final point about MLEF is to update the square root analysis error
covariance matrix

(P k
a )T/2 = (P k−1

f )T/2(I +Hess(xopt))−T/2, (43)

where xopt is approximately the minimum of the cost function J given by (36).

4. Numerical Experiments

The novelty of this work consists in comparing for the first time the above described and
commonly used filters in the framework of the K-S equation model focusing on performance
in the presence of nonlinear observation operators.
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4.1. Numerical Solution of the K-S Equation

We consider the one-dimensional PDE with initial data as used in [20] and [21]




ut = −uxxxx − uxx − uux, x ∈ [0, 32π]
u(x + L, t) = u(x, t), L = 32π, ∀t > 0

u(x, 0) = cos(
x

16
)
(
1 + sin(

x

16
)
) (44)

The system (44) is known to be stiff. In fact, the stiffness is due to rapid exponential decay of
some modes (the dissipative part), the stiffness is also due to rapid oscillations of some modes
(the dispersive part).

As the equation is periodic, a Fourier spectral method is used for spatial discretization.
Despite the remarkable success of the spectral and pseudo-spectral methods for a wide range
of applications [22] and [23], the set of ODEs for the mode amplitudes is stiff, due to the time
scale associated with the nth mode scales as O(n−m) for large n, where m is the order of the
highest spatial derivative, so that the highest modes evolve on short time scales.

In order to carry out numerical solution of K-S, a modification of the exponential time-
differencing fourth-order Runge-Kutta method (ETDRK4) has been used. This method has
been proposed by Cox and Matthews [25] and further modified by Kassam and Trefethen [20].
A short review of the ETDRK4 is as follows:

First we transform (44) to Fourier space

ût = − ik

2
û2 + (k2 − k4)û withû2 =

∑

k′∈Z
ûk′ ûk−k′ , (45)

set

L û(k) = (k2 − k4)û(k), N (û, t) = N (û) = − ik

2
(F(F−1(û2))), (46)

L and N stand for linear and nonlinear operators, respectively. F denotes the discrete Fourier
transform. Write (45) in an operational form

ût = L û + N (û, t). (47)

Define v = e−L tu where e−L t the integrating factor to obtain

vt = e−L tN (eL tv). (48)

Let h denote the time step length, then integrating (48) we obtain

un+1 = eL hun + eL h

∫ h

0

e−L τN (u(tn + τ), tn + τ)dτ, (49)

where un is the solution at the time t = nh and 0 < τ < h.
The equation (49) is exact, and the various order EDT schemes differ only on the way one
approximates the integral in (49). Cox and Matthews [25] proposed the generating formula

un+1 = eL hun + h

s−1∑
m=0

gm

m∑

k=0

(−1)k

(
m
k

)
Nn−k (50)
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where s is the order of the scheme. The coefficients gm are provided by the recurrence relation
{

L (hg0) = eL h − I,
L (hgm+1) + I = gm + 1

2gm−1 + 1
3gm−2 + · · ·+ 1

m+1g0, m ≥ 0.
(51)

We solve the K-S equation employing 64 Fourier spectral modes and integrate from t = 0 to
t = 250 (nondimensional time units) using the EDTRK4 time stepping. The time evolution for
the K-S equation is depicted in Fig.(1), while the time evolution for the K-S at two different
locations is presented in Fig.(2).

4.2. Design of the Numerical experiments

The following table summarizes the logic of the numerical experiments conducted in this paper

Filter Features Observation operator type
PF resampling and merging methods linear and nonlinear
EnKF standard and with localization and inflation linear and nonlinear
MLEF standard linear and nonlinear

In order to compare the above mentioned EnKF, PF and MLEF sequential DA methods
we use the K-S equation model with both linear and nonlinear observation operators for the
same number of ensemble members. During the numerical experiments the following set-up
for each of the above mentioned DA methods was used. The observations were provided at
a frequency consisting of one observation every 30 time steps. Each run was carried out for
250 nondimensional time units with a time step of ∆t = 1/10. Thus 80 DA cycles were used
for each experiment. The number of Fourier modes in (2) was set to 64 modes. The standard
deviation of each of the state noise and observation noise was taken to be

√
2.

For each type of the observation operator, the conclusion on the performance of each of the
above mentioned three methods from the numerical experiments will based on:

• amount of discrepancy between the time evolution of the forecast and the filter solutions
• reduction of the analysis covariance error
• reduction of the root mean squared error (RMSE) and the χ2 statistics

4.3. Sequential data assimilation with a linear observation operator

Before comparing the performance above mentioned DA methods, we examine the performance
of each method separately starting with the PF method in the presence of linear observation
operator.

In Fig.(3) we present the time evolution of the weight distribution of particles (ensemble
members) using the systematic resampling method using 300 particles. The results obtained
yielded a similar behavior to that observed when multinomial or residual resampling methods
were employed. We also provide in Fig.(4) a detailed representation of the weight distribution
for a fixed time, here t = Tfinal = 250. The Fig.(4) shows clearly that despite resampling
most of the particles are degenerated and only few have significant weights. It illustrates the
fact discussed by Synder et al. [63] that an exponential growth (i.e. exp(τ2/2), where τ2 is
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the variance of the observation log-likelihood) in the number of particles is required for the
particle filter to perform satisfactorily.

Fig.(5) illustrates two different (modes) locations for the above mentioned PF experiment.
The trends show an almost perfect matching between the forecast and the PF filter data
assimilation results. This fact being further confirmed by the small value of the analysis error
covariance depicted in Fig.(6). Moreover, Fig.(6) shows how the analysis error covariance
decreases and becomes localized ( concentration around the diagonal) with time. 1000 particles
were employed and the plots were taken after t = 20, t = 100, and t = 250 time units
respectively. We present in Fig.(7) the true and the PF solutions for different number of
particles and for fixed time t = 250 time units. From Fig.(7) one can deduce that as the
number of particles increases, the PF solution tends to converge towards the true solution.

Even though the purpose of the paper is not to compare the efficiency of resampling methods,
we have examined the residual, systematic and the multinomial resampling methods. They all
yield similar results. In terms of CPU time, the SR resampling method was the fastest followed
by the RR resampling method. This is in good agreement with the finding of Arulampalam et
al. ([32]) and also Doucet et al. ([31]).

We also examined and compared the performance the Merging Particle Filter (MPF) of
Nakano et al. [57] to the standard PF with resampling. Indeed, the MPF method was faster
than the PF method, but for the K-S equation model the PF provides more accurate results
as it can be easily seen from the Fig.(8).

An identical set-up of the time step and the observation operator has been employed for the
standard EnKF sequential data assimilation experiment. The number of ensemble members
employed in EnKF has been set to 100.

We present in Fig.(9) a perfect matching between the forecast and the EnKF solution at
two different locations. The analysis error covariance for different times is depicted in Fig.
(10). Similar to the PF case, the analysis error covariance decreases and becomes local as time
increases. The effect on the number of ensemble members is illustrated in Fig.(11). Indeed,
as the number of ensemble members increases, the EnKF data assimilation solution converges
towards the true solution. It should be also pointed out that there exists a certain number
of ensemble members, say Nem, such that for ∀n > Nem the discrepancy between the EnKF
solution and the true solution is virtually the same. This claim was observed to be valid
throughout our numerical tests.

The effect of localization and inflation in EnKF for the case of the K-S equation model is
presented in Fig.(12), however this effect has no sizable impact for our model in comparison to
the numerical weather prediction (NWP) models employed by Hamill et al [48], Houtekamer
and Mitchell [47] and Jardak et al. [64]. The additive covariance inflation of Anderson and
Anderson [46] with r = 1.001 has been employed. The covariance localization was also used to
prevent filter divergence. For the present model, we tested the fifth order correlation function
of Gaspari and Cohn [50] and the usual Gaussian correlation function

ρ(D) = exp[−[
D

l
]2, l = 450 length units] (52)

which was found to yield better results.
Our numerical results using the MLEF are presented in Fig.(13) and Fig.(14). Again, the

analysis error covariance decreases and becomes localized ( concentration around the diagonal)
with time as shown in Fig.(14).
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Table I. Root mean square error for different number of particle/ensemble members, linear observation
operator case

PF EnKF MLEF
70 1.3558 2.0961 1.38189133
100 1.4313 0.3297 1.43104518
150 1.3635 1.4603 1.7722971
250 1.3903 1.3388 1.5577693

Table II. χ2 statistics for different number of particle/ensemble members, linear observation operator
case

PF EnKF MLEF
70 2.5346690 2.345658 1.9612679
100 1.9854678 1.136783 2.0121631
150 3.0457823 1.783459 2.6414165
250 1.934876 1.655631 1.8208084

Comparing linear observation operator results of covariances, rmse and χ2 for the three
above mentioned sequential data assimilation filters leads to the conclusion that for the model
at hand, the EnKF provides better results followed by the MLEF and then the PF filter with
SR resampling. These results are of course a function of our particular implementation of
the EnKF, PF and MLEF and are function of the number of particles (number of ensemble
members) and the number of observations as well as the particular model tested. In as far
as computational efficiency the EnKF was found to be faster than the MLEF, while the PF
filter proved to be the most time consuming in as far as the K-S equation model with linear
observation operator is concerned. The performance of the above motioned methods is assessed
and encapsulated in tables Table(I) and Table(II).

4.4. Sequential data assimilation with nonlinear observation operator

A similar setting to the linear observation case in terms of number of ensemble member
and particles has been used to carry out numerical experiments with nonlinear observation
operator. The EnKF version tailored to nonlinear observation operator as described in section
3 has been implemented and an observation operator assuming the form H(u) = u2 has been
considered. As depicted in Fig.(15) an intense discrepancy between the forecast and EnKF
mean solutions is easily seen. We join many authors, Nakano et al. [57] among them to draw
the conclusion that even with the modification suggested by Evensen [39], the EnKF does
not provide good estimates in the case of nonlinear observation operator applied to the K-S
equation model.

Having the previous conclusion in mind, the comparison reduces to comparing the PF and
the MLEF methods in the presence of nonlinear observation operator. Both the PF and the
MLEF exhibited good performances in terms of sequential data assimilation as measured in
different error metrics such as error covariance matrix, rms error and χ2 statistics. The PF
method with SR resampling appears to have an edge in terms of CPU time, while in other
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Table III. Root mean square error for different number of particle/ensemble members, nonlinear
observation operator case

PF for h(u) = u2 MLEF for h(u) = u2 PF for h(u) = exp MLEF for h(u) = exp(u)
70 0.35639178 1.3781648 0.27696167 1.43203425
100 0.3244502203 1.4070521 0.30416423 1.40807023
250 0.366861214 1.43104518 0.31519531 1.5476146

Table IV. χ2 statistics for different number of particle/ensemble members, nonlinear observation
operator case

PF for h(u) = u2 MLEF for h(u) = u2 PF for h(u) = exp MLEF for h(u) = exp(u)
70 2.6344987 3.7372720 4.3238997 10.1312923
100 2.8783455 4.2008870 3.7356629 9.37517203
250 1.9873456 2.0121631 2,1099875 9.52631038

metrics, the PF has a slight edge over the MLEF method as see in Table(III), Table(IV) and
the figures Fig.(16), Fig.(17), Fig.(18) and Fig.(19).

This result is further confirmed, as it can also be assessed from tables III, IV, for the case
when the nonlinear observation operator assumes the form h(u) = exp(u). It appears that the
high CPU time required by the MLEF is due to the minimization component of this method.
This remark remains to be elucidated in further research. The results of the performance of the
PF and MLEF methods with h(u) = exp(u) as nonlinear observation operator are presented
in Table(III), Table(IV). The results of our numerical experiments are presented in Fig.(20),
Fig.(21) and Fig.(22).

5. Summary & conclusions

In this work we have presented a comparison of 3 sequential data assimilation methods, PF,
EnKF and MLEF applied to the K-S equation model. For each of the aforementioned methods
both linear and nonlinear observation operators have been employed and extensive numerical
experiments have been carried out to assess their relative performances.

It appears that the standard EnKF implementation with localization and inflation works
well for the case of linear observation operator. However, it has a major drawback dealing
with nonlinear observation operators. The PF and the MLEF perform satisfactory for both
types of observation operators. Our experience suggests that the PF with resampling overall
performed somewhat better than the MLEF for the particular set-up tested. Additional future
research will focus on alternative PF resampling such as the one proposed in Xiong et al. [56]
and Salman [51]. Also, new options of using hybrid PF EnKF filter as proposed by Brockmeier
[52] will be considered to alleviate the degeneracy catastrophe of PF.
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Fig.1: Contours for the time evolution for the K-S equation
Fig.2: K-S solution at different spatial positions
Fig.3: Time evolution of the weights distribution. 300 particles over 250 time units, using the systematic
resampling method, linear observation operator case
Fig.4: Weights distribution at a fixed time. 300 particles at the final time t = 250, using the systematic
resampling method, linear observation operator case
Fig.5: Forecast and PF filter mean K-S solution at two different locations, linear observation operator
case
Fig.6: Analysis error covariance using 200 particles. (a) after t = 20 time units , (b) after t = 100 time
units and (c) after t = 250 time units, linear observation operator case
Fig.7: PF solutions for different number of particles (ensemble members) taken at t = 250 time units,
linear observation operator case
Fig.8: PF with the SR resampling and MPF solutions for the K-S equation model, linear observation
operator case
Fig.9: Forecast and EnKF filter mean K-S solution at two different locations, linear observation
operator case
Fig.10: Analysis error covariance using 100 ensemble members. (a) after t = 20 time units , (b) after
t = 100 time units and (c) after t = 250 time units, linear observation operator case
Fig.11: EnKF solutions for different number of ensemble members, linear observation operator case
Fig.12 : EnKF solutions with and without the inflation and localization covariance feature, linear
observation operator case
Fig.13: Contours of the analysis error covariance after 250 time units using 100 ensembles members,
linear observation operator case
Fig.14: Analysis error covariance using 100 ensemble members. (a) after t = 20 time units , (b) after
t = 100 time units and (c) after t = 250 time units, linear observation operator case
Fig.15: Means of the forecast and the EnKF filtered K-S solution in the case of a nonlinear observation
operator Hu = u2, nonlinear observation operator case
Fig.16: Means of the K-S solution using SIR particle filter, nonlinear observation operator case
Fig.17: Analysis error covariance using 100 particles. (a) after t = 20 time units , (b) after t = 100
time units and (c) after t = 250 time units, nonlinear observation operator case
Fig.18: Contours of the analysis error covariance after 250 time units using 100 ensemble members,
nonlinear observation operator case
Fig.19: Analysis error covariance using 100 ensemble members. (a) after t = 20 time units , (b) after
t = 100 time units and (c) after t = 250 time units, nonlinear observation operator case
Fig.20: Means of the K-S solution using particle filter, nonlinear observation operator case
Fig.21: Contours of the analysis error covariance after 250 time units using 100 ensemble members,
nonlinear observation operator case
Fig.22: Analysis error covariance using 100 ensemble members. (a) after t = 20 time units , (b) after
t = 100 time units and (c) after t = 250 time units, nonlinear observation operator case
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Figure 1. Contours for the time evolution for the K-S equation
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Figure 2. K-S solution at different spatial positions
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Figure 3. Time evolution of the weights distribution. 300 particles over 250 time units, using the
systematic resampling method, linear observation operator case
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Figure 4. Weights distribution at a fixed time. 300 particles at the final time t = 250, using the
systematic resampling method, linear observation operator case
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Figure 5. Forecast and PF filter mean K-S solution at two different locations, linear observation
operator case
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Figure 6. Analysis error covariance using 200 particles. (a) after t = 20 time units , (b) after t = 100
time units and (c) after t = 250 time units, linear observation operator case

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls



SEQUENTIAL DATA ASSIMILATION FOR THE K-S EQUATION 27

10 20 30 40 50 60 70 80 90 100

−4

−3

−2

−1

0

1

2

3

4

5

x

so
lu

tio
n

 

 

true

70 particles

500 particles

Figure 7. PF solutions for different number of particles (ensemble members) taken at t = 250 time
units, linear observation operator case
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Figure 8. PF with the SR resampling and MPF solutions for the K-S equation model, linear observation
operator case
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Figure 9. Forecast and EnKF filter mean K-S solution at two different locations, linear observation
operator case
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Figure 10. Analysis error covariance using 100 ensemble members. (a) after t = 20 time units , (b)
after t = 100 time units and (c) after t = 250 time units, linear observation operator case
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Figure 11. EnKF solutions for different number of ensemble members, linear observation operator case
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Figure 12. EnKF solutions with and without the inflation and localization covariance feature, linear
observation operator case
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Figure 13. Contours of the analysis error covariance after 250 time units using 100 ensembles members,
linear observation operator case

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls



32 M.JARDAK ET AL.

Figure 14. Analysis error covariance using 100 ensemble members. (a) after t = 20 time units , (b)
after t = 100 time units and (c) after t = 250 time units, linear observation operator case
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Figure 15. Means of the forecast and the EnKF filtered K-S solution in the case of a nonlinear
observation operator Hu = u2, nonlinear observation operator case
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Figure 16. Means of the K-S solution using SIR particle filter, nonlinear observation operator case
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Figure 17. Analysis error covariance using 100 particles. (a) after t = 20 time units , (b) after t = 100
time units and (c) after t = 250 time units, nonlinear observation operator case
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Figure 18. Contours of the analysis error covariance after 250 time units using 100 ensemble members,
nonlinear observation operator case
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