
http://cuaerospace.com/carroll/ga/ReadMe

D.L. Carroll's FORTRAN Genetic Algorithm Driver

This is version 1.7a, last updated on 4/2/2001.
Download from: <http://cuaerospace.com/carroll/ga.html>

Copyright David L. Carroll; this code may not be reproduced for sale
or for use in part of another code for sale without the express
written permission of David L. Carroll.

This genetic algorithm (GA) driver is free for public use. My only
request is that the user reference and/or acknowledge the use of this
driver in any papers/reports/articles which have results obtained
from the use of this driver. I would also appreciate a copy of such
papers/articles/reports, or at least an e-mail message with the
reference so I can get a copy. Thanks.

This program is a FORTRAN version of a genetic algorithm driver.
This code initializes a random sample of individuals with different
parameters to be optimized using the genetic algorithm approach, i.e.
evolution via survival of the fittest. The selection scheme used is
tournament selection with a shuffling technique for choosing random
pairs for mating. The routine includes binary coding for the
individuals, jump mutation, creep mutation, and the option for
single-point or uniform crossover. Niching (sharing) and an option
for the number of children per pair of parents has been added. More
recently, an option for the use of a micro-GA has been added.

For companies wishing to link this GA driver with an existing code,
I am available for some consulting work. Regardless, I suggest
altering this code as little as possible to make future updates
easier to incorporate.

Any users new to the GA world are encouraged to read David Goldberg's
"Genetic Algorithms in Search, Optimization and Machine Learning,"
Addison-Wesley, 1989.

The seven FORTRAN GA files are: ga170.f
 ga.inp
 ga2.inp (w/ different namelist identifier)
 ga.out
 ga.restart
 params.f
 ReadMe (this file!)

I have provided a sample subroutine "func", but ultimately
the user must supply this subroutine "func" which should be your

http://cuaerospace.com/carroll/ga/ReadMe (1 of 7)4/19/2004 12:08:17 PM

http://cuaerospace.com/carroll/ga/ReadMe

cost function. You should be able to run the code with the
sample subroutine "func" and the provided ga.inp file and obtain
the optimal function value of 1.0000 at generation 187 with the uniform
crossover micro-GA enabled (this is 935 function evaluations). Note that
because different computers may treat precision and truncation
differently, I have seen cases where two computers using the same
input produce different evolution histories (but still converge to the
optimal).

I still recommend using the micro-GA technique (microga=1)
with uniform crossover (iunifrm=1). However, if possible, I strongly
suggest that you use values of nposibl of 2**n (2, 4, 8, 16, 32, 64,
etc.). While my test function works fine for other values of nposibl,
I have encountered problems where the uniform crossover micro-GA has
difficulty with parameters having long bit strings and a non-2**n value
of nposibl, e.g. nposibl=1000, will have 10 bits assigned (for this case
I would suggest running nposibl=1024 rather than 1000); I am presently
investigating possible fixes for this situation.

Updates:

Version 1.7 includes several improvements:
(i) The coding and input files are cleaned up to provide identical
 output across a wider range of computers.
(ii) The arrays have been rearranged to enable a more efficient caching
 of system memory. For cases with very large population sizes, run
 time improvements of as much as a factor of 4-6 were observed!
 For population sizes less than 1000 you will not see much change.
(iii) A summary of the results has been added to the end of the output
 file.
(iv) An alternate input file "ga2.inp" has been included. Some compilers
 require an '&' and a '/' in the namelist input file, rather than
 '$' signs.
(v) For those wishing to try ever harder test functions, the included
 function is now N-dimensional, where N is simply determined by
 the number of parameters specified (nparam).

Version 1.6.5 of the code allowed creep mutations to be implemented
with the micro-GA technique. (This version was never officially
released.)

Version 1.6.4 of the code has a minor modification to the niching
routine and another minor modification which would only affect a user
having a single parameter with more than 2**30 possibilities (probably
noone has used this large a number).

Version 1.6.3 of the code fixes a bug in the niching routine. Niching

http://cuaerospace.com/carroll/ga/ReadMe (2 of 7)4/19/2004 12:08:17 PM

http://cuaerospace.com/carroll/ga/ReadMe

should now work much better than in previous versions. A few other
minor changes have been made (not worth mentioning). The sample function
has been changed to something a bit more challenging.

Version 1.6.2 of the code has had major restructuring in the form of
converting all of the operators (crossover, mutation, etc.) into
subroutines. The code logic should be a little more understandable now
and it lends itself to more easily modifying parts of the code. The
counter kountmx (see v1.6.1 comments below) was added to the namelist
input. Otherwise, code performance should be the same.

Version 1.6.1 of the code has very minor modifications. If you are
already successfully using the code, then you will not need this
update.
(i) Added a little documentation about changing format statements
 1050, 1075, 1275, and 1500 when you change nparam or the total
 number of chromosomes (see below).
(ii) I have commented out all of the lines of code dealing with
 cputime. The Macintosh specific SECNDS call was causing more
 questions than I had anticipated. However, other than commenting
 the lines out, I have left them in their location for reference
 in case the user wants a cputime added.
(iii) I have included a sample output file.
(iv) Added counter (kountmx) to control how frequently the restart file
 is written. This saves I/O time and wear and tear on storage
 device. Presently set to write every fifth generation.

Version 1.6 of the code has incorporated the ability to use a micro-GA
approach; this significantly reduced the number of function evaluations
to find the global maximum of my test function.

Version 1.5 of the code has added some more flexibility to your
available options:
(i) You now specify the minimum and maximum values of the parameters
 rather than the minimum and the increment.
(ii) You now specify the number of possibilities you want for each
 parameter, not the number of bits. This modification has two
 features: first, the program automatically calculates the number
 of bits per parameter; second, you are no longer forced to have a
 number of possibilities equal to 2**n. While the code is more
 efficient when there 2**n possibilities per parameter, it will
 run quite well with a lesser number; e.g. a colleague has 25
 specific airfoil families he wants to investigate, greater than
 16, less than 32.
(iii) You can now specify specific parameters for niching. Earlier
 versions of the code forced you to niche on all parameters. Now,
 the input array 'nichflg' permits you to choose the parameters
 for niching.

http://cuaerospace.com/carroll/ga/ReadMe (3 of 7)4/19/2004 12:08:17 PM

http://cuaerospace.com/carroll/ga/ReadMe

(iv) You have an input flag to prevent the printing of specific jump.
 and creep mutation information
(v) You now specify the maximum values of population size, number of
 parameters and number of chromosomes in an include file (params.f).
 This sets the maximum array sizes in the code. When running, the
 code only uses the array size up to npopsiz and nparam (from ga.inp)
 and nchrome (computed internally from the nposibl input array).

The code is presently set for a maximum population size of 200,
30 chromosomes (binary bits) and 2 parameters. These values can be
changed in params.f as appropriate for your problem. Correspondingly
you will have to change a few 'write' and 'format' statements if you
change nchrmax and/or nparmax. In particular, if you change nchrome
and/or nparam, then you should change the 'format' statement numbers
1050, 1075, 1275, and 1500. For example, if you have a problem with
4 parameters and 16 chromosomes (bits), then you should change these
format statements to be:
 1050 format(1x,' # Binary Code',8x,'Param1 Param2 Param3',
 + ' Param4 Fitness')
 1075 format(i3,1x,16i1,4(1x,f6.2),1x,f6.2)
 1275 format(/' Average Values:',10x,4(1x,f6.2),1x,f6.2/)
 1500 format(i5,3x,16i2)

The CPU time related lines of code reference a Macintosh specific
time function (SECNDS). To avoid compiler errors with other computers,
I have commented out these lines of code. If you wish to have cputime
output,then you will have to change the time functions for the specific
computer you are running on. Most modern Unix machines will recognize
the 'etime' function; these lines are added to the code along with the
variable 'tarray' and 'cpu...again, to avoid compiler errors with
different computers, these lines of code are also commented out.

A common problem arises with the Microsoft PowerStation compiler, i.e.,
PowerStation does not recognize the abbreviation NML for NAMELIST. If
you are using PowerStation, you will likely have to substitute NAMELIST
for all instances of NML.

Please feel free to contact me with questions, comments, or errors
(hopefully none of latter).

Enjoy!

David L. Carroll
CU Aerospace
2004 South Wright Street Extended
Urbana, IL 61802

http://cuaerospace.com/carroll/ga/ReadMe (4 of 7)4/19/2004 12:08:17 PM

http://cuaerospace.com/carroll/ga/ReadMe

e-mail: carroll@cuaerospace.com
Phone: 217-333-8274
fax: 217-244-7757

###

micro-GA Tip:

My favorite GA technique is still the micro-GA. At this point, I recommend
using the micro-GA with uniform crossover and a small population size. The
following inputs gave me excellent performance:

 microga = 1
 npopsiz = 5
 maxgen = 100
 iunifrm = 1

I have also gotten good performance with the single-point crossover
(iunifrm=0),
micro-GA.

If you decide to use the micro-GA, you will not need to worry about the
population sizing or creep mutation tips below.

See the Krishnakumar reference below for more information about micro-GA's.

###

Population Sizing Tip:

I've had a lot of people ask me about population sizing, especially
people who are attempting large problems where 100 individuals is probably
not enough. The true authority on the subject is David Goldberg, but here is
a crude population scaling law in my paper (based on Goldberg & Deb, 1992):

 npopsiz = order[(l/k)(2**k)] for binary coding

where l = nchrome and k is the average size of the schema of interest
(effectively the average number of bits per parameter, i.e. approximately
equal to nchrome/nparam, rounded to the nearest integer). I find that when
I have uniform crossover and niching turned on (which I recommend doing),
that this scaling law is usually overkill, i.e. you can most likely get by
with populations at least twice as small.

Remember to make the parameter 'indmax' (in 'params.f') greater than or equal
to 'npopsiz'.

###

http://cuaerospace.com/carroll/ga/ReadMe (5 of 7)4/19/2004 12:08:17 PM

http://cuaerospace.com/carroll/ga/ReadMe

Creep Mutation Probability Tip:

I generally like to have approximately the same number of creep mutations and
jump mutations per generation. Using basic probabilistic arguments, it can be
shown that you will get approximately the same number of creep and jump
mutations when
 pcreep = (nchrome/nparam) * pmutate

where pmutate (the jump mutation probability) is 1/npopsiz.

###

Suggested reading that I have found to be of use:

Goldberg, D. E., and Richardson, J., "Genetic Algorithms with
Sharing for Multimodal Function Optimization," Genetic Algorithms and their
Applications: Proceedings of the Second International Conference on Genetic
Algorithms, 1987, pp. 41-49.

Goldberg, D. E., "Genetic Algorithms in Search, Optimization and
Machine Learning," Addison-Wesley, 1989.

Goldberg, D. E., "A Note on Boltzmann Tournament Selection for
Genetic Algorithms and Population-Oriented Simulated Annealing," in:
Complex Systems, Vol. 4, Complex Systems Publications, Inc., 1990, pp.
445-460.

Goldberg, D. E., "Real-coded Genetic Algorithms, Virtual Alphabets,
and Blocking," in: Complex Systems, Vol. 5, Complex Systems Publications,
Inc., 1991, pp. 139-167.

Goldberg, D. E., and Deb, K., "A Comparitive Analysis of Selection
Schemes Used in Genetic Algorithms," in: Foundations of Genetic Algorithms,
ed. by Rawlins, G.J.E., Morgan Kaufmann Publishers, San Mateo, CA, pp.
69-93, 1991.

Goldberg, D. E., Deb, K., and Clark, J. H., "Genetic Algorithms,
Noise, and the Sizing of Populations," in: Complex Systems, Vol. 6, Complex
Systems Pub., Inc., 1992, pp. 333-362.

Krishnakumar, K., "Micro-Genetic Algorithms for Stationary and
Non-Stationary Function Optimization," SPIE: Intelligent Control and
Adaptive Systems, Vol. 1196, Philadelphia, PA, 1989.

Syswerda, G., "Uniform Crossover in Genetic Algorithms," in:
Proceedings of the Third International Conference on Genetic Algorithms,
Schaffer, J. (Ed.), Morgan Kaufmann Publishers, Los Altos, CA, pp. 2-9,

http://cuaerospace.com/carroll/ga/ReadMe (6 of 7)4/19/2004 12:08:17 PM

http://cuaerospace.com/carroll/ga/ReadMe

1989.

###

If you are interested in my work (which may give some insights into how
and why I coded some aspects of my GA), I can mail copies of three papers of
mine.

G. Yang, L.E. Reinstein, S. Pai, Z. Xu, and D.L. Carroll, "A new genetic
algorithm technique in optimization of permanent 125-I prostate implants,"
Medical Physics, Vol. 25, No. 12, 1998, pp. 2308-2315.

Carroll, D. L., "Chemical Laser Modeling with Genetic Algorithms,"
AIAA J., Vol. 34, 2, 1996, pp.338-346.
 (A preprint version of this paper can now be downloaded in PDF format
 via my website:
 <http://cuaerospace.com/carroll/gatips.html> look for AIAA1996.pdf)

Carroll, D. L., "Genetic Algorithms and Optimizing Chemical Oxygen-Iodine
Lasers," Developments in Theoretical and Applied Mechanics, Vol. XVIII,
eds. H.B. Wilson, R.C. Batra, C.W. Bert, A.M.J. Davis, R.A. Schapery, D.S.
Stewart, and F.F. Swinson, School of Engineering, The University of Alabama,
1996, pp.411-424.
 (This paper can now be downloaded in PDF format via my website:
 <http://cuaerospace.com/carroll/gatips.html> look for SECTAM18.pdf)

###

Disclaimer: this program is not guaranteed to be free of error
(although it is believed to be free of error), therefore it should
not be relied on for solving problems where an error could result in
injury or loss. If this code is used for such solutions, it is
entirely at the user's risk and the author disclaims all liability.

http://cuaerospace.com/carroll/ga/ReadMe (7 of 7)4/19/2004 12:08:17 PM

	cuaerospace.com
	http://cuaerospace.com/carroll/ga/ReadMe

