LECTURE 16: PENALTY METHODS

LECTURE OUTLINE

- Quadratic Penalty Methods
- Introduction to Multiplier Methods

Consider the equality constrained problem

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in X, \quad h(x) = 0,
\end{align*}
\]

where \(f : \mathbb{R}^n \to \mathbb{R} \) and \(h : \mathbb{R}^n \to \mathbb{R}^m \) are continuous, and \(X \) is closed.

The quadratic penalty method:

\[
x^k = \arg \min_{x \in X} L_{c^k}(x, \lambda^k) \equiv f(x) + \lambda^k h(x) + \frac{c^k}{2} \|h(x)\|^2
\]

where the \(\{\lambda^k\} \) is a bounded sequence and \(\{c^k\} \) satisfies \(0 < c^k < c^{k+1} \) for all \(k \) and \(c^k \to \infty \).
TWO CONVERGENCE MECHANISMS

• Taking \(\lambda^k \) close to a Lagrange multiplier vector
 – Assume \(X = \mathbb{R}^n \) and \((x^*, \lambda^*) \) is a local min-Lagrange multiplier pair satisfying the 2nd order sufficiency conditions
 – For \(c \) suff. large, \(x^* \) is a strict local min of \(L_c(\cdot, \lambda^*) \)

• Taking \(c^k \) very large
 – For large \(c \) and any \(\lambda \)

\[
L_c(\cdot, \lambda) \approx \begin{cases} f(x) & \text{if } x \in X \text{ and } h(x) = 0 \\ \infty & \text{otherwise} \end{cases}
\]

• Example:

 minimize \(f(x) = \frac{1}{2} (x_1^2 + x_2^2) \)

 subject to \(x_1 = 1 \)

\[
L_c(x, \lambda) = \frac{1}{2} (x_1^2 + x_2^2) + \lambda(x_1 - 1) + \frac{c}{2} (x_1 - 1)^2
\]

\[
x_1(\lambda, c) = \frac{c - \lambda}{c + 1}, \quad x_2(\lambda, c) = 0
\]
\[
\min_{x_1=1} x_1^2 + x_2^2, \quad x^* = 1, \quad \lambda^* = -1
\]
GLOBAL CONVERGENCE

• Every limit point of \{x^k\} is a global min.

Proof: The optimal value of the problem is \(f^* = \inf_{h(x)=0, x \in X} L_{c_k}(x, \lambda^k) \). We have

\[L_{c_k}(x^k, \lambda^k) \leq L_{c_k}(x, \lambda^k), \quad \forall x \in X \]

so taking the inf of the RHS over \(x \in X, h(x) = 0 \)

\[L_{c_k}(x^k, \lambda^k) = f(x^k) + \lambda^k h(x^k) + \frac{c_k}{2} \|h(x^k)\|^2 \leq f^*. \]

Let \((\bar{x}, \bar{\lambda})\) be a limit point of \{x^k, \lambda^k\}. Without loss of generality, assume that \{x^k, \lambda^k\} \rightarrow (\bar{x}, \bar{\lambda})\). Taking the limsup above

\[f(\bar{x}) + \bar{\lambda}' h(\bar{x}) + \limsup_{k \rightarrow \infty} \frac{c_k}{2} \|h(x^k)\|^2 \leq f^*. \quad (\star) \]

Since \(\|h(x^k)\|^2 \geq 0 \) and \(c_k \rightarrow \infty \), it follows that \(h(x^k) \rightarrow 0 \) and \(h(\bar{x}) = 0 \). Hence, \(\bar{x} \) is feasible, and since from Eq. (\star) we have \(f(\bar{x}) \leq f^* \), \(\bar{x} \) is optimal.

Q.E.D.
LAGRANGIAN MULTIPLIER ESTIMATES

- Assume that $X = \mathbb{R}^n$, and f and h are cont. differentiable. Let $\{\lambda^k\}$ be bounded, and $c^k \to \infty$. Assume x^k satisfies $\nabla_x L_{c^k}(x^k, \lambda^k) = 0$ for all k, and that $x^k \to x^*$, where x^* is such that $\nabla h(x^*)$ has rank m. Then $h(x^*) = 0$ and $\tilde{\lambda}^k \to \lambda^*$, where

$$\tilde{\lambda}^k = \lambda^k + c^k h(x^k), \quad \nabla_x L(x^*, \lambda^*) = 0.$$

Proof: We have

$$0 = \nabla_x L_{c^k}(x^k, \lambda^k) = \nabla f(x^k) + \nabla h(x^k)(\lambda^k + c^k h(x^k))$$

$$= \nabla f(x^k) + \nabla h(x^k)\tilde{\lambda}^k.$$

Multiply with

$$(\nabla h(x^k)' \nabla h(x^k))^{-1} \nabla h(x^k)'$$

and take lim to obtain $\tilde{\lambda}^k \to \lambda^*$ with

$$\lambda^* = -\left(\nabla h(x^*)' \nabla h(x^*)\right)^{-1} \nabla h(x^*)' \nabla f(x^*).$$

We also have $\nabla_x L(x^*, \lambda^*) = 0$ and $h(x^*) = 0$ (since $\tilde{\lambda}^k$ converges).
PRACTICAL BEHAVIOR

• Three possibilities:
 – The method breaks down because an x^k with $
abla_x L_{c_k}(x^k, \lambda^k) \approx 0$ cannot be found.
 – A sequence $\{x^k\}$ with $\nabla_x L_{c_k}(x^k, \lambda^k) \approx 0$ is obtained, but it either has no limit points, or for each of its limit points x^* the matrix $\nabla h(x^*)$ has rank $< m$.
 – A sequence $\{x^k\}$ with $\nabla_x L_{c_k}(x^k, \lambda^k) \approx 0$ is found and it has a limit point x^* such that $\nabla h(x^*)$ has rank m. Then, x^* together with λ^* [the corresp. limit point of $\{\lambda^k + c_k h(x^k)\}$] satisfies the first-order necessary conditions.

• Ill-conditioning: The condition number of the Hessian $\nabla^2_{xx} L_{c_k}(x^k, \lambda^k)$ tends to increase with c^k.

• To overcome ill-conditioning:
 – Use Newton-like method (and double precision).
 – Use good starting points.
 – Increase c^k at a moderate rate (if c^k is increased at a fast rate, $\{x^k\}$ converges faster, but the likelihood of ill-conditioning is greater).
INEQUALITY CONSTRAINTS

- Convert them to equality constraints by using squared slack variables that are eliminated later.
- Convert inequality constraint $g_j(x) \leq 0$ to equality constraint $g_j(x) + z_j^2 = 0$.
- The penalty method solves problems of the form

$$\min_{x, z} \bar{L}_c(x, z, \lambda, \mu) = f(x)$$

$$+ \sum_{j=1}^{r} \left\{ \mu_j \left(g_j(x) + z_j^2 \right) + \frac{c}{2} |g_j(x) + z_j^2| \right\},$$

for various values of μ and c.
- First minimize $\bar{L}_c(x, z, \lambda, \mu)$ with respect to z,

$$L_c(x, \lambda, \mu) = \min_z \bar{L}_c(x, z, \lambda, \mu) = f(x)$$

$$+ \sum_{j=1}^{r} \min_{z_j} \left\{ \mu_j \left(g_j(x) + z_j^2 \right) + \frac{c}{2} |g_j(x) + z_j^2| \right\}$$

and then minimize $L_c(x, \lambda, \mu)$ with respect to x.