Using a MODULOPT Minimization Code

Claude Lemaréchal — Inria - BP 105 — 78153 Le Chesnay
Tel. (1) 39 63 56 81 — Fax. —- 57 86 — e-mail Claude.Lemarechal@inria.fr

1. Introduction

Modulopt is a French “club of minimizers” where nonlinear programming
is studied. Its main activity consists in developing and exchanging Fortran
programs, which are of essentially 2 kinds:
— Minimization algorithms, ranked in 4 classes: without constraints, with
bounds, with linear constraints and with nonlinear constraints. Programs of
this kind are called Minimizers.
— Test problems, ranked in the same classes. These programs are called
Users.

A user is made of 2 parts:
— Part 1: A main program which makes the necessary dimensionments and
initializations, then calls the minimizer, and then exploits the results.
— Part 2: A (set of) subroutine(s) which is called by the minimizer, and
which computes the objective value and/or its gradient. We call this part
the Simulator.

In Modulopt, the dialogue between the minimizer and the simulator is
strictly normalized, and the aim of these notes is to describe the form of this
dialogue, in the case of a problem without nonlinear constraints.

2. Entry to the simulator
It must have the form

SUBROUTINE SIMUL (INDIC, N, X, F, G, IS, RS, DS)
INTEGER INDIC, N, IS(x)

REAL X(N), F, G(N), RS(x)

DOUBLE PRECISION DS(x)



The name “SIMUL” is usually formal, i.e. it is a parameter in the calling
sequence to the minimizer.
Some of the above parameters have an obvious meaning, namely:

N the number of variables involved in the optimization

X (dimension N) the value of the variables at which SIMUL must compute
the function and/or its gradient

F the returned function value

G (dimension N) the returned gradient value.

The role of INDIC is double: to tell SIMUL what to do, and to answer what
SIMUL has actually done. The role of IS, RS, DS is to allow SIMUL to share
data with the main program, and to work with its own workspace.

3. The parameter INDIC

INDIC is an input-output integer; on input, it can have 4 values:

INDIC = 1 simply does not request anything from SIMUL. This can be useful
for example with long problems that can be aborted unpredictably.
Entering from time to time SIMUL with INDIC = 1 allows it to save the
current iterate, to print useful information, etc.

INDIC = 2 means that SIMUL is requested to compute the function at the
given X.

INDIC = 3 is to compute the gradient; in this case, the last previous call of
SIMUL was with INDIC = 1 or 2, and with the same x-values; therefore,
the possible overhead necessary to compute f and g can be considered
already done.

INDIC = 4 is to compute the function and its gradients.
On output, INDIC can have 3 values

INDIC > 0: normal exit, every request has been accomplished.



INDIC = 0: please stop the iterations, the present X is good enough. This can
be useful for example in least-squares identification: when the fitting is
small enough, the user has a stopping criterion that is unavailable to a
non-specialized minimizer.

INDIC < 0: something wrong, the request has not been accomplished. This
can be useful for example in NLP with barrier method, when a problem
such as

min f(z) subject to h(z) <0

is replaced by something like

min f(z) — elog(—h(x)).

When h(x) > 0, SIMUL can answer INDIC < 0 (and return no useful
value in F or G) to warn the minimizer.

4. The parameters IS, RS, DS

These are sorts of superarrays, which work as follows:

— They appear in the calling sequence to the minimizer.
— The minimizer does not modify them.
— They are transmitted as such in the calling sequence to the simulator.

In this way, any data coming from the main program is available without
COMMON block. Furthermore, parts of IS, RS and DS can be used as workspace
by the simulator.

Of course, if there are several (say 2 real) vectors to be given to the
simulator, then SIMUL will be just an interface dispatching them into appro-
priate places (say RS(1) and RS(K)) and calling the simulator properly said;
otherwise the simulator would be unreadable.

5. An example

Take a problem in which one optimizes with respect to two (groups of) vari-
ables simultaneously: « (dimension n;) and v (dimension ny). In this prob-
lem, data are stored in a vector A; suppose also that the simulator needs
as workspace two vectors of length n; and ny respectively. The following
listing gives an idea of what the user could look like, in Fortran 4. Note



that the subroutine FUNGRA works with real names and does not bother with
dimensionments.

DIMENSION U(100), V(50), A(200), X(150), RS(350)
C why not 7

COMMON /INTEG/ N1,N2,NA,NFILE

EQUIVALENCE (A,RS)

NA=87

N1=18

N2=11
C why not 7

N=N1+N2

etc.
STOP
END

SUBROUTINE SIMUL (INDIC,N,X,F,G,IS,RS,DS)
COMMON /INTEG/ N1,N2,NA,NIFLE
DIMENSION X(*),G(*),IS(*),RS(*)
DOUBLE PRECISION DS(x)
IF (INDIC.GT.1) GO TO 100
WRITE (NFILE) (X(I), I=1,N)
RETURN
100 CALL FUNGRA (N1,N2,X,X(N1+1),F,G,G(N1+1),
1 RS,RS(NA+1) ,RS(NA+N1+1))
RETURN
END

SUBROUTINE FUNGRA (N1,N2,U,V,F,GU,GV,A,Z1,Z2)

DIMENSION U(*),V(*),GU(*),GV(*x) ,A(k) ,Z1(*),Z2(*)
etc.

RETURN

END



