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My primary research in computational Mathematics focuses on numerical partial differential equations
(PDEs), with a particular emphasis on PDE-constrained optimization , reduced order modeling (ROM),
and stochastic PDEs. I am also experienced in high performance computing for engineering problems
in cardiac electrophysiology, acoustic modeling, ocean modeling, and computational fluid dynamics. I have a
broad interest in numerical PDEs, and would like to conduct research continuously in this field.

Projects I have been working on include: (1) developing and analysing variational data assimilation tech-
niques for parameter estimation in electrocardiology; (2) applying reduced-order modeling techniques for cardiac
conductivity estimation; (3) developing a data-driven model reduction technique for atrial electrophysiology;
(4) solving stochastic optimal control in acoustics with conditional value-at-risk (CVaR) measure and parallel
reduced-order modeling; (5) developing fast Centroidal Voronoi tessellation (CVT) grid generation algorithms
for ocean modeling. The first two projects were the focus of my dissertation work, the third one is my internship
project, and the last two are my postdoctoral research. Below I give a brief summary of the projects and discuss
future research plans.

0 Challenges in computational electrocardiology

Computational modeling of healthy and diseased electrocardiology (EC) has a great potential to provide non-
invasive, cost effective and personalized assessment of the state of the heart, for improved diagnosis and prognosis
of cardiac arrhythmia. In this well-established field, the bidomain model is currently the most physiologically
founded description for the dynamics of cardiac electric potentials—the transmembrane potential u and the
extracellular potential ue—at the level of cardiac tissue. Its parabolic-elliptic form [9] reads βCm

∂u

∂t
−∇ · (σi∇u)−∇ · (σi∇ue) + βIion = Isi

−∇ · (σi∇u)−∇ · (σi + σe)∇ue = Isi − Ise
(1)

where Cm is the membrane capacitance per unit area and β denotes the surface-to-volume ratio of the membrane;
σi (resp. σe) is the intracellular (resp. extracellular) conductivity tensor; Isi (resp. Ise) represents the intracellular
(resp. extracellular) stimulation current. The total ionic current Iion is given nonlinearly by a cellular ionic model
in a general form 

Iion =
M∑
i=1

Ixi(u,w, c)

dw

dt
+ g(u,w, c) = 0

dc

dt
+ h(u,w, c) = 0

(2)

where Ixi is the ionic current associated with ion species xi, w is the vector of gating variables and c is the
vector of typical ion concentrations. We refer to Fig. 1 (left) for a typical action potential of a cardiac myocyte.

The conductivity tensors can be represented by referring to the cardiac fibers: σk(x) = σklal(x)al(x)T +
σktat(x)at(x)T + σknan(x)an(x)T , where k stands for i or e, (al,at,an) are orthonormal vectors related to the
structure of the myocardium with al parallel to the local fibre direction. We may assume that the tissue is axial
isotropic (i.e. σkn = σkt) , as done by groups for conductivity measurement in laboratory experiments.

To overcome high computational costs associated with the bidomain problem, a simplified monodomain
model has been proposed. Its derivation [8] is based upon a proportionality assumption σe = λσi. Denote
σm = λ

1+λσi and Iapp = λ
1+λIsi + 1

1+λIse, we have:

βCm
∂u

∂t
−∇ · (σm∇u) + βIion = Iapp. (3)

Although this assumption lacks physiological foundation, the monodomain model has been intensively used
in clinic-oriented simulations. Moreover, it is concluded [2] that the discrepancy between the bidomain and
monodomain models has order 1% or less in terms of activation time relative error.

Recent computational methods in EC usually suffer from three major limitations that hinder their clinical
use: (1) lacking of efficient model personalization strategies; (2) high computational demanding from the EC
solver; (3) lacking of good trade-off between the simplification of cellular ionic models and the demand on
keeping sufficient biophysical details. In the following, our solutions to above challenges are described.
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Figure 1: Left: typical action potential of a cardiac muscle cell. Right: optimization iterations for cardiac conductivity estimation.

1 Conductivity estimation by variational data estimation

Electrocardiological models depend strongly on model parameters and in particular on the cardiac conduc-
tivities. Unfortunately, it is quite problematic to measure these parameters in vivo and even more so in clinical
practice, resulting in no common agreement in the literature. Recent work on variational parameter estimation
in electrocardiology utilized either a derivative-free optimization approach or a least-squares approach which
usually involves a large number of optimization iterations.

In [16] we consider a variational data assimilation approach and investigate the bidomain inverse conductivity
problem (BICP): find σ = (σil, σel, σit, σet) in an admissible domain Cad minimizing the misfit functional

J (σ) =
1

2

∫ T

0

∫
Ωobs

(u(σ)− umeas)
2 + (ue(σ)− ue,meas)

2 dxdt+
α

2
R(σ) (4)

subject to the bidomain equations and a coupled ionic model. Here umeas and ue,meas denote the experimental
data measured on the observation domain Ωobs ⊂ Ω; R is a regularization term. The existence of a minimizer
of the misfit function is proved with the phenomenological Rogers–McCulloch ionic model [12], that completes
the bidomain system. The core of our numerical results is in 3D, on both idealized and real geometries,
with the minimal ionic model [3] for more realistic cases—as an appropriate trade-off between reliability and
efficiency. At the best of our knowledge this is the first time variational techniques are used in 3D real geometries
to demonstrate the method in cases of clinical interest. We showed the reliability and the stability of the
conductivity estimation approach in the presence of noise and with an imperfect knowledge of other model
parameters.

We significantly improve the numerical approaches in the literature by resorting to a derivative-based opti-
mization method (see an optimization iteration in Fig. 1 right). The gradient of the misfit functional to minimize
is computed by resorting to the adjoint equations of the bidomain system. For the challenge presented by differ-
entiating state-dependent discontinuous terms, we use shape calculus for computing those Gâteaux differentials.
Specifically, let H(·) be the standard Heaviside step function intended to model switch-like dynamics in the
minimal ionic model (or any other biophysics-based models), the adjoint system of the bidomain equations
contains a general differentiation form 〈b(x)DH(u− c), ϕ〉L2 with DH(u− c) being the Gâteaux differential of
H(u− c) , where c ∈ R is a constant. If we denote jb,c(u) =

∫
Ω
b(x)H(u(x)− c)dx and its Gâteaux derivative

in the direction of ϕ as Dϕjb,c(u), the differentiation form can be computed through

〈b(x)DH(u− c), ϕ〉L2 =

∫
Ω

b(x)DϕH(u− c)dx = Dϕjb,c(u) =

∫
Γ0(c)

b(x)ϕ(x)

|∇u(x) · n|dΓ (5)

where n denotes the outward unit normal to the domain {x : u(x) ≥ c} and we assume that ∇u(x) 6= 0 in a
neighbourhood of Γ0(c) = {x : u(x) = c}.

Current/Future Work: Follow-up of this work is an experimental validation of the estimation procedure
in view of clinical applications. In our future plan, we would like to consider more patient-dependent parameters,
like the elevation angle and the transverse angle of the fibers, piecewise-constant conductivities, conductivities in
different anatomical structures such as the Purkinje fiber and the bundle of His. After the model personalization
step, in collaboration with medical doctors we will carry out applications on patient’s heart geometries, such as
optimal pacing maker localization and cardiac resynchronization therapy.

We also intend to pursue the rigorous quantification of uncertainties induced by the presence of noise. In
this case, the estimated conductivities will be defined by a probability density function whose moments depend
on the noise and the bidomain problem. A statistical estimator of cardiac conductivities will be based on a
variational Bayesian approach.
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2 Reduced-order modeling for cardiac conductivity estimation

The intrinsic complexity of the heart anatomy and the complex interplay among cell, tissue and organ modeling
scales make the requirement on computational efficiency of simulation hard to be satisfied. This is even more true
for an inverse problem of parameter estimation, as high computational cost arises in many “queries” of forward
simulations with different model parameters. Model reduction in electrocardiology is generally challenged by
nonlinearity of the models and the exceptional feature like wave-front propagation of their solutions. This
prevents “classical” approaches like Proper Orthogonal Decomposition (POD) to be promptly applied. The
work in [17] gives a first contribution to model reduction applying to the inverse conductivity problem.

The practical application of POD in electrocardiology only starts from 2011 [1, 4]. In these references, the
POD method allows reasonable estimation of cardiac ionic model parameters, however, no systematic study is
available on the improvement of efficiency of solving the full nonlinear electrocardiological model. In fact, when
reducing a nonlinear problem by projecting onto a low-dimensional space, one critical aspect is to approximate
the projected nonlinear terms in a way independent of the full-order model size. This point was not thoroughly
addressed in current electrocardiology publications.

In [17] we explore model-order-reduction techniques to fit the estimation procedure into timelines of clinical
interest. Specifically we consider the monodomain model and resort to POD techniques to take advantage of
an off-line step when solving iteratively the electrocardiological forward model online. In addition, we perform
the Discrete Empirical Interpolation Method (DEIM) to tackle the nonlinearity of the model. It is worth
mentioning that the conductivity parameter to be estimated considered in this work is more troublesome than
other ionic model parameters, since it dominates the speed and direction of fast transient of electrical potential
through the cardiac tissue, which is an intrinsic feature of the forward electrocardiology model. This fact thus
prevents a successful model reduction via a classical POD procedure. Model reduction procedures need to be
specifically customized for the problem, and in particular the construction of the educated basis is a delicate
step. Nevertheless, we show in [17] how an appropriate sampling for the basis computation actually leads to
significant reduction of the full-order computational cost with a great level of accuracy. We address the sampling
required for basis construction based on the novel concept of “Domain of Effectiveness” in the parameter space.
A rather small sample set (see Fig. 2) is obtained by sampling the parameter space based on polar coordinates,
with refinement in the “small angle–short arc” zone of the sample space utilizing Gaussian nodes. In this way,
we manage to use the POD-DEIM reduced-order model with a computational reduction of at least 95% of the
full-order conductivity estimation.
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Figure 2: Left: Ten samples (stars in red) gener-
ated by a nonuniform sampling on the polar coordi-
nates of conductivity values. The six blue dots are
used as test points.

Figure 3: Screenshots of u on a real left ventricular geometry recon-
structed from SPECT images. The white arrows represent myocardial
fiber orientation. Left: synthetic measure of the potential created by sim-
ulating with σexact = [3.2, 0.5] and adding 15% uniform noise. Right:
reconstruction of the potential computed with the estimated conductiv-
ity σestimated = [3.07, 0.425].

The accuracy of the POD-DEIM framework has been thoroughly investigated at six test points (blue dots in
Fig. 2), which were carefully chosen not too close to the sample points. It was shown that the estimation results
using ROM are very satisfying with all test points. In particular, we reconstruct the transmembrane potential
corresponding to σexact = [3.2, 0.5] and show the snapshot at time t = 26 ms in Fig. 3. As demonstrated by
the figure, the reconstruction matches the synthetic measure on the wave front.

Current/Future Work: This work opens several interesting challenges to be investigated in future works.
In particular, we would like to theoretically quantify the conductivity estimation error caused by reduced-order
modeling. An error analysis for some particular optimal control problems has been studied in [6], where the
control is on the forcing term or the boundary condition. However, the work on conductivity estimation is still
open since the control parameter appears in the differential core of the system. We also plan to extend the
sampling strategy proposed here to 3D bidomain inverse conductivity problem.

Another ongoing work is targeting the greedy reduced basis method. After the development of an a posteriori
error estimator, we need a complete check on its sharpness and computational efficiency. Furthermore, we expect
troubles with a single reduced basis, therefore the idea of multiple reduced bases will be verified in the greedy
framework.
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3 Model order reduction for atrial electrophysiology by statistical learning

In computational EC, it is challenging to keep the cellular model minimally complicated so that it can be solved
with little computational effort, but simultaneously make the model sufficiently detailed so that it can reproduce
as much clinical data as possible. Recent EC models are capable of describing complex cellular mechanisms,
such as detailed intracellular Ca2+ handling. However, these models are computationally demanding due to
many coupled ordinary differential equations (ODEs) accounting for different ionic channels. As an example,
the Courtemanche–Ramirez–Nattel (CRN) human atrial cell model [5] features 35 static parameters and 21
ODEs, its dominating equation can be stated by the total ionic current Iion and the stimulus Istim as

du

dt
= −Iion + Istim

Cm
. (6)

Several simplified models have been proposed as computationally efficient surrogates of biophysically detailed
models, but they usually lack the capability of describing important physiological properties. Moreover, no
simplified model is currently available for human atria-specific cellular electrophysiology.

Motivated by recent progresses in meta-modeling [7], we apply a statistical learning approach in [15] to the
reduction of state-of-the-art cellular models used for atria simulation in literature. The reduced model learned
by regression keeps the ability to capture the complex dynamics of the original biophysically detailed model,
while in very simple form and depending on a smaller number of parameters. This makes the model efficient and
suitable for use for large scale simulations at the organ level. To the best of our knowledge, this represents the
first example of the application of a model reduction technique based on statistical learning to the multiscale
modeling of cardiac electrophysiology.

To be specific, in [15], we focus on the CRN atrial cell model. We first use the Principal Component Analysis
(PCA) to reduce the dimension of the action potential (AP) manifold, to which the state variable u in (6) belongs.
In model construction, various AP quantities (e.g. action potential duration) were accurately regressed using the
projection pursuit regression (PPR) method. The embedding coordinates of the action potential in its reduced
space were then regressed by PPR or multivariate adaptive regression spline (MARS) using above quantities as
extra parameters. Finally, the registration of the regression cellular model into tissue-level EC modeling is after
each upstroke: at time ti = tupstroke + i∆t, the current is computed as

−Iion + Istim
Cm

(x, ti) =
uref(i)− u(x, ti−1)

∆t
,

where uref is from the regression model, i ∈ N corresponds to the selected time snapshot of uref .
As reported in [15], AP manifold dimension can be reduced to 15 despite being the output of a nonlinear

system. Our regression model demonstrates the ability of capturing the physiological complexity of cardiac AP
(Fig. 4, Left). Its accuracy is guarantee even with sample parameters having standard deviation 0.3. Most
significantly, the application of this regression model to tissue-level EC modeling (Fig. 4, Right) dramatically
improves the computational efficiency: it decreases the computational time up to two orders of magnitude as
compared to using the original non-reduced model and enables almost real-time computations (order of seconds
for computing a heart cycle on a standard workstation).

The work on the modeling of atrial electrophysiology also produces a publication of US patent [14].

Figure 4: Left: AP regression by PPR. Right: Simulation on the atria by the regression model registration, at t =10 ms, t = 130
ms, t=250 ms, t = 370 ms.

Current/Future Work: There is plenty of room for improving the proposed method. In future work, we
will focus on more precise ways for monitoring AP upstroke, such as the use of the eikonal equation for the
depolarization time, or a regression approach on the sodium ionic channel which controls the AP depolarization
phase. We also intend to study the AP restitution properties with a more sophisticated control of the action
potential duration alternans, with the aim of modeling complex pathological patterns such as atrial fibrillation.
This statistical learning framework can be trivially extended to other cardiac cells for whole heart modeling.
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4 Stochastic optimal control in acoustics

Simulation-based optimization of acoustic liner design in a turbofan engine nacelle for noise reduction purposes
can dramatically reduce the cost and time needed for experimental designs. The acoustic model for sound
propagation governed by the Helmholtz equation contain coefficients, such as the acoustic wavenumber, that
are not exactly known due to incomplete knowledge or an inherent variability in the system. These uncertainties,
inevitable in the design process, should be introduced into the model by treating those parameters as random
variables. Optimization of the resulting stochastic system would be more complex than the deterministic one,
but its accommodation to model uncertainties provides a more robust and realistic tool in practice.

In [13], we take into account uncertainties on the acoustic wavenumber due to variability in the weather,
and on the fan noise source due to incomplete knowledge. We formulate the optimization on the conditional
value-at-risk (CVaR) measure [11], which quantifies the conditional expectation of the sound energy provided
that the sound is above a certain threshold.

To be specific, letX(ϑ) be a general cost function with uncertainties denoted by the random vector ϑ : Ω→ Λ.
We denote the probability density function of ϑ as ρ(ϑ) and the distribution function of X as Ψ(α). At a specified
confidence level β ∈ (0, 1), the corresponding value-at-risk (VaRβ) of X is defined as the β-quantile, that is,
VaRβ [X] = min{α ∈ R : Ψ(α) ≥ β}. Using this concept, at probability level β, the conditional value-at-risk
CVaRβ is defined as the conditional expectation

CVaRβ [X] = E
[
X
∣∣X ≥ VaRβ [X]

]
=

1

1− β

∫
{ϑ:X(ϑ)≥VaRβ [X]}

X(ϑ)ρ(ϑ)dϑ.

It measures the conditional mean value of the cost above the amount VaRβ [X]. The second equality results
from the probability P

[
X ≥ VaRβ [X]

]
= 1 − β. In [11], it is proved that CVaRβ [X] can be characterized in

terms of CVaRβ [X] = min
α∈R

Fβ(α;X), where Fβ(α;X) = α+ 1
1−β

∫
Λ

[
X(ϑ)− α

]+
ρ(ϑ)dϑ with [x]+ = max{x, 0}.

Based on this concept, the stochastic optimization problem we propose is to solve

min
ξ,α

{1

2

[
α+

1

1− β

∫
Λ

[ 1

γp

∫
D

|p(x, ϑ; ξ)|2dx− α
]+
ρ(ϑ)dϑ

]
+
γ

2
|ξ|2
}
, (7)

where ξ = ξr + iξi ∈ C is the impedance factor of the acoustic liner whose real part ξr represents resistance and
the imaginary part ξi reactance; p(x, ϑ; ξ) denotes the complex-valued acoustic pressure at x under uncerntainty
ϑ. The constant γp is chosen to scale the energy of the acoustic potential, and γ is a regularization coefficient.

The optimization based on CVaR measure is expected to determine optimal impedance factor that are robust
to uncertainty. Solving the stochastic optimization problem would facilitate the optimal acoustic liner design
with different significance levels.

Figure 5: The means of the spatial noise energy for the
initial guess of the impedance ξ = 10 + 10i (left) and the
optimal impedance ξ = 0.9752 − 1.267i (right).

A parallel reduced-order modeling framework is de-
veloped that dramatically improves the computational
efficiency of the stochastic optimization solver for a real-
istic nacelle geometry. Whereas the computation of the
CVaR measure of the full-order Helmholtz solutions is
forbidding, the reduced stochastic optimization problem
can be solved within 500 seconds. Numerical experiments
based on minimizing the CVaR measure indicate: with
95% certainty the acoustic noise en- ergy can be opti-
mally controlled within 48.66% of the noise level associ-
ated with the hard-wall condition without acoustic liner. A typical example on the acoustic noise reduction
is shown in Fig. 5. In addition, well posedness and finite element error analyses of the state system and
optimization problem are provided.

Current/Future Work: The limitation of the work lies in the lack of an appropriate acoustic liner model
that connects the design feature with the impedance factor. This will be a topic of our future work.

The airflow inside/outside the engine nacelle also has an impact on sound radiation. A coupling of acoustics
with aerodynamics, that is the integration of computational fluid dynamics (CFD) results such as flow velocity,
pressure and temperature with acoustic simulation, will increase the reliability of the model. Its computational
challenges draw our attention for future work.

5 Fast CVT grid generation for ocean modeling

This is an ongoing research project, in collaboration with members from Florida State University, University
of South Carolina and Los Alamos National Lab.
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Atmospheric and oceanic modeling is a fascinating field for weather forecasting, since the ocean covers about
two-thirds of the Earth. Ocean modeling for different phenomena, such as tides, eddies, and large-scale ocean
currents, contains turbulent fluid dynamics in active scales ranging from the global down to order of kilometers
horizontally and meters vertically. It is computationally very challenging, and in the project we consider at least
two aspects. (1) In pairing with a previously developed finite-volume method [10], current centroidal Voronoi
tessellation (CVT) algorithms should be largely accelerated for generating multi-resolution Voronoi diagrams
and Delaunay triangulations. In particular, the best initialization technique and an effective multi-level method
based on quasi-Newton optimization are still missing. Our work is ongoing. (2) Important space and time scale
interactions occur over the entire spectrum as the ocean interacts with the land, the sea-ice, and the atmosphere
systems. The coupling of these local systems for global climate modeling calls for effective numerical schemes
to preserve stability.
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