
7 Quasi-Newton (secant) methods

Quasi-Newton methods are probably the most popular general-purpose algorithms for uncon-
strained optimization. The basic idea behind quasi-Newton methods is quite simple. A typical
iteration of the method is

xk+1 = xk + αkdk, where dk = −B  

k∇f(xk),

where Bk is a positive definite matrix (which is adjusted from iteration to iteration) chosen so that
the directions dk tend to approximate Newton’s direction. The stepsize αk is usually chosen by a
line search.

Many quasi-Newton methods are advantageous due to their fast convergence and absence of
second-order derivative computation. We will compare them to the conjugate gradient methods
later on.

1 The Broyden family

Of course, what makes a quasi-Newton method work is the choice of the matrix Bk at each
iteration. The important idea behind the methods is that two successive iterates xk and xk+1

together with the gradients ∇f(xk) and ∇f(xk+1) contain curvature (i.e., Hessian) information, in
particular,

(∇f(xk+1)−∇f(xk)) ≈ H(xk+1)(xk+1 − xk)

(observe that the above approximation is an equality when the function in question is quadratic!).
Therefore, at every iteration we would like to choose Bk+1 to satisfy

Bk+1qk = pk, where pk = xk+1 − xk, qk = ∇f(xk+1)−∇f(xk). (21)

Equation (21) is known as the quasi-Newton condition, or the secant equation.

Suppose that at every iteration we update the matrix Bk+1 by taking the matrix Bk and adding
a “correction” term Ck. Then the secant equation becomes

(B  

k + Ck)qk = pk ⇒ Ckqk = pk − B  

kqk. (22)

Note that equation (22) leaves us a lot of flexibility in selecting the correction matrix Ck. The
most popular update methods come from the following (parametric) family of matrices (the super-
script k is omitted in most of the following formulas for simplicity, here B = Bk):

CB(ξ) =
ppt

ptq
− BqqtB

qtBq
+ ξτvvt, where v =

p

ptq
− Bq

τ
, τ = qtBq (23)

(it is not hard to verify that these updates indeed satisfy the secant equation).

The choice of the scalar ξ ∈ [0, 1], which parameterizes the family of matrices C, gives rise to
several popular choices of updates. In particular:



• Setting ξ = 0 at each iteration, we obtain the so-called DFP (Davidson-Fletcher-Powell) up-
date:WE USE B=D

CDFP = CB(0) =
ppt

ptq
− DqqtD

qtDq
,

which is historically the first quasi-Newton method

• Setting ξ = 1 at each iteration, we obtain the BFGS (Broyden-Fletcher-Goldfarb-Shanno)
update:

CBFGS = CB(1) =
ppt

ptq

[
1 +

qtDq

ptq

]
− Dqpt + pqtD

ptq
.

The resulting method has been shown to be superior to other updating schemes in its overall
performance.

• A general member of the Broyden family (23) can therefore be written as a convex combination
of the two above updates:

CB(ξ) = (1− ξ)CDFP + ξCBFGS

The following two results demonstrate that quasi-Newton methods generate descent search directions
(as long as exact line searches are performed, and the initial approximation D1 is positive definite),
and, when applied to a quadratic function, result in conjugate direction methods.

Proposition 33 (Bertsekas, Prop. 1.7.1) If Dk is positive definite and the stepsize αk is chosen
so that xk+1 satisfies

(∇f(xk)−∇f(xk+1)tdk < 0,

then Dk+1 given by (23) is positive definite (and hence dk+1 is a descent direction).

Note that if exact line search is performed, ∇f(xk+1)tdk = 0, so that condition above is satisfied.

Proposition 34 (Bertsekas, Prop. 1.7.2) If the quasi-Newton method with matrices Dk gener-
ated by (23) is applied to minimization of a positive-definite quadratic function f(x) = 1

2xtQx− qtx,
then the vectors di, i = 1, . . . , n are Q-conjugate, and Dn+1 = Q−1.

Note that the above proposition indicates that the algorithm not only generates conjugate directions,
but also simultaneously constructs the matrix Q−1. (A side note: if D1 = I, the method actually
coincides with the conjugate gradient algorithm).

7.2 BFGS method

An alternative to maintaining the matrix Dk above which approximates the inverse of the Hessian,
one could maintain a positive definite matrix Bk which would approximate the Hessian itself. Viewed
from this perspective, the secant equation can be written as

qk = Bk+1pk = (Bk + C̃k)pk ⇒ C̃kpk = qk −Bkpk,

where C̃ is the “correction” matrix in this setting. Analogously to CB(ξ), one can construct a
parametric family of update matrices

C̃(φ) =
qqt

qtp
− BpptB

ptBp
+ φτvvt, where v =

q

qtp
− Bp

τ
, τ = qtBq.



Using φ = 0, we obtain the update used in the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method:

C̃BFGS =
qqt

qtp
− BpptB

ptBp
.

(If it seems like we have two different objects referred to as “the BFGS,” fear not – in fact, if
D = B−1, then D + CBFGS = (B + C̃BFGS)−1, so the two BFGS updates are consistent with each
other).

When using this method, the search direction at each iteration has to be obtained by solving the
system of equations

Bk+1dk+1 = −∇f(xk+1).

It may appear that this will require a lot of computation, and approximating the inverse of the
Hessian directly (as was done in the previous subsection) is a better approach. However, obtaining
solutions to these systems is implemented quite efficiently by maintaining the so-called Cholesky
factorization of the matrix Bk+1 = LΛLt (here L is a lower triangular matrix, and Λ is a diagonal
matrix). This factorization is easy to implement and update and is numerically stable. In addition,
if the line searches are not performed to sufficient precision (in particular, the resulting iterates do
not satisfy the conditions of Proposition 33), the matrices Dk are not guaranteed to be positive
definite. This would be fairly hard to detect, and can lead to bad choice of direction dk. On the
other hand, maintaining the Cholesky factorization of the matrix Bk immediately allows us to check
the signs of eigenvalues of Bk (just look at the elements of Λ), and if needed add a correction term
to maintain positive definiteness.

3 Comparison with conjugate gradient algorithms

We have seen that the quasi-Newton methods are closely related to conjugate directions and
conjugate gradient algorithms when applied to quadratic functions. When minimizing a general non-
quadratic function, quasi-Newton methods (BFGS in particular) typically perform better. Partially
this is due to the fact that quasi-Newton methods, in addition to generating conjugate directions,
also tend to approximate the Hessian matrix, and hence, close to the optimum, the directions they
generate tend to approximate the Newton’s direction. This observation holds true regardless of the
starting matrix D1, and hence it is typically unnecessary to restart quasi-Newton methods. Also,
as is suggested by numerical evidence and (somewhat) by analysis, quasi-Newton methods tend to
be less sensitive to the accuracy of line searches performed at each iteration.

On the other hand, compared to conjugate gradient methods, quasi-Newton methods require
more storage space, and each iteration requires more computation. (In particular, they have to store
the matrix Dk and compute Dk∇f(xk) at each iteration, while the number of function and gradient
evaluations is the same as in conjugate gradient algorithm.) In general, both conjugate gradient and
quasi-Newton methods require significantly less work per iteration than Newton’s method (unless
special structure of the problem allows for efficient direct computation of the Hessian and its inverse).

4 A final note



Quasi-Newton methods (typically with BFGS update of one form of another) are usually the
algorithms of choice in unconstrained optimization software.

The optimization toolbox in MATLAB implements quite a few gradient descent methods in its
function fminunc. The default method for small-to-medium size problems is the BFGS method
(with update C̃BFGS). The formula for gradient of the function f can be provided as a subroutine;
if not available, the gradients will be approximated numerically.

The software allows you to change the algorithm used to DFP quasi-Newton method which
approximates the inverse of the Hessian, or to steepest descent (the later, however, is “not recom-
mended” by the manual).

For large-scaled problems, MATLAB implements a version of Newton’s algorithms. An interest-
ing aspect of the implementation (as is the case with many implementations of Newton’s method) is
that the computation of the direction d = −H(x)−1∇f(x) is often performed approximately by ap-
plying a few iterations of the conjugate gradient algorithm to solve the linear system H(x)d = ∇f(x).


