
Using a MODULOPT Minimization Code

Claude Lemar�echal � Inria � BP ��� � ����� Le Chesnay

Tel� ��	 �
 �� �� �� � Fax� � �� �� � email Claude�Lemarechal�inria�fr

�� Introduction

Modulopt is a French �club of minimizers� where nonlinear programming
is studied� Its main activity consists in developing and exchanging Fortran
programs� which are of essentially � kinds�
� Minimization algorithms� ranked in � classes� without constraints� with
bounds� with linear constraints and with nonlinear constraints� Programs of
this kind are called Minimizers�
� Test problems� ranked in the same classes� These programs are called
Users�

A user is made of � parts�
� Part �� A main program which makes the necessary dimensionments and
initializations� then calls the minimizer� and then exploits the results�
� Part �� A 	set of
 subroutine	s
 which is called by the minimizer� and
which computes the objective value and�or its gradient� We call this part
the Simulator�

In Modulopt� the dialogue between the minimizer and the simulator is
strictly normalized� and the aim of these notes is to describe the form of this
dialogue� in the case of a problem without nonlinear constraints�

�� Entry to the simulator

It must have the form

SUBROUTINE SIMUL �INDIC� N� X� F� G� IS� RS� DS�

INTEGER INDIC� N� IS���

REAL X�N�� F� G�N�� RS���

DOUBLE PRECISION DS���

�



The name �SIMUL� is usually formal� i�e� it is a parameter in the calling
sequence to the minimizer�

Some of the above parameters have an obvious meaning� namely�

N the number of variables involved in the optimization

X 	dimension N
 the value of the variables at which SIMUL must compute
the function and�or its gradient

F the returned function value

G 	dimension N
 the returned gradient value�

The role of INDIC is double� to tell SIMUL what to do� and to answer what
SIMUL has actually done� The role of IS� RS� DS is to allow SIMUL to share
data with the main program� and to work with its own workspace�

�� The parameter INDIC

INDIC is an input�output integer on input� it can have � values�

INDIC � � simply does not request anything from SIMUL� This can be useful
for example with long problems that can be aborted unpredictably�
Entering from time to time SIMUL with INDIC � � allows it to save the
current iterate� to print useful information� etc�

INDIC � � means that SIMUL is requested to compute the function at the
given X�

INDIC � � is to compute the gradient in this case� the last previous call of
SIMUL was with INDIC � � or �� and with the same x�values therefore�
the possible overhead necessary to compute f and g can be considered
already done�

INDIC � � is to compute the function and its gradients�

On output� INDIC can have � values

INDIC � �� normal exit� every request has been accomplished�

�



INDIC � �� please stop the iterations� the present X is good enough� This can
be useful for example in least�squares identi�cation� when the �tting is
small enough� the user has a stopping criterion that is unavailable to a
non�specialized minimizer�

INDIC � �� something wrong� the request has not been accomplished� This
can be useful for example in NLP with barrier method� when a problem
such as

min f	x
 subject to h	x
 � �

is replaced by something like

min f	x
� � log	�h	x

�

When h	x
 � �� SIMUL can answer INDIC � � 	and return no useful
value in F or G
 to warn the minimizer�

�� The parameters IS� RS� DS

These are sorts of superarrays� which work as follows�

� They appear in the calling sequence to the minimizer�
� The minimizer does not modify them�
� They are transmitted as such in the calling sequence to the simulator�

In this way� any data coming from the main program is available without
COMMON block� Furthermore� parts of IS� RS and DS can be used as workspace
by the simulator�

Of course� if there are several 	say � real
 vectors to be given to the
simulator� then SIMUL will be just an interface dispatching them into appro�
priate places 	say RS��� and RS�K�
 and calling the simulator properly said
otherwise the simulator would be unreadable�

�� An example

Take a problem in which one optimizes with respect to two 	groups of
 vari�
ables simultaneously� u 	dimension n�
 and v 	dimension n�
� In this prob�
lem� data are stored in a vector A suppose also that the simulator needs
as workspace two vectors of length n� and n� respectively� The following
listing gives an idea of what the user could look like� in Fortran �� Note

�



that the subroutine FUNGRA works with real names and does not bother with
dimensionments�

DIMENSION U������ V����� A������ X������ RS�����

C why not 	

COMMON 
INTEG
 N��N��NA�NFILE

EQUIVALENCE �A�RS�

NA��

N����

N����

C why not 	

N�N��N�

etc�

STOP

END

SUBROUTINE SIMUL �INDIC�N�X�F�G�IS�RS�DS�

COMMON 
INTEG
 N��N��NA�NIFLE

DIMENSION X����G����IS����RS���

DOUBLE PRECISION DS���

IF �INDIC�GT��� GO TO ���

WRITE �NFILE� �X�I�� I���N�

RETURN

��� CALL FUNGRA �N��N��X�X�N�����F�G�G�N�����

� RS�RS�NA����RS�NA�N�����

RETURN

END

SUBROUTINE FUNGRA �N��N��U�V�F�GU�GV�A�Z��Z��

DIMENSION U����V����GU����GV����A����Z�����Z����

etc�

RETURN

END

�


