Use of the Code N1CV2

Claude Lemaréchal and Claudia Sagastizábal

Inria – BP 105 – 78153 Le Chesnay; Tel. 01 39 63 55 11; Fax – – 57 86
e-mail Claude.Lemarechal@inria.fr, Claudia.Sagastizabal@inria.fr

Reading these notes supposes that the notes “Using a MODULOPT minimization code” have been read and understood, and that SIMUL has been written.

The code N1CV2 minimizes on the whole space a function without the usual differentiability assumptions. The objective function \(f \) must be convex. The user must compute (in SIMUL) the function value \(f(x) \) and some (arbitrary) subgradient \(g(x) \), for given \(x \). Thus, the situation is formally the same as in classical (smooth) unconstrained optimization; the code is therefore a “minimizer of class 1”. Note that it is written in double precision version: the single precision version does not exist.

Calling sequence

\begin{verbatim}
CALL N1CV2 (SIMUL,PROSCA,N,X,F,G,DX,DF1,EPS,ZERO,IMP,IO,MODE,
NBUN,ITER,NSIM,MEMAX,IZ,NIZ,DZ,NDZ,IZS,RZS,DZS)
\end{verbatim}

SIMUL (External) Entry to the simulator computing function-gradient (see MODULOPT norms). N1CV2 always requires function \textit{and} gradient together; in other words, it never calls the simulator with INDIC=2 nor 3.

PROSCA (External) Entry to subroutine computing scalar product (see below).
N (Input) Number of variables.

X (Input-Output) Vector of variables.

F (Input-Output) Corresponding values of $f(x)$. Note that SIMUL must be called prior to N1CV2, so that F is initialized, as well as G below.

G (Input-Output)
 Input: gradient at X-input
 Output: usually the last convex combination of subgradients, that gave the last direction (this may not be true in case of abnormal end).

DX (Input) Minimal resolution on X. This means that the user considers two points x and y as indistinguishable if they have $|x_i - y_i| \leq DX$ for all i.

DF1 (Input) a positive number: the expected change in f at the first iteration. Used to estimate the initial stepsize and an appropriate stopping criterion. Gross estimate is enough; set it for example to (an estimate of) the total decrease from starting point to optimum.

EPS (Input) Required accuracy on f (in absolute value).

ZERO (Input) The machine precision (say 10^{-12} since the code is written in double precision).

IMP (Input) Controls the printouts; they are an increasing function of IMP
 = 0 nothing is printed
 \leq 1 initial and final printouts
 \leq 2 printout every time the bundle is reduced
 \leq 3 printout at each iteration
 \leq 4 prints detail of the line-search
 > 4 debugging for the authors; maximal value is IMP = 8
 < 0 SIMUL is called with INDIC = 1 every -IMP iteration

IO (Input) The i.o. channel for IMP.
MODE (Output) Status of the return

< 0 SIMUL has answered INDIC <0 in such a way that the algorithm could not proceed further

= 0 SIMUL has answered INDIC = 0 at the X output

= 1 normal end, the stopping criterion has been met

= 2 something wrong in the calling sequence: DX or DF1 is ≤ 0 etc.

= 3 not used

= 4 maximal number of iterations reached

= 5 maximal number of calls to SIMUL reached

= 6 minimal resolution DX reached

= 7 something wrong with the quadratic program computing the direction (usually, this means that EPS and DX are too small, in view of the machine precision).

= 9 MEMAX=1, why don’t you use steepest descent?

NBUN (Output) Number of elements in the final bundle.

ITER (Input-Output)

Input: maximal number of iterations.

Output: actual number of iterations done when returning.

NSIM (Input-Output)

Input: maximal number of calls to SIMUL (cumulated along iterations).

Output: actual number of such calls to SIMUL done (cumulated).

MEMAX (Input) maximal number of subgradients to store in the bundle. Must be ≥ 1 (for MEMAX = 1, we obtain the gradient method; for MEMAX = 2, it is a sort of conjugate gradient).

Normally, efficiency should be an increasing function of MEMAX.

IZ, NIZ, DZ, NDZ Integer and Real*8 working spaces for N1CV2. NIZ and NDZ are the dimensions allotted respectively to IZ (integer array) and DZ (real*8 array) in the calling program. They must be as follows:

3
At least \textsc{memax} for \textit{iz}; this means that the calling program must include the statement

\begin{verbatim}
DIMENSION IZ(NIZ)
\end{verbatim}

where \textit{niz} is an integer at least equal to \textsc{memax}.

As for \textit{dz}, the value \textsc{memax}*(\textsc{memax}+n+8)+5*n+10 is enough; in case of emergency, the really minimal value is (with \(k = \min\{\textsc{memax}, n+1\} \)):

\[
\frac{\textsc{memax}*(\textsc{memax}+2*n+5)}{2} + \frac{k(k+11)}{2} + 10.
\]

\textit{izs, rzs, dzs} Working space for the simulator (see MODULOPT norms).

The subroutine \textsc{prosca}

Computes the scalar product \(\langle \cdot, \cdot \rangle \) of the space in which the gradient is defined. This means that, if \(g \) is computed by \textsc{simul}, and if \(dx \) is a differential of \(x \), then the corresponding differential of the objective function, as computed by \textsc{prosca}, is \(df = \langle g, dx \rangle \).

This subroutine must be of the form

\begin{verbatim}
SUBROUTINE PROSCA(N,X,Y,PS,IZS,RZS,DZS)
\end{verbatim}

in which the notation is self-understanding.

When \(G \) is the ordinary vector of partial derivatives, i.e. when \(\langle \cdot, \cdot \rangle \) is the ordinary dot-product, then \textsc{prosca} can have the following form:

\begin{verbatim}
SUBROUTINE FUCLID(N,X,Y,PS,IZS,RZS,DZS)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION X(N),Y(N),IZS(*),RZS(*),DZS(*)
REAL RZS(*)
PS = 0.DO
DO 10 I = 1,N
 10 PS = PS + X(I)*Y(I)
RETURN
END
\end{verbatim}

which is included in the N1CV2 package. Note that \textsc{fuclid} must be declared \textsc{EXTERNAL}.