Homework 2: Method of Bisection.

Write a small code using this method that systematically reduces the interval of uncertainty by function comparison to find zeroes of the parabola:

\[f(x) = x^2 - 4 \]

for 2 initial intervals

\([-4.0, 0.0]\]

\([+5.0, 0.0]\]

for small tolerance:

\[|a - b| < \varepsilon \]
\[\varepsilon = 10^{-3} \]

You evaluate \(f \) at midpoint of the interval and always create a new interval of uncertainty by discarding the value of \(a \) or \(b \) depending on whether \(f(a) \) or \(f(b) \) agrees in sign with \(f \) at the midpoint of the interval.

Show that you obtain the 2 zero crossings of the parabola at +2.0 and −2.0 respectively.

Estimate the number of iterations necessary to attain given accuracy using number of function evaluations:

\[\log_2\left(\frac{(b-a)}{\varepsilon}\right) \]