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ABSTRACT

Particle filter(PF) is a fully nonlinear filter with Bayesian conditional probability
estimation, compared with the well known ensemble Kalman filter(EnKF). A Gaus-
sian resampling(GR) method is proposed to generate the posterior analysis ensemble
in an effective and efficient way. The Lorenz model is used to test the proposed method.
The Gaussian resampling particle filter(GRPF) can approximate more accurately the
Bayesian analysis. Moreover, it is applicable to systems with typical multimodal behav-
ior, provided that certain prior knowledge is available about the general structure of
posterior probability distribution. A simple scenario is considered to illustrate this point
based on the Lorenz model attractors. The present work demonstrates that the proposed
GRPF possesses good stability and accuracy and is potentially applicable to large-scale

data assimilation problems.

1 INTRODUCTION

In recent years the ensemble filtering method has been
the focus of increased interest in the meteorological com-
munity because it naturally fits in the ensemble prediction
framework, coupled with ensemble representation of the ini-
tial atmospheric or oceanographic state conditions and en-
semble forecast integration. The ensemble filter falls into the
category of the stochastic approach under the general frame-
work of Bayesian theory of posterior analysis estimation.

The ensemble Kalman Filter(EnKF) (see review by
Evensen, 2003) combines ensemble sampling and integra-
tion with Kalman filtering method, providing an approxi-
mated least square estimation of underlying physical states
based on Monte Carlo sampling theory. For the EnKF to
be applicable to large scale atmospheric and oceanographic
data assimilation problems it requires besides the usual as-
sumption of linear dynamics and Gaussian distribution in
the Kalman filter, the assumption that the dynamics are
governed by only a small subset of the actual dynamical
variables. This is due to the limitations of state of the art
computational capability in presence of large scale charac-
teristics of atmospheric or oceanographic state conditions.
The practical difficulty is to track the subset degrees of free-
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dom, and carry out Monte Carlo simulation with a sample
size significantly smaller than the dimension of the random
variables. Nevertheless the EnKF and its variants are cur-
rently under consideration for operational data assimilation
implementation (see Bishop et al., 2001; Zupanski, 2005;
Mitchell et al., 2002; Hunt et al., 2004, to cite but a few)
with varied degrees of success.

Kalman filter estimation(KF) is a linear interpolation
of the variance of the prior sample and the observation,
with the posterior analysis variance minimized. KF has been
shown to be equivalent to the mean or maximal mode es-
timation of the posterior analysis under the assumption of
linearized dynamics and observations based on Bayesian’s
theory(see derivation by Cohn, 1997). It’s well known that
a particle filter(PF) generates a probability-weighted pos-
terior sample through direct evaluation of the Bayesian’s
formula at each prior sample point. The evaluation does not
restrict the probability distribution of the prior sample and
the observation to be Gaussian.

However, the probability weights are computed based
on the observation which normally has no correlation with
the dynamics. Therefore the resulting weighted sample is un-
likely to provide an efficient sampling of a continuous prob-
ability distribution like a standard Monte Carlo sampling.
In a sequential application the estimation error increases as
the filter is applied at every step. A large enough estimation
error can induce a so called filter divergence or degeneracy
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problem, which refers to the fact that the ensemble sample
diverges gradually from the true state and no longer pro-
duces a meaningful forecast. To avoid filter divergence in
the PF squential Monte Carlo sampling method(Doucet et
al., 2000) is used to convert the weighted sample to a Monte
Carlo sample at each assimilation step of the PF. The chal-
lenge of applying the PF lies in the design of an efficient
resampling method to recover an efficient Monte Carlo or
quasi-Monte Carlo sample from the approximated weighted
sample, which can alleviate filter divergence and stablize the
the PF, even more so in operational forecast due to the lim-
ited ensemble size.

The PF is a fully nonlinear filter. Mean and variance
properties of the error distribution are not directly used in
the computation. Therefore the PF has potential applicabil-
ity to non-Gaussian error probability distribution without
linearization of dynamical and observational operators. Im-
plementation of the PF aims to explore this advantage and
obtain optimal estimation. The PF has been widely used
in control applications(see tutorial by Arulampalam et al.,
2002) for general state space estimation. Several authors(see
Anderson and Anderson, 1999; Pham, 2001; Kim et al.,
2003; van Leeuwen, 2003) have studied the PF for applica-
tion in atmospheric or oceanography science. A kernel fil-
ter (Anderson and Anderson, 1999) resolves non-Gaussian
behavior well with rather infrequent or large error observa-
tions, which generally constitute a challenge for the Kalman
filter. Other statistical estimation technique, like paramet-
ric density function estimation and resampling(Kim et al.,
2003), allows the PF to track the state transitions accu-
rately, which the EnKF fails to do correctly(see Miller et al.,
1999; Evensen and van Leeuwen, 2000). Most of the PF's are
tested only in low dimensional models except a PF with a
sequential importance resampling(SIR) variant(SIRPF) ap-
plied to a large-scale multilayer quasi-geostrophic model(van
Leeuwen, 2003).

Although the PF showed varied degree of success in the
above work, filter divergence remains a major concern in re-
alistic application of the PF. Covariance inflation is the most
common technique to stabilize the ensemble filter(Anderson
and Anderson, 1999; Whitaker and Hamill, 2002). How-
ever, it can be argued that such techniques increase ensemble
spread and may draw the analysis towards the observations
which leads to loss of information implied by model dynam-
ics. The inflation factor as a tuning parameter is also model
and observation dependent, which can pose an extra layer of
uncertainty in error sensitive filter applications, e.g. model
error estimation. Other PF relies on the intrinsic smoothing
capability of the model where the model noise and the non-
linear interactions among the growing modes may produce
enough chaotic behavior to recover lost degrees of freedom
in particle filtering(van Leeuwen, 2003).

This paper proposes an “a posteriori” Gaussian resam-
pling(GR) method that aims to increase the stability of

the PF and maintain the ensemble spread, while allowing
for a potential generalization to higher-dimensional models.
The rest of the paper is organized as follow: Section 2 re-
views the PF method based on Bayesian analysis. The EnKF
method will be used for comparison purposes. Section 3 in-
troduces a Gaussian resampling particle filter(GRPF). Sec-
tion 4 presents simulation results of an numerical test of
the method using the Lorenz model comparing GRPF and
EnKF. Section 5 concludes the work and discusses directions
of future research effort.

2 Particle filter in Bayesian Framework

Dynamical evolution of discretized physical systems are
described by

zp = M(zp—1) + g(Tp—1)€r—1, (1)

where x; represents the discretized true state of the system
at time t;, M is the evolution operator or propagator and
g(zr—1)er—1 represents state dependent model error. For a
detailed explanation of the discretization process and error
term introduced please refer to Cohn (1997).

In the following the PF is derived as a sequential op-
timal estimator categorized as a stochastic approach to the
data assimilation problem. A sequential estimator is opti-
mal under the assumption of the decorrelation of both the
observation and the model errors at different times. At any
time tx_1, the probability distribution of the state p(zy—_1)
is approximated by a Monte Carlo sample, so called ensem-
ble prepared for integration. The distinctive advantage of
the ensemble method is that the integration can be sim-
ply applied to each individual member even in presence of
a nonlinear dynamical operator M. The ensemble after the
integration to time t; is a Monte Carlo sample of the prior
probability distribution. Model error is introduced with a
simple technique by perturbing each ensemble member once
more with model error probability distribution, which is es-
sentially a white noise decorrelated with the observation er-
ror. Model error estimation is not discussed in this paper.
The EnKF proceeds to estimate the mean and variance from
the Monte Carlo sample, then combines the observations
available at ti, updates the ensemble based on the famous
Kalman formula for the posterior mean and variance esti-
mation.

The PF does not use prior mean and variance estima-
tion. Instead, the prior probability distribution at time ¢ is
approximated as

Pia)~ =36 - ), 2)

where 7;,j = 1,...,n are the positions of the prior ensem-
ble members. Using Bayesian analysis, with the observation
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y the posterior conditional probability distribution can be
computed as

P(aly) = P () Plyle) = P @) Py~ H@).  (3)
where H is the observation operator. P°(y — H(z)) is
the observation probability distribution function. N =
[ dzP*(z)P°(y — H(x)) is the normalization constant. The
posterior probability distribution can be used for mean or
maximum likelihood estimation of the physical state at time
tx, or acts as an initial state probability distribution for fu-
ture forecast. Combining eqn. (2) and (3), we have an esti-
mate for the analysis probability distribution,

P(aly) m = S POy — H,))a — ) ()

The right hand side actually represents a probability
weighted ensemble with unnormalized weight P°(y —H(n;))
associated with each position 7;. It’s well known that a
weighted sample is inefficient compared with a true Monte
Carlo sample in general. A resampling method is needed to
locally smooth the weighted sample and recover a Monte
Carlo or quasi-Monte Carlo sample. The simplest way of
drawing a random sample from the 7n;’s based on the asso-
ciated weights does not work very well. The problem is that
high weighted points may be duplicated and low weighted
points may be lost in the stochastic drawing. After repeating
the integration and resampling for a few steps the effective
ensemble size reduces and the ensemble fails to remain a
valid approximation to continuous analysis probability dis-
tribution Thus, the filter would suffer from filter divergence
problem because of insufficiency of local smoothing.

Kernel density estimation(Silverman, 1986) can be used
to approximate the weighted discrete representation with
a continuous function which can then be used for resam-
pling(Anderson and Anderson, 1999; Pham, 2001). How-
ever, a tuning parameter is introduced to specify the kernel
density function variance. Optimization and estimation of
such tuning parameters may interfere with other error reduc-
tion and estimation objectives, e.g. model error estimation.
Also the tuning parameter has to be small so that the assim-
ilation does not increase the ensemble spread too much and
draw the analysis towards the observations in subsequent
steps. It has also been argued that the tuning parameter
and the smoothing function may not needed provided that
model noise and nonlinear dynamics can induce sufficient
local expansion(van Leeuwen, 2003). The argument is cer-
tainly valid in some scenarios but again a filter with model
independency is always more attractive.

In the following section we propose a posterior GR
method that can update the ensemble and maintain PF
stability with little model dependency, while allowing for
a generalization to higher dimensional systems.
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3 Posterior Gaussian resampling

The filter divergence problem is caused by the devia-
tion of the whole ensemble sample too far away from the
true state. If a Bayesian theoretical analysis (4) can be sat-
isfactorily estimated then the filtering process can be car-
ried out for a long run. The success of the Kalman filtering
method indicates that mean and variance properties are of-
ten sufficient to define the error statistics for data assimila-
tion purposes. The simplest way is to generate the updated
ensemble with estimated mean and variance computed from
the distribution (4), i.e, find &;,i = 1,---,n so that

& = > (5)
J

¢ = > fmin) &€, (6)
J

where a, b are state space indices and j is the ensemble mem-
ber indices. £ and ¢ represent the mean and the variance
of n;’s. In particular Eqn. (6) can be considered as a nonlin-
ear generalization of the well known Kalman filter analysis
covariance. In higher order realistic systems, state space di-
mension may be much larger than the size of the ensemble.
f;’s are the normalized weights,

f = o —Hm)
Y, Pely —Hny)

In practice a large portion of f;’s are small enough to be
ignored, and only a subset of the ensemble members are
summed over in Eqn. (5) and (6).

To construct an ensemble update formula, first rewrite
Eqn. (6) in matrix form with 7,

Se =nMn" | (8)

(7)

n=[m,n2, - -,nn] is a L X n matrix where L is the number
of system variables and n is the number of the ensemble
members. M is a symmetric matrix with elements

Mjx = fi05k — fifx , 9)

which can be factorized with a singular vector decomposition
method,

M=VAV" . (10)
Then
Ne=¢£'¢" (11)

with & = nVAY2. The row dimension of £ is state space
dimension. The column dimension of ¢’ is m, which is smaller
than the prior ensemble size n due to the rank reduction of
M with some f;’s (7) being very close to zero. Now randomly
generate a m X n matrix X with all elements drawn from
a one dimensional Gaussian sampling with mean zero and
variance 1. Construct a matrix &, such that

E=¢X+¢. (12)
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The sample positions specified by the columns of £ have an
estimated mean £ and variance X, i.e. ,

Zgj ~ f_ ) (13)

J
Z giéj — &
i

Q

Se . (14)

It can be verified with standard techniques that the estima-
tion error is proportional to 1/nX,, which decreases as the
sample size n increases. The X matrix adjusts the mean,
and acts as a smoothing factor. The updated sample is also
an estimation of a Gaussian distribution with desired mean
and variance.

A potential problem of the above enlargement and
smoothing procedure by Eq. (11) is that the produced en-
semble perturbations only lie within the vector sub-space of
those obtained from the truncated SVD of Eq. (8). This fact
has only little consequence in a low dimensional model(like
the Lorenz model) where the number of ensemble members
is sizeable smaller than the number of model variables. In
a geographically relevant case where the number of the en-
semble members is much less than the number of variables
in the model the dimension reduction may lead to significant
sub-optimality and eventually to filter divergence.

The cause of the dimension reduction in the PF is that
certain prior ensemble members are weighted low by assim-
ilation of the observations. The EnKF is less likely to have
the dimension reduction problem due to the linear interpo-
lation approach. In theory the EnKF is no better than the
PF from Bayesian analysis derivation(Cohn, 1997). Given
finite ensemble size, both the EnKF and the PF provide
only approximate estimates of the Bayesian posterior anal-
ysis probability distribution. The posterior ensemble gen-
erated by the EnKF may span more dimensions but that
generated by the PF may sample the large-weighted region
more sufficiently. To claim which filter generates better pos-
terior ensemble, one really asks the question which quasi-
Monte Carlo sampling technique is more efficient and leads
to more accurate ensemble forecast. The question is actu-
ally related to a famous issue raised in ensemble forecast
and filtering research for operational forecast. It has been
argued that only the growing error directions need to be
adequately sampled to produce an accurate forecast(Toth
and Kalnay, 1997). Singular vector(SV) construction and
breeding method are well-known techniques to sample lead-
ing growing perturbations and generate an efficient ensem-
ble (see Toth and Kalnay, 1997; Buizza and Palmer, 1995;
Houtekamer et al., 1996, to cite but a few). Since the grow-
ing errors or the SVs are purely dynamic consequences(Toth
and Kalnay, 1997; Buizza and Palmer, 1995; Hamill et
al., 2003), the posterior ensemble generated by either the
EnKF or the PF with the observations is not an efficient
Monte Carlo sampling in general. As long as the ensemble
size is sufficiently large compared to the dimensions of the

system attractors, both the EnKF and the PF may avoid
filter divergence with the nonlinear dynamics mixing the
growing modes. (van Leeuwen, 2003). If the ensemble size
is too small, then filter divergence can occur in both filters,
in which case one might have to fall back on the SV or the
breeding techniques.

4 Numerical Experiments with the Lorenz Model

Lorenz-63(Lorenz 1963) stochastic model, described by
the following Eqns. (15), is used here to test the data assim-
ilation performance of the GRPF.

dr = —o(z—y)dt+ gdw,
dy = (px—y— xz)dt+ gdwa,
dz = (zy— Bz)dt + gdws. (15)

This model has become one of the mainstays for the study
of chaotic systems due to its chaotic but well understood
behavior. The well known three parameters of the Lorenz
model are specified as follows: ¢ = 10.0,p = 28.0 and
B = 8/3, enabling the dynamics to evolve within two dis-
tinctive attractors with appropriate time step dt. Model er-
ror variance per assimilation cycle can be adjusted as the
stochastic forcing coefficient g changes. The initial ensemble
is obtained as the perturbation of the true state(reference
solution), with a 3 x 3 diagonal error covariance matrix,
diag(2,2,2). The size of the ensemble is set to either 1000
or 100 in the experiments. Model error is not estimated but
simulated as a Gaussian random perturbation with variance
varying from 0 to 10. Two types of measurements are consid-
ered. In one setup the measurement is performed on the state
variable z only. In the other the measurement on z2. In the
last case the analysis probability distribution is multimodal
in general due to the combination of the Lorenz attractors
and the nonlinear observation operator. Measurement data
is obtained as a perturbation of the reference solution at
measurement times with variance 2.

Figure 1 compares data assimilation results from the
GRPF and the EnKF methods with 40s run time and 800
time steps. The observation is measured on x available every
0.25s. The model error variance is 0. The ensemble size is
1000. The ensemble mean is computed as the prediction.
One of the characteristics of the performance of the filter is
the number of the spikes(mispredictions) that appear in the
ensemble mean curve. Both filters yield similar performance
and generally produce spikes at the same time(for example
after t=31s). Simular results are obtained with the model
error variance up to 10 and the ensemble size 100.

A quantitative measure of the filter performance is the
root mean square(rms) error of the ensemble mean predic-
tion of the reference solution. Figure 2 plots time series of the
rms error of the EnKF and the GRPF through a entire run.
Table 1 shows a comparison of the ensemble mean predic-
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Table 1. Mean rms error of the ensemble mean as a function
of the model error variance for 1000- or 100-member EnKF and
GRPF assimilations of the Lorenz-63 system with measurement
error variance 2.0.

1000-member
Model error

EnKF mean rms GRPF mean rms

variance X y z X y /
0 2.16 349 349 | 1.69 271 2.87
2 229 3.75 381 | 220 3.56 3.55
4 2.40 3.87 3.73 | 215 346 3.28
6 3.00 495 489 | 240 3.90 3.85
8 2.67 4.40 4.17 | 233 3.85 3.21

-
o

3.55 5.67 532 | 256 4.22 4.17

100-member
Model error

EnKF mean rms GRPF mean rms

variance X y zZ X y zZ
0 2.03 327 323 | 164 265 2.77
2 2.34 3.84 3.87 | 222 3.60 3.68
4 2,51 4.06 3.98 | 2.23 3.59 3.59
6 3.09 5.15 5.02 | 226 3.79 3.68
8 2.61 431 4.11 | 3.28 5.08 4.57

—_
[e=]

3.46 575 554 | 295 4.85 4.67

tion rms error between the GRPF and the EnKF(Evensen,
1994) averaged over time for each state variable. The EnKF
used in the experiment induces observation perturbation to
avoid an underestimated analyzed covariance(Burgers et al.,
1998). More recent variants use square root methods in-
stead(Tippett et al., 2003; Evensen, 2003). The model error
variance per assimilation cycle is set to vary from 0 to 10,
thus producing an increasing level of noise in the dynamical
integration. An interesting result obtained is that the GRPF
yields a lower mean square error most of the time. With
the smaller ensemble size of n = 100 test one can find in-
stances(for example, with model error variance 8) where the
EnKF performs better than the GRPF. In practice the per-
formance difference between two filters should be discussed
on a case by case situation. Many factors, such as the model
dynamics, the observations, the ensemble size and so on.,
could affect the performance of an ensemble filter.

Kernel density estimation technique(Silverman, 1986)
can be used for detailed investigation of the data assimila-
tion performance in the low dimension model, which basi-
cally constructs a smooth probability function based on the
Monte Carlo sample. Figure 3 illustrates the estimated prob-
ability density functions of the prior and posterior ensemble
sample obtained by the kernel density estimation technique.
The level curves in the figure represent the 2-D probabil-
ity density with the third state variable integrated out, i.e.
fdzP(x,y,z) and fdyP(x,y,z).

The prior sample is selected from the data at assim-
ilation instant of a particular data assimilation run. With
the same prior sample and the measurement value r =
—3.884, the posterior sample probability density estima-
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tion by EnKF, GRPF and direct Bayesian calculation are
shown respectively. The prior sample probability density
function shows typical non-Gaussian characteristics which
is expected for the highly nonlinear dynamics of the Lorenz
model. The outer surrounding curve and some small outliers
represent a small probability density ( less than 10 percent )
contour. Direct computation through Bayesian analysis for-
mula indicates that the region with the small prior probabil-
ity density could be emphasized and yields larger likelihood.
Both the EnKF and the GRPF can produce good poste-
rior Gaussian estimation with the mean consistent with the
Bayesian computation.

The EnKF method is known to be able to cope with
nonlinear dynamics and non-Gaussian probability density
distribution. However, Kalman filter as a least square esti-
mation cannot be easily extended when the analysis prob-
ability distribution has multiple local maxima(Biirger and
Cane, 1994). The GRPF directly estimates the probability
density with Bayesian computation. In principle it should
then be able to track the local maxima of the probability
density function. It is well known that the stochastic Lorenz
model has two attractors. In the case that the observation
data is only available on x2, the posterior analysis probabil-
ity distribution is multimodal with two local maxima. Such
probability distribution can be approximated with a two-
component Gaussian mixture model. The ensemble mem-
bers need to be separated into two samples based on which
local attractor they reside. In the Lorenz model they can be
simply distinguished through the sign of the system variable
x or y. The relative probability weight between two sam-
ples can be computed through summing up the individual
weights of each ensemble member within each sample. The
GRPF can be carried out for two samples separately taking
into account the relative weight during the computation.
The actual procedure is as follows. First prior to the anal-
ysis the individual weight of each particle, f; in Eqn. (7),
can be computed based on the likelihood and the relative
weight between the two samples. Second, the two samples
need to be redivided due to the fact that some ensemble
members may migrate from one attractor to the other. The
relative weight also needs to be computed again. Finally
the posterior GR is applied on the two samples respectively,
which basically smoothes the samples and produces a two-
component Gaussian mixture estimation.

Figure 4 illustrates the results from the data assimila-
tion experiment following the above procedure. The param-
eters of the experiment are setup similarly as before. The
observation interval or the assimilation cycle decreases to
0.0125s for 40s run. The ensemble mean prediction includes
a high probability value and a low probability value, which
represent two local maxima of the analysis. The high prob-
ability value agrees well with the reference solution for most
of the time. At around ¢ = 7s there exists a small interval
during which the lower probability data actually yields the
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right prediction. The relative weight between two samples
is around 6 : 4 during this period. This illustrates that the
maximal mode prediction can fail sometimes for multimodal
analysis distribution. Another interesting result appears at
the time after ¢ = 38s. During this period all the valid en-
semble members essentially evolve within one attractor only.
The analysis probability distribution reduces to the normal
Gaussian form which has only one local maxima. The lower
probability sample can be regarded as not participating in
the filtering process. The filter still provides the right pre-
diction with maximal probability.

5 Conclusion

The GRPF yields satisfactory results when tested in the
framework of a low dimension Lorenz model. Extension to
large dimensional applications should be relatively straight-
forward for the GRPF. The most computationally expensive
part involves the singular decomposition of a matrix with di-
mensions of the ensemble sample size. The EnKF(Evensen,
2004; Zupanski, 2005) is also subject to similar computa-
tional constraints. We intend to test the GRPF in near fu-
ture in high dimensional models.

One of the problem associated with the application of
the GRPF to high dimensional model is that the GR proce-
dure, Eqn.(12), can lead to sampling errors when a smaller
size (say n = 100) is used. A possible solution is to use the
method put forward by (Evensen, 2004), in which the eigen-
vectors of a larger Gaussian matrix are chosen. Specifically,
One can enlarge the matrix X in Eqn. (12) to a m X Bn ma-
trix, and then perform SVD on the product ¢’X and retain
only leading n singular vectors. Certain spatial correlations
have to be preserved in the resampling and truncation in or-
der to avoid spurious gravity waves(Szunyogh et al., 2005)
when the GRPF is applied to global models such as a shal-
low water model. Initialization techniques(Zupanski et al.,
2005) can also be used to impose correlations directly on the
uncorrelated random fields.

It suffices to illustrate the difference between the better-
known SIR methods (Anderson and Anderson, 1999; van
Leeuwen, 2003; Kivman, 2003) and the GR. Both the SIR
and the GR are resampling procedures applied to the poste-
rior sample of the PF. The SIR and its variants attempt to
capture non-Gaussian characterics reflected in the posterior
weighted probability distribution with or without an extra
reweighting to smooth out the posterior sample. While the
SIR and its variants are not subject to Gaussian assumption
on posterior analysis probability distribution, the price they
pay is either in the form of a more complicated algorithm or
a less smoothed posterior ensemble. For example, the SIR
variant (van Leeuwen, 2003) replicates large-weighted mem-
bers and generates small-weighted members stochastically.
The posterior ensemble is not smoothed by reweighting and

the small weighted members may be ignored because of low
probability.

Compared to the EnKF, the SIRPF is more sensitive to
filter divergence, especially with limited sample size. This is
probably the reason why the SIRPF receives less popularity
in large scale applications than in control applications. The
GR assumes a posterior Gaussian distribution which resem-
bles the second order exact method (Pham, 2001). Unlike
the EnKF, the GRPF imposes no Gaussian assumption on
the probability distribution of the prior sample and the ob-
servations. The GRPF attempts to retain as many ensemble
members as possible and smoothes them out regardless of
their weights. Therefore the GRPF is expected to exhibit
better stability than the SIRPF. Like the EnKF, the GRPF
also has a relatively straightforward and spread-preserving
algorithm. The GRPF can be suited for applications in com-
plex data assimilation scenarios where the observations are
sparse and ill-estimated or the model noise is unknown and
significant in which case the first two moments of the anal-
ysis error are primary forecast objectives.

Multimodal probability distribution can arise in sim-
ple systems (Li, 1991), but is considered as a less desirable
feature in an operational forecast. In principle observations
should be carefully selected to filter out other local max-
ima and leave only the prediction with maximal probability.
However, due to the complexity of the operational forecast
and scarcity of observations, mispredictions in operational
forecast still occur. Applications of the GRPF as an effi-
cient tool for multimodal probability distribution should be
further explored.
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Figure Captions

Fig. 1. Results of data assimilation experiments with EnKF and GRPF. System variables x, y, z, reference solution, observa-
tions, and ensemble mean prediction. 160 observations within 40s run time. Zero model error variance. Measurements on =
only with observation variance 2.0. Ensemble size 1000. The performance of the two filters is comparable, producing similar
number of spikes(mispredictions).

Fig. 2. Rms error time series of the EnKF and the GRPF with ensemble size 1000(upper) and 100(lower). 160 observations
within 40s run time. Zero model error variance. Measurements on x only with observation variance 2.0. The rms error between
the mean prediction and the reference solution is comparable for two filters.

Fig. 3. Kernel estimate of the prior and posterior probability density function. Observation value x = —3.884. EnKF, GRPF
and Bayesian Analysis. The prior and posterior ensemble data obtained from the same run as of Fig. 1 at ¢ = 34.5s. The
probability profiles of the EnKF and the GRPF posterior ensembles show similarity.

Fig. 4. Results of data assimilation with observation operator z?. System variables x, y, z, reference solution, high probability
prediction, low probability prediction, output of data assimilation scheme. The high probability prediction yields correct
forecast most of the time. At around ¢ = 7s the low probability prediction yields correct forecast instead.
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Figure 1. Results of data assimilation experiments with EnKF and GRPF. System variables x, y, z, reference solution, observations, and
ensemble mean prediction. 160 observations within 40s run time. Zero model error variance. Measurements on x only with observation
variance 2.0. Ensemble size 1000. The performance of two filters is comparable, producing similar number of spikes(mispredictions).
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Figure 2. Rmse of the EnKF and the GRPF with ensemble size 1000(upper) and 100(lower). 160 observations within 40s run time. Zero
model error variance. Measurements on = only with observation variance 2.0. The rmse between the mean prediction and the reference
solution is comparable for two filters.
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Figure 4. Results of data assimilation with observation operator z2. System variables x, y, z, reference solution, high probability
prediction, low probability prediction, output of data assimilation scheme. The high probability prediction yields correction forecast
most of the time. At around ¢t = 7s the low probability prediction yields correct forecast instead.
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