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Abstract

Parameter Estimation and Reduced-order Modeling in Electrocardiology
By Huanhuan Yang

Computational modeling of electrocardiology (EC) has a great potential for use in
improved diagnosis and prognosis of cardiac arrhythmia. However, recent computational
methods usually suffer from three major limitations that hinder their clinical use: lack
of efficient model personalization strategies; high computational demand from the EC
solver; lack of good trade-off between the simplification of cellular ionic models and
the demand on keeping sufficient biophysical details. This thesis aims at solving above
challenges.

The principal part is on the estimation of cardiac conductivities that parameterize the
bidomain/monodomain model—the current standard model for simulating cardiac po-
tential propagation. We consider a variational approach by regarding the parameters as
control variables to minimize the mismatch between computed and measured potentials.
The existence of a minimizer of this misfit function is proved. We significantly improve
the numerical approaches in the literature by resorting to a derivative-based optimiza-
tion method with the settlement of some challenges due to discontinuity. Our numerical
results is mainly in 3D, on both idealized and real geometries. We demonstrate the relia-
bility and stability in presence of noise and with an imperfect knowledge of other model
parameters.

We then focus on the computational cost reduction for the inverse conductivity prob-
lem. The Proper Orthogonal Decomposition (POD) approach is taken for forward model
reduction, along with the Discrete Empirical Interpolation Method (DEIM) for tackling
nonlinearity. In the application of this POD-DEIM combination, we obtain a rather small
set of samples by sampling the parameter space based on polar coordinates and den-
sifying the “boundary layer” of the sample space utilizing Gauss–Lobatto nodes. The
computational effort is finally reduced by at least 90% in conductivity estimation.

The last part is developing a data-driven approach to the reduction of state-of-the-art
cellular models in atrial electrophysiology. The reduced model predicts cellular action
potentials (AP) in a simple form but is effective in capturing the physiological complex-
ity of the original model. We start from an AP manifold learning, and continue with a
regression model construction. The reduced cellular model drastically improves the per-
formance of tissue-level atrial electrophysiological modeling and enables almost real-time
computations.
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Chapter 1

Introduction

1.1 Clinical significance of electrocardiological modeling

“Did you know that heart attacks can give you mathematics!?” This was posted by James

Keener, an applied mathematician at University of Utah. Indeed, there are a vast of prob-

lems in cardiology that request merged contribution from a wide variety of disciplines

including but not limited to mathematics, biomedical engineering, and medicine. This

thesis is intended to contribute, mostly from the community of computational mathe-

matics, to the fight for an improved application of electrocardiological modeling in the

clinic.

Among cardiovascular diseases, the leading causes of death worldwide [83], partic-

ularly severe ones are the electrical dysfunctions of myocardium, such as atrial or ven-

tricular fibrillation, that are categorized as cardiac arrhythmia. Cardiac arrhythmia is

triggered by abnormal initiation and (or) abnormal propagation of electrical waves. Pos-

sible treatment therapies include synchronized electrical cardioversion, pharmacologic

therapy, and catheter ablation of the underlying reentrant circuit. The choice of a proper

therapy depends on the condition of the affected patient.

The defibrillation therapy by delivering a strong electric shock to the heart is generally

effective for combating sudden cardiac death, but the necessary high-strength require-

1



2 1.1. Clinical significance of electrocardiological modeling

ment on the shock would make conscious patients suffer from extreme pain and may

cause permanent damage on the tissues around the shock electrodes [120]. Taking an-

tiarrhythmic drugs (AAD) is another option for cardioversion, but it sometimes has side

effects including chest pain, fainting, and swelling of the feet or legs [1]. In particular,

no current AAD is atrial specific and one must take care to avoid adverse effects on ven-

tricular rhythm. The objective of catheter ablation is to burn cardiac tissues with lines

of conduction blocks in purpose of preventing initiation and maintenance of meander

waves. Although it achieves a high success rate, the ideal lesion pattern with minimal

burn on the tissue is still unknown. To sum up, there is a need for tools that allow better

therapy planning.

Deeper understanding of cardiac electrophysiology (EP) is crucial for improved di-

agnosis and prognosis of cardiac arrhythmia. Computational modeling of healthy and

diseased electrocardiology is becoming an additional formidable tool to complement in

vitro and in vivo studies, and it has a great potential for use in clinical practice. Over the

coming years, it is expected to provide non-invasive, cost effective and personalized as-

sessment of the state of the heart; furthermore, it is desired to support the planning and

guidance of treatment therapies such as rendering the optimal leisure pattern for ablation

therapies. Therefore, computational electrocardiology has been a well-established field,

whose importance relies upon both the intrinsic challenging mathematical/numerical fea-

tures and the practical relevance to cardiac physiopathology [33,69,108].

In recent decades, computational electrocardiology has been highly attractive to re-

searchers not only in academia but also in industry. Computational methods have been

continuously refined and made closer and closer to clinical application. For instance, [28]

provides an optimal control approach for cardiac defibrillation by determining an applied

external stimulus such that it optimizes a given design objective. In [3], computational

simulation of atrial fibrillation for AAD treatment has been investigated. An optimization

of the ablation line pattern has also been studied in [37] and [71] by electrocardiological

modeling. However, all current computational methods suffer from some limitations that
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hinder their use in the clinic: high computational demand from the EP solver or lack of

good model personalization strategies.

1.2 Some challenges in computational electrocardiology

The goal of computational electrocardiology is to provide efficient and reliable simula-

tions of healthy or diseased electrical activity of the heart. We point out that this is not

an easy task and we remark in the flowing the main challenges in this field. Several

challenges are also presented in [25].

1. Personalization challenge. Electrocardiological models depend on parameters

that typically come from appropriate but empirical constitutive laws, and their

quantification for a specific patient may be problematic. In particular, the bido-

main/monodomain model has been shown to be strongly sensitive to the cardiac

conductivity parameter.

Recent work on variational parameter estimation in electrocardiology utilized either

a derivative-free optimization approach or a least-squares approach which usually

involves a large number of optimization iterations. More efficient model personal-

ization or parameter estimation techniques should be applied in this field.

2. Simulation challenge. The intrinsic complexity of the heart anatomy and the com-

plex interplay among cell, tissue and organ modeling scales make the requirement

on computational efficiency of simulation hard to be satisfied. This is even more

true for an inverse problem of parameter estimation, as high computational cost

arises in many “queries” of forward simulations with different model parameters.

Model order reduction techniques have been investigated in the literature, but their

application to conductivity estimation is challenging, due to the nonlinearity of the

model and the exceptional feature like wave-front propagation of its solution.

3. Modeling challenge. It is difficult to keep the cardiac cellular model minimally
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complicated so that it can be solved with little computational effort, but simultane-

ously make the model sufficiently detailed so that it can reproduce as much clinical

data as possible.

Several simplified or phenomenological models have been proposed as compu-

tationally efficient surrogates of biophysically detailed models. However, these

models usually lack the capability of describing important physiological proper-

ties. Moreover, no simplified model is currently available for human atria-specific

cellular electrophysiology.

4. Alternans challenge. The dependence of action potential duration (APD) on the

pacing cycle length, called the restitution curve, and the onset of abnormal alter-

ations of APD, called alternans, are important action potential features, but their

accurate prediction through mathematical criterion is still under investigation.

1.3 Thesis outline

The work in this thesis is in the direction of trying to solve the challenging problems we

just mentioned. The outline of the thesis is as follows.

We start in Chapter 2 with an overview of the electrical activity of the heart and the

mathematical models in electrocardiology that will be used in the following chapters.

In Chapter 3 we estimate the cardiac conductivity parameter using a variational

data assimilation approach. We solve the personalization challenge by resorting to a

derivative-based optimization method and address some challenges involved due to dis-

continuity. We validate our conductivity estimation approach in presence of noise and

with an imperfect knowledge of other model parameters. The existence of a minimizer

of the misfit function, which calculates the mismatch between computed and measured

potentials, is proved in Chapter 4 with the phenomenological Rogers–McCulloch ionic

model that completes the bidomain system.

In Chapter 5 we use the Proper Orthogonal Decomposition (POD) model reduction
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technique to efficiently solve the monodomain system. We present the way of tackling

nonlinearity, that is, the Discrete Empirical Interpolation Method (DEIM). The POD-DEIM

combination is finally applied for the inverse problem of cardiac conductivity estimation.

We describe in detail the derivative-based optimization constrained by the reduced mon-

odomain model. This chapter addresses the simulation challenge.

Chapter 6 aims at solving the modeling challenge that we mentioned before. A data-

driven approach is developed for the model reduction of an atrial cellular model. We

introduce the manifold learning techniques for dimensionality reduction and the non-

linear regression methods for the reduced model construction. At the end, the reduced

cellular model is applied for tissue-level electrocardiological modeling. We also present

a restitution study by diastolic interval change, which intends to address the alternans

challenge.

Concluding remarks and perspectives for future research directions are addressed at

the end of these chapters, they are also summarized in Chapter 7.
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Chapter 2

Mathematical models in

electrocardiology

2.1 Heart function and electrical activity

2.1.1 Anatomy and function of the heart

The heart is situated in the middle of the chest cavity between the left and right lungs, and

is enclosed in a membranous sac—the pericardium. The heart has four chambers: two

blood-receiving chambers called the atria and two blood-discharging chambers called the

ventricles. The detailed structure of the chambers and various accessory tissues is shown

in Figure 2.1.

The heart is divided into left and right halves by an inner wall called the septum,

supporting the function of pumping deoxygenated blood by the right and pumping oxy-

genated blood by the left. The left atrium (LA) and the right atrium (RA) are upper,

smaller, and thinner, while the left ventricle (LV) and the right ventricle (RV) are lower,

larger, and thicker. Each respective atrium and ventricle pair is separated by a coronary

sinus, and connected by an atrioventricular valve that controls the blood flow between

them. The valve in the right side is the tricuspid valve, and the one in the left is the

bicuspid valve or the mitral valve. The heart wall is made of three layers. The outer layer

7
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Figure 2.1: Internal structure of the heart. Major components include the four chambers, the
major vessels, as well as the valves. From Wikimedia Commons, source: OpenStax College
http://cnx.org/content/col11496/1.6/

is called the epicardium, the middle layer is the myocardium, which is the heart muscle,

and the innermost layer is the endocardium.

The cardiac tissue consists mostly of muscle cells (myocytes) that are roughly in cylin-

drical shape with a length of 100 µm and a diameter of 10 to 20 µm in human ventric-

ular tissue [108]. Myocytes are arranged in fibers, and layers of fibers—that are called

sheets—constitute the myocardium. The gaps between adjacent cells within a sheet or

between sheets are structural proteins called collagens, which enable the conduction of

electrical signals.

The fiber orientation can be described by a local coordinate system, based on the tissue

microstructure, including the fiber direction, the transverse direction in the sheet plane,

and the cross-sheet direction. In ventricles, fibers smoothly rotate counterclockwise from

epicardium to endocardium across the myocardium [76,126] (see the illustration in Fig-

ure 2.2). In atria, the orientation varies gradually across the thickness of the walls and

abruptly between bundles [61,62], which refer to collections of fibers with the same gen-

eral alignment. Myocardium fibers play an important role in the electrical conductivity,
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Figure 2.2: Heart musculature. From Wikimedia Commons, source: OpenStax College
http://cnx.org/content/col11496/1.6/

as it is observed that electrical conduction along the length of myocytes is faster than

transverse [90,124]. The fiber orientation can be obtained in vitro using histology [126]

or imaging techniques like diffusion tensor MRI [64,105,143]. These techniques perform

well ex-vivo, but their application to moving heart is highly involved and the imaging tech-

niques usually take long acquisition time. Consequently a patient-specific description of

the fiber orientation is generally unachievable.

The heart functions as a pump, through both the systemic circulation and the pul-

monary circulation, to provide a continuous circulation of blood throughout the body. A

complete blood circulation throughout the heart is illustrated in Figure 2.3. The RA col-

lects deoxygenated blood from two large veins, the superior and inferior venae cavae. This

deoxygenated blood in the RA is then pumped through the tricuspid valve to the RV, and

then through the pulmonary valve into the pulmonary artery. There the blood travels into

the pulmonary circulation, collects oxygen from the lungs, and delivers carbon dioxide

for exhalation. After re-oxygenation, the blood is returned to the LA via the pulmonary

vein. It is then pumped through the bicuspid valve to the LV. The LV is responsible for

pumping the re-oxygenated blood out into the aorta for the systemic circulation. In the

systemic circulation, the blood travels through the whole body from the aorta which is

the largest artery, then smaller arteries and arterioles, and eventually to the capillaries.
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Figure 2.3: Blood flow through the heart. Blue components indicate de-oxygenated blood
pathways and red components indicate oxygenated blood pathways. From Wikimedia Com-
mons, author: ZooFari.

In the capillaries, the blood supplies oxygen and nutrients to body cells for metabolism,

and collects the exchanged carbon dioxide and waste substances. After this exchange in

the body, the blood enters the RA via the venous part of the systemic circulation.

Because the LV contracts forcefully to pump blood to the reset of the body, while the

RV pumps blood only to the lungs, the LV has considerably thicker wall than the RV. As

the atria fill largely through passive blood flow, the myocardium within the atria is the

thinnest [108]. A cardiac cycle (a complete heartbeat) includes systole and diastole and

the intervening pause. Systole is the period of contraction during which the ventricles

pump blood to the body; diastole is the period when the ventricles relax and fill with

blood. Typical systolic pressure (about 120 mmHg) and diastolic pressure (about 80

mmHg) can be measured non-invasively in the well-known clinical “blood pressure" test.

2.1.2 Electrical activity of cardiac myocytes

The cell membrane of cardiac muscle is composed of a phospholipid bilayer into which

membrane-spanning proteins are woven [108]. The bilipid shell encapsulates a small

volume that is known as the intracellular space (ICS). We will use the subscript i to de-
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note properties of the intracellular space. The extracellular space (ECS) corresponds the

volume outside the cell membrane, and the subscript e will be used for its property de-

scription. The combination of proteins in the bilipid layer forms tiny holes or pores in the

cell membrane. These pores are selectively permeable: only specific ions are allowed to

pass through the membrane under certain conditions. Because they are channels through

which ions may flow, these pores are often referred to as ionic channels.

It is the property of selective permeability of the cell membrane that allows for the

presence of an imbalanced ionic charge across the membrane and therefore the forma-

tion of a potential difference between the intracellular and extracellular spaces. This

potential difference across the cell membrane is defined as the transmembrane potential

u (or membrane potential):

u = ui − ue

where ui is the potential in the intracellular space (called the intracellular potential) and

ue is the potential in the extracellular space (called the extracellular potential).

At rest, the intracellular and extracellular concentrations of each ion species are usu-

ally substantially different. Any natural flowing of a particular ion across the membrane

down its concentration gradient will cause a flux of electrical charge, until the electro-

chemical equilibrium on this single ion is reached. The transmembrane potential at which

there is no flow of an ion species is called the reversal potential of this ion, referring to

the fact that a change around this potential reverses the direction of the ion flux. The

reversal potential is also known as the Nernst potential, as it can be evaluated from the

Nernst equation [108]

Ex =
RT

zxF
ln
( [x]e

[x]i

)
.

Here Ex is the Nernst potential for ion x, R is the universal gas constant, T is the absolute

temperature, zx is the valence of ion x and F is the Faraday’s constant. The terms [x]e

and [x]i denote the extracellular and intracellular concentrations of ion x. Typical ions

that could give rise to a variation of the transmembrane potential over time are Na+, K+
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and Ca2+. Based on their concentrations at resting state [80] the Nernst potentials of

these ions are ENa = 70 mV, EK = −88 mV and ECa = 128 mV at body temperature

37 ◦C [108]. A cardiac muscle cell, as a multi-ion system, typically has a resting potential

around -85 mV which is close to EK, reflecting the dominant permeability of the cell

membrane to K+ [108].

In each cardiac cell, if a stimulus of sufficient amplitude is applied, either by an elec-

tric current from an adjacent cell through gap junction, or by an electric impulse fired

autonomously from pacemaker cells, or by an artificial device, the transmembrane po-

tential will rise above a critical value known as the threshold potential and fall follow-

ing a particular trajectory. This active response is known as the cardiac action potential

(AP). A typical cardiomyocyte AP is illustrated in Figure 2.4. The action potential has 5

phases [108]:

Phase 4 At rest when the cell is not being stimulated, the cell membrane is in a polarized

state (phase 4) with a resting potential around -85 mV. This is what happens in 99%

of cardiac muscle cells [122].

Phase 0 Once the cell is electrically stimulated, the opening of the fast Na+ channels

causes a rapid influx of sodium ions and thus produces an upstroke at the begin-

ning of the AP. The transmembrane potential is reversed from negative to positive

and to the peak voltage about 30 mV. Therefore phase 0 is known as the depolar-

ization phase. The slope of the depolarization phase indicates the maximum rate of

increase of the transmembrane potential and is denoted as max du
dt .

Phase 1 After depolarization, the fast Na+ channels are inactive and the outward move-

ment of potassium ions drives the potential to rapidly decrease (phase 1). When the

potential returns to a negative voltage the cell is repolarized. This happens shortly

and phase 1 is therefore called the rapid repolarization (or brief repolarization)

phase.

Phase 2 The long-lasting “plateau" phase of the AP is sustained by a balance between
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Figure 2.5: Restitution feature of the action potential. Top: slow pacing (CL = 800 ms)
yields normal APD. Bottom: faster pacing (CL = 400 ms) causes shorter APD.



14 2.1. Heart function and electrical activity

the influx of the calcium ions and the efflux of the potassium ions. The outward

potassium current IK tends to drive the cell back to the resting state, whereas the

inward calcium current ICa holds the transmembrane potential in a depolarized

value.

Phase 3 The calcium current ICa fails when the Ca2+ channels close in phase 3, then the

potassium current IK brings the voltage to the resting potential (phase 4).

The duration of an action potential is commonly quantified by the action potential

duration (APD) (see Fig. 2.5), which is the amount of time during which u keeps ele-

vated above some specified voltage. Suppose a cell is repeatedly stimulated with a period

called pacing cycle length (CL), we characterize the amount of rest the cell stays in be-

tween consecutive action potentials by the the diastolic interval (DI), which is simply

given as DI = CI − APD. As illustrated in Fig. 2.5, the shorter the DI of current ac-

tion potential, the shorter the APD of the next one. This dependence of APD on DI is

typically characterised as the restitution of APD.

2.1.3 Electrical activity of the heart

Mechanical contraction of the heart for blood pumping is caused by the electrical excita-

tion of the heart. The heart has the ability to initiate electrical activity spontaneously at

a regular pace, and the electrical activity continues even if the heart is removed from the

body. The initiation and conduction of the electrical activity can be described in sequence,

shown schematically in Figure 2.6.

The electrical excitation is initiated by a natural pacemaker known as the sinoatrial

(SA) node, located on the upper portion of the RA wall near the superior vena cave.

The SA node normally generates action potentials at the rate of 60 to 100 per minute in

a resting adult human heart [108]. The action potential travels across firstly the right

atrium and then the left atrium through specialized electrical pathways, until it reaches

the atriaventricular (AV) node. Once the atria are depolarized, the muscles are excited so

they contract and pump blood into ventricles.
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Figure 2.6: The cardiac excitation sequence through the electrical conduction pathways.
Source: http://www.austincc.edu/apreview/PhysText/Cardiac.html

The excitation propagation through the AV node, located in the cardiac septum be-

tween atria and ventricles, is slightly delayed. The AV node has the function of au-

tonomous excitation similar to the SA node, but it is still paced by the electrical impulse

propagated from the SA node since its own beat rate is slower, ranging from 40 to 55

beats per minute. The AV node is the only electrical pathway from atria to ventricles.

When the electrical impulse is held up by the AV node for a brief period, the delay al-

lows the atria to finish blood pumping before the action potential propagates through the

ventricles and causes them to contract.

Following the delay, the electrical impulse conducts through the bundle of His and en-

ters the ventricles. The bundle of His splits after a short distance into left and right bun-

dle branches, which continue down the septal wall and subdivide into further branches.

These branches form a complex network of fibers called the Purkinje fiber network,

spreading across the inner ventricular walls and into the subendocardial region of the

ventricular myocardium. From the bundle of His, the electrical activity runs down the

septum and reaches the apex of the heart, and then through the Purkinjie fibers it dis-

perses throughout the myocardium. The rest of ventricular cells are lastly activated by

cell-to-cell propagation of the action potential through gap junctions. The excited ventri-
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Figure 2.7: A standard electric circuit describing the electrical function of the cell membrane.
The cell membrane acts as a capacitor with capacitance Cm. The channel of ion x acts as a
resistor with the conductance gx. The difference between u and the Nernst potential Ex
governs the direction of the associated current flow, thus it acts as a battery in the circuit.

cles then contract and pump blood into the circulation systems.

The normal propagation of electrical excitation can be interfered with ectopic firing

foci or cardiac fibrosis. The former can initiate abnormal electrical waves hence cause

action potential alternans, the latter functions as obstacles that prevent the electrical

conduction. Either of these pathological conditions would provoke cardiac arrhythmia

such as tachycardia and fibrillation.

2.2 Electrocardiological models in the cellular level

The mechanism behind the occurrence of action potential, which represents the vari-

ation of the transmembrane potential over time, is the movement of ions causing the

currents flowing across the cell membrane. This potential variation can be modeled and

reproduced by regarding the cell membrane as an equivalent electric circuit. A standard

formation is to analogize the cell membrane to a capacitor in parallel with a sequence of

resistors mimicing different ionic channels in the membrane, as shown in Fig. 2.7.

For the current Ix flowing across the channel of an arbitrary ion x, its direction is

determined by the difference between the transmembrane potential u and the Nernst
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potential Ex. Let gx be the conductance of this ionic channel, we formulate

Ix = gx(u− Ex).

The conductances of ionic channels in general have complex dependencies. They vary

along with the opening (activity) and closing (inactivity) of the associated channels. They

are also sensitive to the transmembrane potential and sometimes the concentrations of

specific ions. Therefore the representation of Ix is generally nonlinear. For convenience,

let us denote by Iion the the total current flowing through all ionic channels: Iion =
∑
x
Ix.

With the parallel arrangement in the electric circuit, we can compute the total current

flow Im through the membrane as

Im = Cm
du

dt
+ Iion

where Cm is the capacitance of the cell membrane per unit area. The action potential

of an isolated cell (Im = 0 in this case) can be reconstructed by the ordinary differential

equation (ODE)
du

dt
= −Iion + Istim

Cm
(2.1)

where Istim denotes an external stimulus current—necessary when the cell is at rest—to

trigger the excitation of the cell.

A wide range of cardiac ionic models have been developed representing the action

potentials of different cell types: ventricular cell, atrial cell, sinoatrial node cell, and so

on. A summary on these models can be found in [44] and in the CellML repository 1. The

cell models differ in the manner of development and also in the level of details described

regarding the biophysics of the underlying mechanisms.

In the following, we will introduce the ionic models that are adopted in this thesis,

classified by the manner of development.
1CellML, https://models.cellml.org/electrophysiology.
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2.2.1 Biophysics-based ionic models

The aim of a biophysics-based cardiac cell model is to reproduce the action potential of a

cell by accurately modeling the underlying sub-cellular processes, such as ion transfers,

pumps and exchanges across the cell membrane.

These biophysical models originated from the Hodgkin–Huxley model ( [63], 1952) of

the squid giant axon. Since its appearance, a considerable number of cardiac cell models

have been developed in the last decades, with a continuous increase on the number of

ionic currents described. In particular, we mention some of the better known models: the

Beeler–Reuter model ( [13], 1977, 3 currents) of mamalian ventricular cells, the Luo–

Rudy I model ( [79], 1991, 6 currents) of guinea pig ventricular cells, the Courtemanche–

Ramirez–Nattel (CRN) model ( [36], 1998, 12 currents) of human atrial cells, and the

Ten Tusscher–Noble–Noble–Panfilov (TNNP) model ( [131], 2004, 12 currents) of human

ventricular cells.

A general form of this class of models reads



Iion =
M∑
i=1

Ixi(u,w, c)

dw

dt
+ g(u,w, c) = 0

dc

dt
+ h(u,w, c) = 0

(2.2)

where Ixi is the ionic current associated with ion species xi, w is the vector of J gating

variables {wj}Jj=1 and c is the vector of K typical ion concentrations {ck}Kk=1. The dy-

namic of the transmembrane potential u is governed by the equation (2.1). The gating

variable wj describes the probability that the j-th gate will open to allow the ion transfer

through particular ion channels, thus it is in the range of [0, 1]. A simple example of using

gating variable wj is to model the conductance of ion species xi as gxi = gxiwj , where gxi

is the maximum value of conductance. The dynamic of the gating variable wj is typically

described by an ODE
dwj
dt

= αwj (1− wj)− βwjwj
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where αwj and βwj are voltage-dependent variables and their formulation generally con-

tains exponential functions of u.

The dynamics of typical ion concentrations are modeled only recently. In cell models

developed at earlier ages, such as the Beeler-Reuter model and the Luo–Rudy I model, the

ion concentrations are treated as constants, because the variations of ion concentrations

over time caused by the occurrence of action potential are often negligible.

We introduce in particular the CRN atrial ionic model which is adopted in Chapter 6

and the TNNP ventricular ionic model as a comparison with the minimal ventricular ionic

introduced in the next subsection.

The CRN atrial ionic model

The CRN ionic model was developed using specific formulations of the Na+, K+, Ca2+

currents based on human atrial cell data, along with the inclusion of pump, exchange,

and background currents [36]. The model includes 12 ionic currents governed by the

time evolution of 21 state variables. Specifically, the total ionic current is formulated as

Iion = INa +IK1 +Ito +IKur +IKr +IKs +ICa,L +Ip,Ca +INaK +INaCa +Ib,Na +Ib,Ca (2.3)

with each term in the sum denoting an ionic or pump/exchanger current. In particular,

INa represents the fast Na+ current, IKur is the ultrarapid delayed retifier K+ current,

ICa,L denotes the L-type Ca2+ current, and INa,Ca represents the Na+/Ca2+ exchanger

current. Figure 2.8 shows a schematic representation of these membrane currents and

pump/exchanger currents. Inside the cell, three compartments are included: myoplasm,

sarcoplasmic reticulum (SR) release compartment or junctional SR (JSR), and SR uptake

compartment or network SR (NSR).

The model uses 21 state variables: the membrane potential u; 12 gating variables

for the membrane currents (m,h, j, oa, oi, ua, ui, xr, xs, d, f, fa); 3 gating variables for the

Ca2+ currents through SR (uu, v, w); 3 intracellular concentrations ([Na+]i, [K
+]i, [Ca2+]i);

2 Ca2+ concentrations in SR ([Ca2+]rel, [Ca2+]up). For a complete explanation on these
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Figure 2.8: Schematic representation of the currents, pumps, and exchangers in the CRN
atrial cell model

Figure 2.9: Schematic representation of the currents, pumps, and exchangers in the TNNP
ventricular cell model
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currents and their mathematical formulation please refer to Table 2.1, more details on

the dynamics of state variables are given in the original publication [36].

The TNNP ventricular ionic model

The TNNP ionic model includes a high level of biophysics details. It reproduces the

experimental data on important action potential features of human ventricular cells. The

model includes 12 membrane currents and they are summed up as the total ionic current

Iion = INa + IK1 + Ito + IKr + IKs + ICaL + INaCa + INaK + IpCa + IpK + IbCa + IbNa. (2.4)

Specifically, these currents in order are: fast Na+, inward rectifier K+, transient outward

K+, rapid and slow components of the delayed rectifier K+, L-type Ca2+, Na+/Ca2+

exchanger, Na+-K+ pump, plateau Ca2+ and K+ , and background Ca2+ and Na+ cur-

rents. A schematic representation of these currents are shown in Figure 2.9. The TNNP

model uses 17 state variables: the membrane potential, 12 gating variables, and 4 ion

concentrations.

2.2.2 Reduced ionic models

Biophysics-based cell models include the ionic currents with high level of reality but

also complexity, hence their numerical solutions in large-scale problems are often com-

putationally demanding and the mathematical formation of their adjoint equations are

considerably complicated. As an alternative, reduced ionic models have been developed

from biophysically detailed ones. Typically, these reduced models were formulated by

disregarding detailed sub-cellular processes and considering only the most contributing

ones to the action potential.

A general form of these reduced ionic models and also those phenomenological models
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Table 2.1: Currents in the CRN ionic model. The symbol u denotes the transmembrane
potential which is denoted by Vm in [36] and the gating variable uu is the same as the gating
variable u in [36]. The expressions of some currents are omitted due to complexity, we refer
to [36] for details.

Membrane currents Expressions State variables Model constants

Fast Na+ current INa = gNam
3hj(u− ENa) u m h j [Na+]i gNa [Na+]o

Time-independent
K+ current

IK1 =
gK1(u− EK)

1 + exp[0.07(u+ 80)]
u [K+]i gK1 [K+]o

Transient outward
K+ current

Ito = gtoo
3
aoi(u− EK) u oa oi [K+]i gto [K+]o

Ultrarapid delayed
rectifier K+ current

IKur = gKuru
3
aui(u− EK) u ua ui [K+]i gKur [K+]o

Rapid delayed
outward rectifier
K+ current

IKr =
gKrxr(u− EK)

1 + exp(u+15
22.4

)
u xr [K+]i gKr [K+]o

Slow delayed
outward rectifier
K+ current

IKs = gKsx
2
s(u− EK) u xs [K+]i gKs [K+]o

L-type Ca2+ current ICa,L = gCa,LdffCa(u− 65) u d f fCa gCa,L

Background
Ca2+ current

Ib,Ca = gb,Ca(u− ECa) u [Ca2+]i gb,Ca [Ca2+]o

Background
Na+ current

Ib,Na = gb,Na(u− ENa) u [Na+]i gb,Na [Na+]o

Ca2+ pump current Ip,Ca =
Ip,Ca(max)[Ca2+]i

0.0005 + [Ca2+]i
[Ca2+]i Ip,Ca(max)

Na+-K+ pump INaK [Na+]i INaK(max)

current [Na+]o [K+]o
Km,Na(i) Km,K(o)

Na+/Ca2+

exchanger current
INa,Ca [Na+]i [Ca2+]i INaCa(max) ksat γ

[Na+]o [Ca2+]o
Km,Na Km,Ca

Ca2+ currents Irel Itr Iup Ileak uu v w [Ca2+]rel krel Iup(max) Kup

through SR [Ca2+]up [Ca2+]i [Ca2+]up(max)
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mentioned later in Section 2.2.3 reads
Iion =

M∑
i=1

Ixi(u,w)

dw

dt
+ g(u,w) = 0

(2.5)

where w is the vector of gating variables as before, but the dynamics of ion concentrations

are not considered.

Some examples of reduced ionic models include the Fenton–Karma ionic model [45],

the minimal ventricular ionic model [21], and the Mitchell–Schaeffer ventricular ionic

model [88]. In particular, we introduce in the following the minimal ionic model which

is adopted in Chapter 3 and the Mitchell–Schaeffer model which is used in Chapter 6.

The minimal ventricular ionic model

As the name suggests, the attractive feature of this model is the low number of state

variables (only four) in comparison with other biophysics-based models. Nevertheless,

it can be fitted to reproduce in detail experimentally measured characteristics of human

ventricular action potentials as well as the dynamics of more complex models (such as the

TNNP model) with less computational effort. These characteristics are in tissue-level and

they include the action potential amplitude and morphology, the upstroke velocity, the

action potential duration (APD), the conduction velocity (CV) restitution property, and so

on [21].

Instead of including a wide range of ion channel currents, the total ionic current of

the model is designed as the sum of all three membrane currents: a fast inward current,

a slow inward current, and a slow outward current. The model, having denoted w =

[v, w, s]T , reads

Iion(u, [v, w, s]T ) = 85.7Cm(Jfi + Jso + Jsi)



24 2.2. Electrocardiological models in the cellular level

Jfi = −vH(ũ− θv)(ũ− θv)(uu − ũ)/τfi

Jso = (ũ− uo)(1−H(ũ− θw))/τo +H(ũ− θw)/τso

Jsi = −H(ũ− θw)ws/τsi

g(u, [v, w, s]T ) =


−(1−H(ũ− θv))(v∞ − v)/τ−v +H(ũ− θv)v/τ+

v

−(1−H(ũ− θw))(w∞ − w)/τ−w +H(ũ− θw)w/τ+
w

−((1 + tanh(ks(ũ− us)))/2− s)/τs



(2.6)

where ũ = (u + 84)/85.7 and H(·) is the standard Heaviside step function intended to

model switch-like dynamics. There are several coefficients in (2.6) dependent on the

voltage variable u and they are defined as follows:

τ−v = (1−H(ũ− θ−v ))τ−v1 +H(ũ− θ−v )τ−v2

τ−w = τ−w1 + (τ−w2 − τ−w1)(1 + tanh(k−w (ũ− u−w)))/2

τso = τso1 + (τso2 − τso1)(1 + tanh(kso(ũ− uso)))/2

τs = (1−H(ũ− θw))τs1 +H(ũ− θw)τs2

τo = (1−H(ũ− θo))τo1 +H(ũ− θo)τo2

v∞ = 1−H(ũ− θ−v )

w∞ = (1−H(ũ− θo(1− ũ/τw∞) +H(ũ− θo)w∗∞.

The model parameters used in Chapter 3 are from [21] and reported in Table 2.2.

The Mitchell–Schaeffer ventricular ionic model

The Mitchell–Schaeffer model [88] is a simplification from the Fenton–Karma model

[45]. The model contains only one gating variable and just two ionic currents. In this

case, the gating variable will be denoted by w (no bold since this is not a vector as it is in
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Table 2.2: Minimal ionic model parameters

Parameter Value Parameter Value
uo 0 τ−v2 1150
uu 1.58 τ+

v 1.4506
θv 0.3 τ−w1 70
θw 0.015 τ−w2 20
θ−v 0.015 k−w 65
θo 0.006 u−w 0.03
τ−v1 60 τ+

w 280
τfi 0.11 τs1 2.7342
τo1 6 τs2 3
τo2 6 ks 2.0994
τso1 43 us 0.9087
τso2 0.2 τsi 2.8723
kso 2 τw∞ 0.07
uso 0.65 w∗∞ 0.94

Table 2.3: Rogers–McCulloch model parameters from [108] and [49].

Parameter Value [108] Value [49] Unit
Cm 1 1 µFcm−2

Vr -85 -85 mV
Vth -75 -72 mV
Vp 15 15 mV
c1 0.26 11.54 ms−1

c2 0.1 4.4 ms−1

b 0.013 0.012 ms−1

d 0.8 1 —
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general). The model describes dynamics of the normalized AP u(t) ∈ [0, 1], it reads

Iion(u,w) = −Cm(Jin + Jout)

Jin = wu2(1− u)/τin

Jout = −u/τout

g(u,w) =

 (w − 1)/τopen if u < vgate

w/τclose if u > vgate.

(2.7)

Because of its simplicity, this model can be understood analytically, which allows a

rather complete study about the dependence of the model features on the model param-

eters. Moreover, one can derive an explicit formula for the restitution curve from the

model.

2.2.3 Phenomenological ionic models

There are some ionic models that aim to simulate only the basic (phenomenological)

characteristics of an action potential with limited computational cost. They do not seek to

address the underlying processes or reproduce actually the experimentally observed data.

It is nature to classify them as phenomenological models. These models are derived from

simplification of the Hodgkin–Huxley model and the variables in such models typically

have no physical meaning.

The first widely known phenomenological model is the FitzHugh–Nagumo model pro-

posed by FitzHugh [47] and Nagumo et al. [94] independently for a generic excitable

medium. Later on, Rogers and McCulloch [116] modified the FitzHugh–Nagumo model

with the aim of developing a more realistic action potential. The Rogers–McCuloch model

is used in chapter 3–5, and hence it is introduced in the following.
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The Rogers–McCulloch ionic model

The Rogers–McCulloch model is based on a cubic polynomial formulation for Iion, and a

single gating variable for the simulation of depolarization and repolarization. The gating

variable is denoted by the non-bold w. The model reads

Iion(u,w) = Cm[β1(u− Vr)(u− Vth)(u− Vp) + c2(u− Vr)w]

g(u,w) = −β2(u− Vr) + bdw

(2.8)

where β1 = c1
(Vp−Vr)2 , β2 = b

Vp−Vr . The model parameters used in the first test of chapter

3 are from [108], whereas the parameters in chapter 5 are from [49] since they create

more realistic AP. These parameters are reported in Table 2.3.

It is analyzed in [116] that when the transmembrane potential is over the threshold

Vth the upstroke of action potential starts and drives the transmembrane potential to the

plateau voltage Vp, otherwise the transmembrane potential tends to the resting potential

Vr. By the cubic description of Iion the model captures the most relevant features of

an action potential as interpolated here, therefore it can be adopted with adjusted model

parameters for patient-specific simulations, when the goal is more like a qualitative study.

2.3 Electrocardiological models in the tissue level

The bidomain model is currently considered as the most physiologically founded descrip-

tion for the dynamics of electric potentials—the transmembrane potential and the ex-

tracellular potential—at the level of cardiac tissue. It was first proposed by Schmitt in

1969 [121] before being applied to cardiac tissue by Tung, Miller and Geselowitz in

1978 [85, 130]. Since its initial formulation, it has been well-known among researcher.

In recent decades, the validation of the bidomain model in vitro [91,137] and its ability to

reproduce cardiac phenomena [117, 129] make the bidomain model a proper candidate

for simulating action potential spreading in the myocardium as well as electrocardio-

grams.
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The derivation of the bidomain model is based on several assumptions [108]:

1. as the result of a “homogeneization” procedure the intra- and extracellular domains

are coexisting at each point of the cardiac domain, and this is where the name

“bidomain” from;

2. there is no direct current flow between the intracellular and extramyocardial spaces;

3. the current flow between the extracellular and extramyocardial spaces occurs through

the boundary of the cardiac domain;

4. the quasi-static approximation [107] is applied on the electrical and magnetic ac-

tivity generated inside the body. Namely, the changes of electric/magnetic fields

over time are ignored.

The current density Ji in the intracellular space can be formulated, by the Ohm’s

law, as Ji = σiEi. Here Ei is the electric field strength and σi(x) is the symmetric

conductivity tensor in the intracellular domain. Under the quasi-static assumption on

Maxwell’s equations, the electric field can be expressed as Ei = −∇ui. We can express

the current density Ji accordingly as

Ji = −σi∇ui. (2.9)

The current density in the extracellular space can be expressed similarly using analogous

notations

Je = −σe∇ue. (2.10)

Under the assumptions 2 and 3, any current that leaves one of the intra- and extracel-

lular domains inside the cardiac tissue must across the membrane and flow into the other

domain. This means the change of current density in each domain should be opposite

in sign and equal in magnitude. Furthermore, by the conservation of current densities,

the change of current density in each domain should be equal to the current Im flowing
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across the membrane. These relations are expressed as

∇ · (σi∇ui) = βIm

∇ · (σe∇ue) = −βIm

(2.11)

where β is the surface-to-volume ratio of the membrane.

Recall that the membrane current flow Im can be described as

Im = Cm
∂u

∂t
+ Iion (2.12)

where Cm is the membrane capacitance per unit area and Iion is the total ionic current

whose explicit form would be described by a coupled ionic model. Combining (2.11) and

(2.11), we obtain the bidomain model in a symmetric form as


βCm

∂u

∂t
−∇ · (σi∇ui) + βIion = 0

−βCm
∂u

∂t
−∇ · (σe∇ue)− βIion = 0

(2.13)

Extensive introductions to this model can be found for instance in [33,69,108].

If the cardiac tissue is considered in isolation from surrounding tissues, the boundary

condition applied is homogeneous

(σi∇ui) · n = 0

(σe∇ue) · n = 0
(2.14)

When external current stimuli (Isi and Ise) are applied to the intracellular and extra-

cellular spaces, we can introduce them in expression (2.11) as ∇ · (σi∇ui) = βIm − Isi

for instance. The resulting bidomain model reshaped in a parabolic-elliptic form (see

e.g. [108]) reads
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βCm
∂u

∂t
−∇ · (σi∇u)−∇ · (σi∇ue) + βIion = Isi in Q

−∇ · (σi∇u)−∇ · (σi + σe)∇ue = Isi − Ise in Q

σi∇u · n + σi∇ue · n = 0, σe∇ue · n = 0 on ∂Q

u(x, 0) = u0(x) in Ω

(2.15)

where Ω ⊂ Rd (d = 2 or 3) is a bounded domain denoting the spatial region of interest

and Q = Ω× [0, T ], ∂Q = ∂Ω× [0, T ] with [0, T ] being a fixed time interval.

A convenient way for representing the two conductivity tensors in 3D is to refer to the

cardiac fibers:

σi = σilalal
T + σitatat

T + σinanan
T

σe = σelalal
T + σetatat

T + σenanan
T .

Here (al,at,an) are orthonormal vector fields related to the structure of the myocardium

with al along the local fiber direction, at orthogonal to the fiber direction in the fiber

sheet, and an orthogonal to the sheet. The symbol σil (σit) denotes the longitudinal

(tangential) intracellular conductivity while σel (σet) is the extracellular counterpart, and

their values could depend on space. Sometimes we may further assume that the tissue is

axial isotropic (i.e. σin = σit and σen = σet), then we have

σi(x) = σitI + (σil − σit)alal
T

σe(x) = σetI + (σel − σet)alal
T .

Notice that ue is uniquely determined by an additional condition
∫

Ω ue(x)dx = 0.

By applying the divergence theorem to the elliptic equation in (2.15), we require the

compatibility condition for the bidomain system to be solvable:
∫

Ω(Isi − Ise)dx = 0.

An extensive well-posedness analysis for the system of the macroscopic bidomain

model coupled with a microscopic cellular model can be found in [51,132].

To overcome high computational costs associated with the bidomain problem, a sim-

plified monodomain model has been proposed. Its derivation can be obtained in different



Chapter 2. Mathematical models in electrocardiology 31

ways [50, 97], based upon a proportionality assumption between the intracellular and

the extracellular conductivity tensors (the domains are equally anisotropic), namely as-

suming σe = λσi, where λ is a constant. A formulation of the monodomain model is then

obtained, by assuming σm = λ
1+λσi and Iapp = λ

1+λIsi + 1
1+λIse, as

βCm
∂u

∂t
−∇ · (σm∇u) + βIion = Iapp. (2.16)

In this “equal anisotropy ratio” case, the boundary conditions simplify to

σm∇u · n = 0.

Notice that the conductivity tensor σm is the harmonic average of the intra- and extra-

cellular ones

σm =
λ

1 + λ
σi = (σ−1

i + σ−1
e )−1, (2.17)

and the stimulus Iapp can be formulated as Iapp = Ise while taking stimuli such that

Ise = Isi or as Iapp = σil
σil+σel

Ise while taking the stimulus Isi as zero. These formulations

are consistent with the different derivation of the monodomain model in [50]. Along

with (2.16) it is called the adapted monodomain model in [20], whereas we still call it

the monodomain model in this thesis.



32 2.3. Electrocardiological models in the tissue level



Chapter 3

Cardiac conductivity estimation by a

variational approach

In this chapter we present a variational data assimilation procedure for estimating the

cardiac conductivities in ventricular tissue. This part of material is a subject of the paper

[139].

3.1 Introduction

Numerical methods have been used for investigating cardiovascular diseases for at least

25 years. Starting from idealized and simplified models, computational tools have been

progressively refined and applied to patient-specific geometries retrieved from medical

images. However, extensive use of numerical investigations in clinical practice is still dif-

ficult for several reasons. One is the uncertainty affecting the models when applied to a

specific patient. In practice, mathematical models depend on parameters that typically

come from appropriate but empirical constitutive laws and their quantification for a spe-

cific patient may be problematic. For this reason, methods of data assimilation have been

recently investigated in cardiovascular mathematics. By this we mean numerical tech-

niques for merging available patient-specific measures (which we call our foreground or

33
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patient-specific knowledge) with mathematical models (the background or general knowl-

edge) with the twofold aim of filtering the noise in the data and reducing uncertainty in

the model by a precise quantification of parameters (see e.g. [40, 134]). This chapter

investigates a variational patient-specific estimation of cardiac conductivities based on

available measures of cardiac potentials.

Although the importance of a precise patient-specific conductivity estimation has been

recognized for a long time [119] and experimental methods based on controlled mea-

surements after an appropriate stimulus of the tissue are quite impractical in clinics,

computational methods have been investigated only in the last few years. After the work

of Geselowitz [55] in 1971, experimental estimation of the intracellular and extracellular

conductivities has been carried out in different ways by several groups [34, 114, 115],

leading to different ranges of possible values with no common agreement on the most

accurate ones. These values are reported in Table 3.1. It is worth stressing that the

bidomain/monodomain model—one of the most popular mathematical models in com-

putational electrocardiology—has been shown to be strongly sensitive to the values of

conductivities and in particular to the ratio between the tangential and longitudinal ex-

tracellular conductivities [65].

A direct computational model has been explored in [125] based on a multiscale ar-

gument, where tissue-scale conductivities are computed from the current density with

the simulation of cell-scale models. This computation is however based on empirical val-

ues of local conductivities. The so-called 4-leads method requires the virtual placement

of leads at a distance of the order of microns [77, 119] and a variational procedure for

extracting the conductivities from a series of controlled current stimuli of the cardiac

tissue. More recently, a variational approach for a reliable estimation of conductivities

has been proposed in [58]. This method is based on a classical least-squares procedure.

Results presented in [58] refer to 2D synthetic cases and clearly show that the variational

estimate may provide accurate results, but it is computationally expensive (at least 60 so-

lutions of the 2D bidomain system are required). Moreover, addition of more parameters



Chapter 3. Cardiac conductivity estimation by a variational approach 35

Table 3.1: Values of cardiac conductivities proposed in [58] (mS/cm).

Clerc Roberts Roberts and
Param ↓ \ Ref→ [34] et al. [114] Scher [115]

σil 1.70 2.80 3.40
σit 0.19 0.26 0.60
σel 6.20 2.20 1.20
σet 2.40 1.30 0.80

σil/σit 8.95 10.77 5.67
σel/σet 2.58 1.69 1.50
σil/σel 0.27 1.27 2.83
σit/σet 0.08 0.20 0.75

to estimate (for instance the fiber orientation) may in fact prevent the convergence of the

iterative method.

In this chapter we still use a variational procedure for the estimation of cardiac con-

ductivities from measures of the transmembrane and extracellular potentials available

at some sites of the tissue. Unlike the least-squares approach in [58], our numerical

procedure is a derivative-based optimization method. The gradient of the misfit func-

tional to minimize is computed by resorting to the adjoint equations of the bidomain

system. For the challenge presented by differentiating state-dependent discontinuous

terms, we use shape calculus for computing those Gâteaux differentials. We pursue both

an Optimize-then-Discretize approach in small-scale simulations and a Discretize-then-

Optimize approach in large-scale simulations. Results are presented in both 2D idealized

and 3D real geometries. The former is used to compare our method with the results

in [58]. The latter - at the best of our knowledge this is the first time variational tech-

niques are used in 3D real geometries - to demonstrate the method in cases of clinical

interest. We use also two popular ionic models to complete the bidomain system: (i) the

well-known Rogers–McCulloch phenomenological model for the simple cases (including

the existence analysis in Chapter 4); (ii) the minimal ionic model for more realistic cases

- as an appropriate trade-off between reliability and efficiency.

We state the variational formulation of the inverse conductivity problem in Sec. 3.2.
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We use a finite element discretization for the bidomain equations and the BFGS algorithm

for parameter optimization (Sec. 3.3). Finally, we illustrate several numerical tests with

synthetic noisy measures (Sec. 3.4). Results lead to the conclusion that the approach

presented significantly improves the least-squares method [58] in terms of efficiency and

provides a reliable and potentially practical method for estimating the cardiac conductiv-

ities (Sec. 3.5).

Follow-up of this work includes an investigation on possible model reduction tech-

niques which is carried out in Chapter 5, the design of a complete estimation procedure

for all patient-dependent parameters (in both healthy and pathological tissues), and an

experimental validation of the estimation procedure in view of clinical applications.

3.2 Variational formulation of the inverse problem

Let the admissible domain for control variables be

Cad = {σ ∈ L∞(Ω) : σ(x) ∈ [m,M ]2d,∀x ∈ Ω},

where L∞(Ω) ≡ (L∞(Ω))2d, d = 3 for 3D problems with σ = (σil, σel, σit, σet, σin, σen)

and d = 2 for 2D problems with σ = (σil, σel, σit, σet); m and M (m < M) are positive

constants. The problem we investigate, called the bidomain inverse conductivity problem

(BICP), reads: find the tensor σ ∈ Cad minimizing the misfit functional

J (σ) =
1

2

∫ T

0

∫
Ωobs

(u(σ)−umeas)
2 +(ue(σ)−ue,meas)

2 dxdt+
α

2
R(σ) (3.1)

subject to the bidomain equations (2.15) and a coupled ionic model (2.5). Here umeas

and ue,meas denote the experimental data measured on the observation domain Ωobs ⊂ Ω.

They can be obtained in vitro using voltage optical mapping [32], or in vivo by back-

mapping body surface potentials [35, 99] or possibly by potential reconstruction from

electrocardiogram phase analysis of standard gated SPECT [31]. The term R denotes a
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Tikhonov-like regularization term and α is the regularization coefficient, used to weigh

the impact of the regularization in the minimization procedure. For instance R could

be taken as
∫

Ω ||σ − σ̂||2dx, where σ̂ is an appropriate average of available conductivity

values from the literature and ‖ · ‖ denotes the Euclidean norm.

Let us consider the general abstract problem: minimize J (σ) = J (u(σ), σ) with a

constraint F (u, σ) = 0 (called state equation), where u is the state variable and σ is the

control variable. We can introduce the augmented Lagrangian functional L(u, σ, λ) =

J (u, σ)− λ∗F (u, σ) where λ is the adjoint variable or Lagrange multiplier and λ∗F (u, σ)

can be regarded as a duality pairing. To find the minimum, we need to totally differen-

tiate this functional with respect to the control variable. To this aim we formulate the

adjoint equation ∂J
∂u − λ∗ ∂F∂u = 0. In addition, the state equation F (u, σ) = 0 yields the

sensitivity equation ∂F
∂σ + ∂F

∂u
du
dσ = 0. Eventually we compute the gradient of J as

DJ
Dσ =

∂J
∂σ

+
∂J
∂u

du

dσ
=
∂J
∂σ

+ λ∗
∂F

∂u

du

dσ
=
∂J
∂σ
− λ∗∂F

∂σ
=
∂L
∂σ

.

Following this approach, for our BICP we introduce the Lagrangian functional

L(u, ue,w,σ, p, q, r) = J (σ)

−
∫ T

0

∫
Ω
q(βCm

∂u

∂t
−∇ · σi∇u−∇ · σi∇ue + βIion(u,w)− Isi) dxdt

−
∫ T

0

∫
Ω
p(−∇ · (σi + σe)∇ue −∇ · σi∇u− Isi + Ise) dxdt

−
∫ T

0

∫
Ω

r · (dw
dt

+ g(u,w)) dxdt

(3.2)

where q(x, t), p(x, t), and r(x, t) are the Lagrange multipliers.

Setting the partial derivatives ∂L
∂u ,

∂L
∂ue

and ∂L
∂w equal to zero, we construct the adjoint
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equations



−βCm
∂q

∂t
−∇ · σi∇q −∇ · σi∇p+ β∂uIionq + ∂ug · r = (u− umeas)χΩobs

in Q

−∇ · (σi + σe)∇p−∇ · σi∇q = (ue − ue,meas)χΩobs
in Q

dr

dt
− ∂wg · r− β∂wIionq = 0 in Q

σi∇p · n + σi∇q · n = 0, σe∇p · n = 0 on ∂Q

q(x, T ) = 0, r(x, T ) = 0 in Ω.

(3.3)

Based on the adjoint equations we get the Gâteaux derivatives of J as follows

DJ
Dσik

=
∂L
∂σik

= −
∫ T

0
akak

T∇(u+ ue) · ∇(p+ q) dt+
α

2

∂R
∂σik

(3.4)

DJ
Dσek

=
∂L
∂σek

= −
∫ T

0
akak

T∇ue · ∇p dt+
α

2

∂R
∂σek

, (3.5)

where k stands for l, t,n.

3.3 Numerical solver

In this section, we describe the time and space discretization techniques and the linear

solver for the state and adjoint equations (Sec. 3.3.1). We will refer to the minimal

ionic model since it requires to address specific issues. In particular, we address our ap-

proach for differentiating state-dependent discontinuous terms (Sec. 3.3.2). At the end,

we describe the optimization algorithm for the bidomain inverse conductivity problem

(Sec. 3.3.3).

3.3.1 Time and space discretization

The bidomain equations take the form of a system of PDEs, describing tissue-level action

potential propagation, coupled with a system of ODEs, describing cellular-level behavior,
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as seen in Sec. 2.2 and 2.3. Following a quite consolidated strategy (see e.g. [56]), we

decouple the global system of PDEs and ODEs with the aim of improving computational

efficiency and reducing complex dependencies between variables. The time advancing

scheme for the ODEs is an implicit backward Euler method. Other methods can be pur-

sued as well [103]. For the PDEs, a semi-implicit time discretization based on the back-

ward differentiation formula (BDF) is used.

Let ∆t be the time step, hereafter we use superscript l for those variables at time

t = l∆t and superscript l+ 1 for those variables at time t = (l+ 1)∆t. We assume in gen-

eral the final time is T , which will be specially customized in the Discretize-then-Optimize

framework (see Sec. 3.3.3), and let L = T/∆t, tl = l∆t. The bidomain system after time

discretization reads

βCm
α0
∆tu

l+1 −∇ · σi∇ul+1 −∇ · σi∇ul+1
e

= I l+1
si − βIion(ũl+1,wl+1) + βCm

s∑
i=1

αi
∆tu

l+1−i in Ω

−∇ · σi∇ul+1 −∇ · (σi + σe)∇ul+1
e = I l+1

si − I l+1
se in Ω

(σi∇ul+1 + σi∇ul+1
e ) · n = 0, σe∇ul+1

e · n = 0 on ∂Ω

(3.6)

where the vector of gating variables wl+1 in the ionic model is updated by

wl+1 −wl

∆t
= −g(ũl+1,wl+1) (3.7)

with given initial condition on w0. Here αi’s are the coefficients of the BDF, and in a

second order BDF particularly they have the values

α0 = 3/2, α1 = 2, α2 = −1/2.

The term ũl+1 in the nonlinear functions Iion and g is a time extrapolation of ul+1 in

order s formulated by standard Taylor expansion arguments: ũl+1 =
s−1∑
i=0

βiu
l−i. The
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second-order time extrapolation, for instance, writes in general

ũl+1 = 2ul − ul−1

and in particular ũ1 = u0.

Similarly, the adjoint equations after time discretization read



βCm
α0
∆tq

l −∇ · σi∇pl −∇ · σi∇ql = (ul − ulmeas)χΩobs

−β∂uIion(ul, wl)q̃l − ∂ugl · rl + βCm

s∑
i=1

αi
∆tq

l+i in Ω

−∇ · σi∇ql −∇ · (σi + σe)∇pl = (ule − ule,meas)χΩobs
in Ω

σe∇pl · n = 0, σi∇pl · n + σi∇ql · n = 0 on ∂Ω

(3.8)

where q̃l =
s−1∑
i=0

βiq
l+1+i is a time extrapolation of ql in order s. Specially, the second-order

time extrapolation writes in general q̃l = 2ql+1 − ql+2 and in particular q̃L−1 = qL. The

dual variable rl is solved by

rl+1 − rl

∆t
= β∂wI

l
ionq̃

l + ∂wg · rl (3.9)

with “initial” condition rL = 0.

Other treatments for the nonlinear terms can be employed as well, such as the linearly

implicit Rosenbrock method in [92], which are more accurate, yet computationally more

demanding. For our purposes, a second order explicit scheme seems to be the best trade-

off between accuracy, simplicity, computational costs and stability.

We use the finite element method (FEM) for the space discretization. Let space H1
h =

span{φj}nj=1 ⊆ H1 be the finite-dimensional subspace ofH1 of piecewise linear functions,

where {φj}nj=1 are the generic (Lagrange) basis functions of this space. The approximated

finite element solutions read uh(x, t) =
n∑
j=1

uj(t)φj(x), ue,h(x, t) =
n∑
j=1

ue,j(t)φj(x). Let

us denote by M the mass matrix with entries [M]jk =
∫

Ω φkφjdx and by Sτ the stiffness

matrices with entries [Sτ ]jk =
∫

Ω στ∇φk · ∇φjdx, where τ stands for i, e,m. For u = [uj ]
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and ue = [ue,j ], after discretization in time and then in space, the associated algebraic

bidomain system reads


Ab Si

Si Si + Se




ul+1

ul+1
e

 =


b1

l+1

b2
l+1

 , (3.10)

where Ab = βCm
α0
∆tM + Si and the right-hand side writes

b1
l+1 =

[
〈I l+1

si − βIion(ũl+1,wl+1), φj〉L2

]
+ βCmM

s∑
i=1

αi
∆t

ul+1−i

b2
l+1 =

[
〈I l+1

si − I l+1
se , φj〉L2

]
.

Similarly, the algebraic form of the adjoint equations reads


Ab Si

Si Si + Se




ql

pl

 =


d1

l

d2
l

 , (3.11)

and the right-hand side is formulated as

d1
l = [〈ql∗, φj〉L2 ] + [〈(ul − ulmeas)χΩobs

, φj〉L2 ] + βCmM
s∑
i=1

αi
∆t

ql+i

d2
l = [〈(ule − ule,meas)χΩobs

, φj〉L2 ].

where ql∗ = −β∂uI lionq̃
l − ∂ugl · rl.

Since ue is unique up to a constant, the kernel of the algebraic matrix in (3.10) is

span{[0,1]T }. The singular system (3.10) is solved by an iterative method, in particular

the GMRESR method, which is a reliable strategy for elliptic problems with homoge-

neous Neumann boundary conditions [16]. The GMRESR algorithm is implemented in

the Trilinos package (www.trilinos.org). A mass lumping technique ( [109], sec. 11.5)

is employed for stabilization of the reactive dominating terms presented after time dis-
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cretization. After solving the bidomain system (3.10), we force the average of ue to be

zero at each time iteration.

It is worth stressing that the efficient solution and preconditioning of the bidomain

equations have been a topic of interest in many papers (see e.g. [56], [101], [106]).

Since this is not the main focus here, we resort to a standard ILU preconditioner without

entering in further detail.

3.3.2 Computation of derivatives of discontinuous terms

When we adopt the minimal ionic model (or any other biophysics-based models like

the TNNP model [131]), the terms ∂uI lion and ∂ug
l in ql∗ contain Gâteaux differentials

DH(u− c) of functionals involving H(u− c), where c ∈ R is a constant. More specifically,

for convenience of the reader we formally rewrite the minimal ionic model as

Iion(u, [v, w, s]T ) = 85.7Cm(Jfi + Jso + Jsi)

Jfi(u, v) = JfiH1(u, v)H(u− θ̂v)

Jso(u) = JsoH1(u)H(u− θ̂o) + JsoH2(u)H(u− θ̂w) + JsoH0(u)

Jsi(u,w, s) = JsiH1(w, s)H(u− θ̂w)

g(u, [v, w, s]T ) =


−g1H1(v)H(u− θ̂−v )− g1H2(v)H(u− θ̂v)− g1H0(v)

−g2H1(u)H(u− θ̂o)− g2H2(u,w)H(u− θ̂w)− g2H0(u,w)

−g3H1(u, s)H(u− θ̂w)− g3H0(u, s)


where θ̂∗ = 85.7θ∗−84 in the above functions, and the terms multiplied by H(u− c) such

as JfiH1 and g1H1 are smooth functions of the state variables u, v, w, s. Their expressions
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are listed below.

JfiH1(u, v) = −v(u− θ̂v)(ûu − u)/(85.72τfi)

JsoH1(u) = (u− ûo)(1/τo2 − 1/τo1)/85.7

JsoH2(u) = {τso1 + 1
2(τso2 − τso1)[1 + tanh(kso(

u+ 84

85.7
− uso))]}−1 − (u− ûo)/(85.7τo2)

JsoH0(u) = (u− ûo)/(85.7τo1)

JsiH1(w, s) = −ws/τsi

g1H1(v) = −v/τ−v2 − (1− v)/τ−v1

g1H2(v) = −v/τ+
v + v/τ−v2

g1H0(v) = (1− v)/τ−v1

g2H1(u) =
w∗∞ − 1 + (u+ 84)/(85.7τw∞)

τ−w1 + 1
2(τ−w2 − τ−w1)[1 + tanh(k−w (u+84

85.7 − u−w))]

g2H2(u,w) = − w

τ+
w
− w∗∞ − w
τ−w1 + 1

2(τ−w2 − τ−w1)[1 + tanh(k−w (u+84
85.7 − u−w))]

g2H0(u,w) =
1− (u+ 84)/(85.7τw∞)− w

τ−w1 + 1
2(τ−w2 − τ−w1)[1 + tanh(k−w (u+84

85.7 − u−w))]

g3H1(u, s) = [1
2(1 + tanh(ks(

u+84
85.7 − us)))− s](1/τs2 − 1/τs1)

g3H0(u, s) = [1
2(1 + tanh(ks(

u+84
85.7 − us)))− s]/τs1.

When solving the adjoint equations, we need to compute

〈ql∗, φi〉L2 = 〈−β∂uI lionq̃
l − ∂ugl · rl, φi〉L2

= 〈F1, φi〉L2 + 〈F2DH(u− θ̂v), φi〉L2 + 〈F3DH(u− θ̂o), φi〉L2

+ 〈F4DH(u− θ̂w), φi〉L2 + 〈F5DH(u− θ̂−v ), φi〉L2 (3.12)
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with rl and F1 through F5 are detailed as

rl = [rl1, r
l
2, r

l
3]T

F1 = −85.7βCmq̃
l(∂uJfiH1H(u− θ̂v) + ∂uJsoH1H(u− θ̂o) + ∂uJsoH2H(u− θ̂w)

+∂uJsoH0) + rl2(∂ug2H1H(u− θ̂o) + ∂ug2H2H(u− θ̂w) + ∂ug2H0)

+rl3(∂ug3H1H(u− θ̂w) + ∂ug3H0)

F2 = −85.7βCmq̃
lJfiH1 + rl1g1H2

F3 = −85.7βCmq̃
lJsoH1 + rl2g2H1

F4 = −85.7βCmq̃
l(JsoH2 + JsiH1) + rl2g2H2 + rl3g3H1

F5 = rl1g1H1,

where the evaluation on state variables u, v, w, s is at time t = tl, but we drop the super-

script l here to keep the notations simple.

Regularization of the discontinuities with a smooth approximation like a classical

H(u) ≈ 1
2(1 + tanh(u/ε)) (where ε is a small number) may prevent the convergence

of the inverse solver. We tested this statement by a simulation performed on a slab as

described in Sec. 3.4.2. For the sake of clarity, we report here the result in Figure 3.1,

which shows that regularization inhibits the convergence to the exact values of conduc-

tivity. This non-convergence argument is consistent with the statements in [43] and [92].

For this reason, we need to follow rigorous procedures where Gâteaux differential

DH(u− c) is computed with great accuracy. As a general differentiation form in expres-

sion (3.12), 〈b(x)DH(u− c), ϕ〉L2 can be computed through

〈b(x)DH(u− c), ϕ〉L2 =

∫
Ω
b(x)DϕH(u− c)dx = Dϕjb,c(u), (3.13)

where we denote

jb,c(u) =

∫
Ω
b(x)H(u(x)− c)dx
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Figure 3.1: Left: Regularization of the step function (dashed) by H(u) ≈ 1
2 (1 +

tanh(u/10−4)). Right: History of conductivity estimation using the minimal ionic model
with this regularization. The simulation was performed on a slab as described in Sec. 3.4.2.
Regularization prevents the convergence to the exact value (identified by the dashed line).

and its Gâteaux derivative in the direction of ϕ reads

Dϕjb,c(u) = lim
t→0

1

t
(jb,c(u+ tϕ)− jb,c(u)) = lim

t→0

1

t
(

∫
Ωt(c)

b(x)dx−
∫

Ω0(c)
b(x)dx)

with Ωt(c) = {x : u(x) + tϕ(x)− c ≥ 0}.

This suggests to treat Dϕjb,c(u) as a shape derivative of jb,c(u) and take advantage of

the velocity method from shape optimization [39]. We follow the result by Nagaiah et

al. in a related work and provide a proof with slightly refined derivation as follows.

Proposition ( [92], prop. 4.1). The Gâteaux derivative of jb,c(u) in the direction ϕ can

be computed as

Dϕjb,c(u) =

∫
Γ0(c)

b(x)ϕ(x)

|∇u(x) · n|dΓ (3.14)

where n denotes the outward unit normal to the domain {x : u(x) ≥ c} and we assume

that ∇u(x) 6= 0 in a neighbourhood of Γ0(c) = {x : u(x) = c}.

Proof. The evolution of the boundaries Γt(c) = {x : u(x) + tϕ(x) − c = 0} of Ωt(c)

satisfies (by differentiating the equation in Γt(c))

∇u(x(t)) · dx
dt

+ ϕ(x(t)) + t∇ϕ(x(t)) · dx
dt

= 0. (3.15)
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To apply the velocity method, we assume that t → x(t)—which corresponds to a family

of transformations on Ω—is determined by the differential equation

dx

dt
= V(t,x(t))

with velocity fields V(t)(x) := V(t,x(t)). By the theorem in [39] pg. 483 or [38] pg. 348,

the shape derivative Dϕjb,c(u) of jb,c(u) in the direction ϕ can be computed by

Dϕjb,c(u) =

∫
Γ0(c)

b(x)V(0) · ndΓ (3.16)

where we simply use x denoting x(t) on Γ0(c) for t = 0.

In the particular case when the boundaries Γt(c) with varying c are level sets, the

velocity is along the normal direction. At t = 0, the normal direction of Ω0(c) is given by

n = −∇u(x)
|∇u(x)| , so we can take V(0) = V (x)−∇u(x)

|∇u(x)| where V is a scalar-valued function that

can be determined from (3.15). Setting t = 0 in (3.15), we have

V (x)∇u(x) · −∇u(x)

|∇u(x)| + ϕ(x) = 0.

Therefore V(0) · n = V (x) = ϕ(x)
|∇u(x)| . Finally, the shape derivative is given by

Dϕjb,c(u) =

∫
Γ0(c)

b(x)ϕ(x)

|∇u(x)| dΓ. (3.17)

Since the tangential component of u on Γ0(c) is zero, the shape derivative can be ex-

pressed equivalently in the form (3.14).

Following (3.13) and (3.14) we then compute in (3.12)

〈F2DH(u− θ̂v), φi〉L2 = DφijF2,θ̂v
(u) =

∫
Γ0(θ̂v)

F2(x)φi(x)

|∇u(x) · n| dΓ

and similarly we can compute the other terms involving DH(u− c).

In practice, when working on a (linear) finite element grid, this computation requires
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Figure 3.2: Triangle detection of iso-surfaces in different cases.

the detection of the iso-surfaces Γ0(c). To this aim we resort to the marching tetrahedron

method. At each time step we detect the iso-surfaces in each element of Ω. These are

represented by linear functions fitting the piecewise linear approximation. We then com-

pute the integral on these surfaces element-wise. More specifically, we introduce a 3-digit

code to identify all the different possible cases, as reported in Figure 3.2. The first digit

represents the number of nodes in the current tetrahedron with positive iso-level (i.e.

u(x) − c > 0), the second digit represents the number of nodes with negative iso-level

(i.e. u(x) − c < 0), and third digit represents the number of nodes with zero iso-level

(i.e. u(x)− c = 0).

Integration is carried out on the reference 2D element as illustrated in Figure 3.3.

On each iso-surface triangle T , the integral is computed by mapping it to a reference T̂

triangle

∫
T

b(x)

|∇u(x) · n|dΓ =

∫
T̂

b(Ψ(x̂))

|∇u(Ψ(x̂))|
√
det(gξ̂η̂)dξ̂dη̂ =

∑
ig

b(Ψ(x̂ig))

|∇u(xig)|
√
det(gξ̂η̂)|x̂ig

wig
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Figure 3.3: Coordinate transformation.

where

∇u(xig) =
n∑
i=1

ui∇φi(xig) =
n∑
i=1

uiJ
−t(Θig)∇φ̂i(Θig)

gξ̂η̂ =
∂Ψ

∂ξ̂
· ∂Ψ

∂η̂
=
∑
i,j

pTi pj
∂ψ̂i

∂ξ̂
· ∂ψ̂j
∂η̂

J is the Jacobian matrix of Φ, ig is the index for the quadrature rule and wig is the weight

in the quadrature rule.

3.3.3 Interplay between optimization and time discretization

Given optimization time step dtopt that we will specify later, we define

J i(σ) =
1

2

∫ t0+(i+1)dtopt

t0+idtopt

∫
Ωobs

(u(σ)− umeas)
2 + (ue(σ)− ue,meas)

2 dxdt+
α

2
R(σ)

where i = 0, · · · , ( T
dtopt

− 1). The optimization algorithm for solving the bidomain in-

verse conductivity problem is described in Algorithm 1, in which Q denotes the queue of

estimates we find for the conductivities along the procedure.

More precisely in Algorithm 1 the misfit function J i(σk) and its gradient ∇J i(σk)

are computed through the following scheme
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Algorithm 1 BFGS Optimization

Input: initial guess σ0, optimization step dtopt, average number a
Output: estimated conductivity values

1: Initialize queue Q ← {}
2: for i = 0, · · · , ( T

dtopt
− 1) do

3: Initialize inverse Hessian H0 ← 1
||∇J i(σ0)||I

4: k ← 0
5: while stopping criterion not satisfied do
6: Compute search direction vk = −Hk∇J i(σk)
7: Set σk+1 = σk + γkv

k with γk ∈ (0,∞) computed from a line search
8: Define sk = σk+1 − σk, yk = ∇J i(σk+1)−∇J i(σk), ρk = 1

yT
k sk

9: Update the inverse Hessian
Hk+1 = (I− ρkskyTk )Hk(I− ρkyksTk ) + ρksks

T
k (BFGS [98])

10: k ← k + 1
11: end while
12: Push σk into Q; pop Q if i ≥ a
13: σ0 ← ∑

σ∈Q
σ/a

14: end for
15: return σ0

1. Solve (u, ue) from t0 + idtopt to t0 + (i+ 1)dtopt with σk; Store (u, ue)

2. Evaluate the misfit function J i(σk)

3. Solve (q, p) from t0 + (i+ 1)dtopt to t0 + idtopt with σk and stored (u, ue)

4. Compute ∇J i(σk) by

DJ i
Dσik

= −
∫ t0+(i+1)dtopt

t0+idtopt

akak
T∇(u+ ue) · ∇(p+ q) dt+

α

2

∂R
∂σik

DJ i
Dσek

= −
∫ t0+(i+1)dtopt

t0+idtopt

akak
T∇ue · ∇p dt+

α

2

∂R
∂σek

,

where k stands for l, t,n.

The line search in Step 7 of Algorithm 1 is based on a cubic interpolation of the misfit

function and on the Armijo condition ( [98]). The curvature condition (see [98] p.33) is

not adopted since they use derivatives, as such they are more expensive to compute than

function values. In reality, under the Armijo condition alone, the line search performs
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well enough with a maximum iteration number two.

Here, we summarized all the possible combinations between the discretization and the

optimization steps we considered. In particular, we consider three possible approaches.

To be specific, while performing simulations on relatively coarse meshes, we use an

Optimize-then-Discretize (OD) scheme. This means that we formulate the optimization

procedure at the continuous level (dtopt = T and hence a = 1) and then we discretize the

problem. This is the most accurate and efficient way in a small-scale simulation. However,

it is not feasible for large-scale optimization due to the requirement on memory size. The

reason is that we need to solve a backward-in-time dual problem, which is demanding on

the storage of the bidomain solution over the entire time interval of interest.

While performing simulations on fine meshes, two alternative schemes are considered

for memory saving, checkpointing and Discretize-then-Optimize (DO). In the former, we

perform again the optimization procedure globally on the time interval T and hence

we set a = 1. To solve the adjoint system, we first solve the bidomain system once.

However, state variables are stored only at some checking points equispaced with step

dtcheck, which is taken to be ≥ 20∆t. Then while solving the adjoint system, the bidomain

solver runs again in each time interval of length dtcheck, using initial conditions from

stored checkpoints. Finally the dual solver on this time interval is applied.

In the Discretize-then-Optimize scheme, we perform the optimization procedure over

every shorter time slot of length dtopt, instead of the full time interval T . Estimated

conductivity tensors in general change at each time step dtopt. In order to smoothen the

convergence sequence, we take an average of the estimated values in the previous time

slots, and use the average as an initial guess for the optimization over next time slot, as

was done in [14]. This averaging step helps lower the risk that a possible bad estimate

in previous time slot could significantly bias the following ones. In particular, we set

empirically a = 5.
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3.4 Numerical results

Similar to the experimental assumption in [115], we hereby assume that the conductivity

parameters are uniform in the domain Ω and the tissue is axial isotropic (i.e. σin = σit

and σen = σet). We denote σexact = (σil, σel, σit, σet).

Two sets of numerical tests are presented in this section. The first one is intended

to compare our approach with tests in the literature, to assess the performance of our

method. This test is therefore in 2D, as taken from the literature. For this test, we

implemented the bidomain solver, coupled with the Rogers–McCulloch model, and its

dual in the well-known FreemFem++ environment [60].

The 3D test cases are then presented to demonstrate that the method can run on

real geometries, beyond the proof-of-concept stage. For these cases, we needed a more

effective software environment and we resorted to LifeV, an object oriented C++ finite

element library developed by different groups worldwide [100]. In these tests, we used

also geometries retrieved from real patients and in particular from SPECT images, as we

will detail later on. For the sake of reliability and efficiency the minimal ionic model was

used.

In Tests 1–5 conductivities were assumed to be constant (so clearly belonging to Cad),

as it is reasonable for a healthy heart. In Test 6 we assumed a piecewise constant conduc-

tivities (again clearly in Cad), as we may have in a pathological case with a region - called

“scar" - featuring altered values and strongly affecting the regular potential dynamics.

3.4.1 Two-dimensional test

We present a 2D test inspired by [58]. The computational domain was Ω = [0, 1] ×

[0, 1] ⊂ R2 of size 1 cm2. The sites for measurements were arranged into an array over

the tissue domain, which consisted of 6 × 6 electrodes with spacing of 1.667 mm. The

experimental mean conductivity values were taken as σ̂ = (2.63, 3.2, 0.35, 1.5). Following

[58], a constant fibre angle was chosen as θ = −48◦. In the test, four stimuli of Isi =

Ise = 105µA/cm3 were applied in the domain for a duration of 1 ms. Synthetic data was
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Figure 3.4: Upper left: umeas at t = 2 ms. Lower left: umeas at t = 12 ms. Upper right: umeas

at t = 2 ms with 15% noise. Lower right: umeas at t = 12 ms with 15% noise

Table 3.2: 2D test on a square: 51 nodes on each boundary, α = 10−5, T = 25 ms, ∆t = 0.025
ms, and dtsnap = 0.5 ms. σexact = (2.8, 2.2, 0.26, 1.3).

noise 0% 10% 15%
σil | eil 2.75040 | 0.04960 2.72529 | 0.07471 2.71204 | 0.08796
σel | eel 2.22046 | 0.02046 2.23888 | 0.03888 2.24965 | 0.04965
σit | eit 0.20800 | 0.05200 0.21023 | 0.04977 0.21134 | 0.04866
σet | eet 1.31297 | 0.01297 1.32505 | 0.02505 1.33751 | 0.03751
Initial J 0.442516 0.457430 0.477920
Final J 0.0016164 0.0187802 0.0403941

# fwd | bwd 18 | 16 21 | 18 19 | 18

generated with the conductivity parameters σexact = (2.8, 2.2, 0.26, 1.3). The stopping

criterion used in the BFGS algorithm was ‖∇J (σk)‖ < 10−6. To compare our results

with [58], the noise added to the synthetic data at each time step had a Gaussian normal

distribution with a zero mean, and its standard deviation was (
√

2/2) · 33p, where p is

the percentage of noise. The synthetic measure of transmembrane potential is shown in

Figure 3.4.

Test 1: Accuracy and efficiency check. The space discretization method for generating
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Figure 3.5: Left: Iterations for (σil, σit); Right: Iterations for (σel, σet)

measurement data was FEM P2 with 251 nodes on each boundary, the simulation time

step was ∆t = 0.0025 ms, and the time step dtsnap postulated between two measurements

was 0.5 ms. For the forward problem during the optimization procedure, we used FEM

P1 with 51 nodes on each boundary and ∆t = 0.025 ms. By selecting two different dis-

cretization schemes we prevent any “inverse crime”, since the approximation for solving

the inverse problem is different from the one for generating the data.

Simulation with each searched value σ was run for T = 25 ms. The initial guess

was σinitial = (1, 1, 1, 1) and the result is shown in Table 3.2. Quantities e refer to the

corresponding error |σestimated − σexact|. From the table we can see, with 15% noisy

data, the final estimate obtained features an error (0.08796, 0.04965, 0.04866, 0.03751).

Relative to ||σexact||∞ = 2.8 the error is (3.14%, 1.77%, 1.74%, 1.34%). The numbers

of solves of the state equations (# fwd) and the adjoint equations (# bwd) are listed in

the last row of Table 3.2. The optimization process requires only 39 solves of the linear

system in the 10%-noise case and 37 solves in the 15%-noise case, which is a significant

reduction on the number of linear solvers as comparison with the results of [58]. In [58],

84 bidomain model runs (with the Beeler–Reuter ionic model [13]) were needed in the

10%-noise case and 62 runs were required in the 15%-noise case. We mention that the

comparison is not based on the total execution time, it is rather on the count of direct

problem solves, which is independent of the choice of ionic models.

To have a better insight into the efficiency of the optimization method, we plot the
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searched value at each optimization iteration (including line search) in Figure 3.5. The

conductivity value searched at each iteration is denoted by a (green) box, connected by

dashed (red) lines. This figure corresponds to 15% noisy data. The exact value is denoted

by a circle. From Figure 3.5 we can see that after about 15 iterations the searched values

approach the exact ones.

3.4.2 Three-dimensional tests

We present several test cases to investigate different aspects of our method. In Test 2,

3 and 4 the computational domain was a slab Ω = [0, 5] × [0, 5] × [0, 0.5] ⊆ R3 with

11516 mesh nodes and the OD scheme was adopted. In each simulation, five stimuli

of Isi = Ise = 105 µA/cm3 were applied with four at the corners and one at the center

of the domain for a duration of 1 ms. With these test cases we want to show (a) the

importance of extracellular potential measures in the accuracy of our method; (b) the

impact of the regularization parameter α; (c) the sensitivity of the final results to an

imperfect knowledge of other parameters of the problem.

Test 5 demonstrates the accuracy of the method on a real geometry with a realistic

arrangement of the cardiac fibers. In particular, we discuss the performances of the

different approaches, OD with check-pointing and DO. Finally, Test 6 illustrates the result

of the method in a case where conductivities are piecewise constant. This may occur

in pathological cases, where a scar of the cardiac tissue (for instance after surgery) is

present.

As the bidomain solver is much more computational demanding in 3D than in 2D and

we want to focus on the specific aspects of the method that are pointed out above, we

use the same discretization scheme for the optimization simulation as for generating the

measures. However, at each time step, noise was added into the synthetic data uniformly

distributed as U(0, pmax |u|), where p is the percentage of noise. The BFGS stopping
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Table 3.3: T = 20 ms,∆t = 0.1 ms, dtsnap = 2 ms, noise = 10%, # sites = 1000, σexact =
(3.4, 1.2, 0.6, 0.8)

σinitial (5, 5, 3, 3) (2, 2, 1, 1)
measure u u&ue ue u u&ue ue

σil 3.03510 3.36350 3.40531 2.06524 3.36997 3.37996
σel 1.02949 1.20955 1.20866 1.51519 1.18705 1.21091
σit 0.32207 0.59114 0.59581 0.45420 0.59954 0.57659
σet 1.67832 0.80093 0.79820 1.38055 0.82652 0.79027

# fwd | bwd 16 | 12 27 | 16 24 | 19 26 | 15 28 | 17 18 | 12

criterion used was

‖∇J (σk)‖
‖∇J (σ0)‖ < 10−5 or

‖J k − J k−1‖
‖J 0‖ < 10−5 or

‖σk − σk−1‖
‖σk−1‖ < 10−5.

Test 2: Necessity of extracellular potential measurement. In Test 1 of the previous

section, we assumed to have measures of the transmembrane potential only. As a matter

of fact, the transmembrane potential data are easier to measure in experiments than the

extracellular one. We actually obtained good results in 2D and in the 3D slab as well in the

case σexact = (2.8, 2.2, 0.26, 1.3). Unfortunately, the same circumstance has not been con-

firmed for other exact values. For instance for reference values σexact = (3.4, 1.2, 0.6, 0.8),

the estimates are significantly less accurate as shown in the second and fifth columns of

Table 3.3. In general, extracellular potential data are necessary for reliable estimates. In

fact, if we use both measurements from transmembrane and extracellular potentials, or

even just the extracellular potential, we find much more accurate results, as reported in

Table 3.3.

Test 3: Sensitivity to Tikhonov regularization. We have several choices of the Tikhonov-

like regularization term. In this test, we compare four different uses of regularization.

Let

Ra =

∫
Ω
||σ − σ̂||2dx, Rb =

∫
Ω

(
σelσit

σilσet
− ε)2dx

where σ̂ is the mean of conductivity values from literatures as used in the two-dimensional

test and ε = 0.24 is the fairly consistent measurement value of σelσit
σilσet

in the literature,
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Figure 3.6: Upper left: M1. Upper right: M2. Lower left: M3. Lower right: M4.

which indicates that cardiac tissue has unequal anisotropy ratios. The four ways we use

regularization (including the Tikhonov regularization coefficients) are

M1 : R = 0 M2 : R = 1/2 · 10−4Ra
M3 : R = 1/2 · 10−3Rb M4 : R = 1/2 · 10−4Ra + 1/2 · 10−3Rb

In Figure 3.6 we report the history of estimated σ in the optimization iteration pro-

cess with respect to the number of iterations. In this test, adding regularization terms

speeds up the optimization process, as expected. Specifically, the inverse solver withM1

converges in about 20 iterations, while with bothM2 andM3 it converges in about 14

steps. The combination of M2 and M3 does not bring any advantage as shown by the
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Figure 3.7: In measurement generation the fiber angle is θ = −48◦. Inexact fiber directions
and ionic model parameters are used in conductivity estimation. Left: fiber angle θ = −53◦

and ionic model parameters have 1% noise. Right: fiber angle is spatial dependent with 10%
noise and ionic model parameters have 1% noise.

performance of M4. We can also see from the plots that the optimization algorithm is

stable even without regularization. This result hints at a broader application of theM1

scheme in consideration of spatial dependent conductivities in pathological tissues (see

the example in Test 6), whileM2 andM3 are not appropriate because of the uncertainty

on σ̂ in Ra and ε in Rb when we have more conductivity parameters.

Test 4: Impact of the fiber direction and ionic model parameters. In the clinical

application of cardiac potential modeling, not only the cardiac conductivities, but also

the cardiac fiber orientation and ionic model parameters vary among patients. The work

in this chapter is under the assumption that the ionic model parameters were previously

optimized by fitting experimental data using a genetic algorithm [127] or other gradient-

based optimization methods like sequential quadratic programming (SQP) [21]. It has

been shown that ionic model parameters can be estimated successfully for arbitrary action

potential waveforms, and possibly with an error of only 0.03% [127].

Here we focus only on the conductivity parameter estimation and in previous tests the

fiber direction and ionic model parameters were the same as those used in measurement

data generation. A complete procedure for estimating more patient-dependent param-

eters, such as fiber angles and conductivities in pathological tissues, is considered as a
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continuing work in the future as we discuss in Section 3.5. In this test we check the

sensitivity of the conductivity estimation procedure by using inexact fiber direction and

ionic model parameters. This test was conducted on the slab as in Test 2 and Test 3. The

synthetic measurement data was generated with a constant fiber angle θ = −48◦, and

10% noise was then added to the measured potentials. In the simulation for conductivity

estimation, we used inexact ionic model parameters: they were changed randomly by at

most 1% compared to parameters used in measurement generation. In our first consider-

ation, we used a constant fiber angle θ = −53◦ during the inverse solver and the conduc-

tivity estimation process is reported in Figure 3.7 (left). In our second consideration, the

fiber direction was spatial dependent. The fiber angle at each spatial grid was randomly

changed from −48◦ by at most 10%. Notice that the fiber vector field (al,at,an) was

not smooth in this case because of the noise, while in the real case the fiber orientation

has been known to smoothly rotate between endocardium and epicardium [126]. This

may explain the result reported in Figure 3.7 (right). We slightly loose accuracy on the

σil parameter, but the overall result is acceptable, especially in consideration of the good

estimation values of σel, σit, and σet.

Test 5: Checkpointing vs Discretize-then-Optimize. In this test, we compare the per-

formance of the checkpointing scheme and the Discretize-then-Optimize scheme. The

simulations were performed on a real left ventricular geometry reconstructed from SPECT

images. We display some screenshots of the action potential propagation in Figure 3.8.

An analytical representation of the fiber orientation was opted for to mimic the main

features of the actual cardiac fibers field (shown in Figure 3.9), as originally proposed

in [49] eqn. (6.2) for an ellipsoid domain and properly adapted to a real domain re-

trieved from SPECT images (as already done in [56]). Other computational models of

cardiac fibers are also available, such as [11].

We solved the bidomain inverse conductivity problem on a mesh with 22470 degrees

of freedom. ∆t was chosen as 0.05 ms, and T was 24 ms. We plot the conductivity esti-

mation iterations in Figure 3.10. The execution time using checkpointing (Figure 3.10,



Chapter 3. Cardiac conductivity estimation by a variational approach 59

t = 25 ms t = 50 ms

t = 300 ms t = 325 ms

Figure 3.8: Screenshots of the action potential propagation (in mV) at t=25 ms, t=50 ms,
t=300 ms, and t=325 ms, computed on a real left ventricular geometry reconstructed from
SPECT images.
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Figure 3.9: Myocardial fiber orientation used in simulation. Left: front view; Right: top
view.
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Figure 3.10: Left: Iterations using checkpointing with dtcheck = 1 ms and dtsnap = 2 ms.
Right: Iterations by Discretize-then-Optimize with dtopt = 2 ms and dtsnap = 2 ms.

Left) is 12.94 h, while the execution time using Discretize-then-Optimize is 5.46 h with

dtopt = 2 ms (Figure 3.10, Right). Each simulation was perfomed on four processors with

each processor having an Intel(R) Xeon(R) CPU L5420 @ 2.50GHz. Compared with the

checkpointing scheme, the Discretize-then-Optimize scheme improves the computation

speed by 50% while keeping high accuracy.

Test 6: An example of pathological tissue. In this test, we simply assume that there is

a scar inside the cardiac tissue, as shown in Figure 3.11 (left). A scar is included here to
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Figure 3.11: Left: A slab tissue with a scar (in green color) inside. Right: Estimated con-
ductivities of the synthetic pathological tissue. The initial guess for estimation is σinitial =
(2, 2, 2, 2, 2, 2, 2, 2).

represent a small region with anomalous values of conductivities. The presence of a scar

in real patients may trigger pathological patterns in the cardiac potential propagation.

The slab tissue in this test had dimension 5 cm× 5 cm× 0.5 cm and the scar was assumed

having radius 1 cm. The conductivity values inside the tissue are different from those

outside the tissue. We denote σexact = (σinil , σ
in
el , σ

in
it , σ

in
et , σ

out
il , σoutel , σ

out
it , σoutet ), where σin∗

(σout∗ ) are the conductivity values inside (outside) the scar. Synthetic measurements were

generated with the conductivity parameters σexact = (2, 1, 0.2, 0.1, 3.4, 1.2, 0.6, 0.8) and

10% noise was then added. While the number of conductivity parameters are doubled

in this circumstance, the optimization procedure still provides highly accurate estimation

as illustrated in Figure 3.11 (right). Nevertheless, we stress that the computational costs

substantially increase due to the significant growth of number of optimization iterations.

The estimation process needs 208 solves of the state system and 100 solves of the adjoint

system. This motivates us to further work on a model reduction investigation with the

aim of reducing the computational cost, as we will see in Chapter 5.

3.5 Chapter conclusions and developments

The accurate quantification of cardiac conductivities is crucial for extending computa-

tional electrocardiology from medical research to clinical practice in a patient-specific
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setting. With this motivation, we have investigated a data assimilation approach for

providing conductivity estimates from potential measurements. Other approaches are

possible, like the one based on Kalman filtering techniques (see e.g. [89]).

We pursue the augmented Lagrangian formulation to compute the gradient of the mis-

fit function needed in the BFGS optimization approach. Technical issues and discretiza-

tion have been carefully addressed. Some simulations were performed in 2D to compare

with results available in the literature. Compared with a least-squares approach [58], the

derivative-based optimization method we adopt here is more effective, since we need to

solve the adjoint system with a searched set of parameters only once for computing all

the Gâteaux derivatives of J . We also presented results in 3D on a slab and on a left

ventricular geometry reconstructed from SPECT images using the minimal ionic model

as our trade-off between reliability and computational efficiency. The next step of the

present work will be to perform validation with in vitro experiments.

In future work, we would like to consider more patient-dependent parameters, like

the elevation angle and the transverse angle of the fibers, piecewise-constant conductiv-

ities, conductivities in different anatomical structures such as the Purkinje fiber and the

bundle of His, conductivities in pathological tissues. In general, the more parameters

to be estimated, the more optimization iterations are needed and then the slower the

personalization procedure.

Since the iterated solution of the bidomain system and its dual in real geometries is

fairly demanding [56, 86], it is no surprise that we face formidable computational costs,

in particular while estimating the conductivities of pathological tissues when the number

of solves of the bidomain system substantially increase, as reported in Test 6 of Section

3.4.2. To handle this issue, we will investigate possible model reduction techniques and

then replace the full order model in the optimization process with a low-dimensional

model, as done, for instance, in [14] for the estimation of compliance in arteries. This

investigation on model reduction is carried out in Chapter 5.

Another important direction we intend to pursue is the rigorous quantification of un-
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certainty induced by the presence of noise. In this case, the conductivities estimated will

be defined by a probability density function whose moments depend on the noise and the

bidomain problem (see e.g. for fluid dynamics [133]).
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Chapter 4

Existence analysis for the inverse

conductivity problem

In this chapter we prove the existence of a minimizer for the inverse conductivity prob-

lem. The proof is largely inspired by Kunisch et al. [93] for the optimization problem

concerning pacemaker stimuli.

4.1 Preliminary

Notations. We follow the notations in [93] and denote V = H1(Ω), H = L2(Ω), U =

V/R. The quotient space is used because the solution ue is determined up to an additive

constant. To simplify the notations, we use L2(V ) instead of L2(0, T ;V ) (analogous for

other function spaces) and u(t) instead of u(x, t) (similarly for ue(t) and w(t)). Here

V ∗ denotes the dual space of V . D(0, T ) is the space of C∞ functions on R with com-

pact support in (0, T ). The space of all distributions on D(0, T ) is denoted by D′(0, T ).

Let us introduce the space L2(Ω) being the space (L2(Ω))2d, the space L2(Ω;Rd) being

(L2(Ω;Rd))2d and the space H1(Ω) being (H1(Ω))2d (d = 3 or d = 2 for 3D and 2D cases

respectively).

We postulate the following assumptions.

65
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1. Ω is a bounded domain in Rd with Lipschitz boundary ∂Ω.

2. The conductivity tensors σi and σe are uniformly elliptic. Namely, there exist con-

stants m, M > 0 such that

∀ξ ∈ Rd, m|ξ|2 ≤ ξTσi,e(x)ξ ≤M |ξ|2, for all x ∈ Ω. (4.1)

3. We assume in particular to work with the Rogers–McCulloch ionic model.

4. Isi and Ise belong to L2(0, T ;V ∗). The initial data u0 and w0 belong to L2(Ω). We

also assume that the stimuli and the initial condition are chosen to ensure that ue(0)

is independent of σ (for instance, u0 = const. and Isi − Ise = 0 a.e.).

Definition 4.1.1 (Weak Solution). (u, ue, w) ∈ (L2(V )∩L4(Q)∩C(H))×L2(U)×C(H)

is called a weak solution of system (2.15), if u(0) = u0, w(0) = w0, and (u, ue, w) verify in

D′(0, T ):

∂

∂t

∫
Ω
βCmu(t)ϕ+

∫
Ω
σi∇(u(t) + ue(t)) · ∇ϕ+

∫
Ω
βIion(u(t), w(t))ϕ

=

∫
Ω
Isi(t)ϕ, ∀ϕ ∈ V

(4.2)∫
Ω
σi∇u(t) · ∇φ+

∫
Ω

(σi + σe)∇ue(t) · ∇φ =

∫
Ω

(Isi(t)− Ise(t))φ, ∀φ ∈ U (4.3)

d

dt

∫
Ω
w(t)ψ +

∫
Ω
g(u(t), w(t))ψ = 0, ∀ψ ∈ H (4.4)

We recall some results of the literature relevant to our analysis.

Theorem 4.1.2 ( [19] thm. 30, [75] thm. 2.8). Under the assumptions (i)-(iv) above, the

bidomain system (2.15) has a unique weak solution (u, ue, w).

Lemma 4.1.3 (A priori estimate, [93] lem. 3.5). Under the same assumptions (i)-(iv) of
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the previous Theorem, there exist positive constants C̃ and c̃, such that

|u|C(H) + |u|L2(V ) + |u|L4(Q) + |∂tu|L4/3(V ∗) + |ue|L2(U) + |w|C(H) + |∂tw|L2(H)

≤ C̃(|u0|+ |ue,0|+ c̃|Ω|+ |Isi|L2(V ∗) + |Isi − Ise|L2(U∗))

(4.5)

where c̃ depends on the ionic model, C̃ depends on the constants m and M in (4.1) and the

ionic model, but C̃ is independent of (u0, w0), (Isi, Ise) and σi,e.

4.2 The existence proof

Theorem 4.2.1 (Existence of minimizer). Under the previous assumptions, for the regu-

larization parameter α ≥ 0, there exists at least one minimizer for the bidomain inverse

conductivity problem.

Proof. Since J is bounded from below, inf
σ∈Cad

J (σ) ∈ R and there exists a minimizing

sequence σ(k) ∈ Cad such that

lim
k→∞

J (σ(k)) = inf
σ∈Cad

J (σ).

Since the terms {σ(k)} are bounded in L∞(Ω), it follows from the sequential Banach–

Alaoglu theorem that there exists a subsequence of σ(k), which we denote by the same

symbol, such that

σ(k) → σ∗ weakly- ∗ in L∞(Ω). (4.6)

We claim that σ∗ ∈ Cad. Indeed, if for example Γ = {x : σ∗il(x) > M} has positive mea-

sure, then
∫

Ω(σ∗il(x)−σ(k)
il )χΓdx ≥

∫
Γ(σ∗il(x)−M)dx > 0, which leads to a contradiction,

since, for k →∞, the left hand side should be zero. The case for the other entries of the

conductivity tensors and the lower bound m is the same.

Let (u(k), u
(k)
e , w(k)) be the associated solution of the bidomain model with σ(k), by

the a priori estimate and the weak compactness property, there exists a subsequence of

(u(k), u
(k)
e , w(k),σ(k)) ∈ (L2(V )∩L4(Q))×L2(U)×C(H)× L∞(Ω), denoted by the same
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sequence, such that

u(k) ⇀ u in L2(V ) ∩ L4(Q), u(k)
e ⇀ ue in L2(U), w(k) ⇀ w in L2(H) (4.7)

∂

∂t
u(k) ⇀

∂

∂t
u in L4/3(V ∗),

d

dt
w(k) ⇀

d

dt
w in L2(H) (4.8)

Let the corresponding bilinear forms associated with {σ(k),σ∗} be {aki,e, a∗i,e}:

aki,e(u, v) =

∫
Ω
σ

(k)
i,e ∇u · ∇v, a∗i,e(u, v) =

∫
Ω
σ∗i,e∇u · ∇v.

Since the conductivity tensors are uniformly elliptic, |a∗i (u, v)| ≤ M ||u||V ||v||V . This

means for fixed v ∈ V , we have a∗i ∈ V ∗. Since u(k) is weakly convergent and φv ∈

L4(Q) ∩ L2(V ) for any φ ∈ D(0, T ), we have

∫ T

0
a∗i (u(k), φv)dt→

∫ T

0
a∗i (u, φv)dt, ∀ φ ∈ D(0, T ), v ∈ V. (4.9)

For any fixed φ ∈ D(0, T ) and ψ ∈ C∞0 (Rd), we have

∫ T

0
aki (u(k), φψ)dt−

∫ T

0
a∗i (u(k), φψ)dt

=

∫ T

0

∫
Ω

(σ
(k)
il − σ∗il)alal

T∇u(k) · ∇(φψ) +

∫ T

0

∫
Ω

(σ
(k)
it − σ∗it)atat

T∇u(k) · ∇(φψ)

+

∫ T

0

∫
Ω

(σ
(k)
in − σ∗in)anan

T∇u(k) · ∇(φψ)

=

∫ T

0

∫
Ω

(σ
(k)
il − σ∗il)al

T∇(φψ)al
T∇u(k) +

∫ T

0

∫
Ω

(σ
(k)
it − σ∗it)at

T∇(φψ)at
T∇u(k)

+

∫ T

0

∫
Ω

(σ
(k)
in − σ∗in)an

T∇(φψ)an
T∇u(k)

Notice that al has unit length and ∇(φψ) is in L∞(Q;Rd). While {σ(k)} can be treated as

weakly-∗ convergent to σ∗ in L∞(Q), we have {σ(k)al
T∇(φψ)} weakly-∗ convergent to
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σ∗al
T∇(φψ) in L∞(Q). From

||∇u(k)||L1(Q;Rd) ≤ (|Ω|T )1/2||∇u(k)||L2(Q;Rd)

and the a priori estimate of Lemma 3.3, we conclude that {∇u(k)} is bounded in L1(Q;Rd).

Therefore, by passing to a subsequence, we can require ∇uk ⇀ ∇u in L1(Q;Rd). The

Dunford–Pettis property of L1(Q) (see [78], sec. 1.6) thus leads to the following conver-

gence ∫ T

0

∫
Ω

(σ
(k)
il − σ∗il)al

T∇(φψ)al
T∇u(k) → 0, as k →∞. (4.10)

The convergence follows also for the other two terms in the same way, we then have

∫ T

0
aki (u(k), φψ)dt−

∫ T

0
a∗i (u(k), φψ)dt→ 0, as k →∞ ∀ φ ∈ D(0, T ), ψ ∈ C∞0 (Rd).

Since Ω has Lipschitz boundary, it then satisfies the segment condition (see [2], def.

3.21). We say C∞0 (Rd) is dense in V (see [2], thm. 3.22). Therefore we have

∫ T

0
aki (u(k), φv)dt−

∫ T

0
a∗i (u(k), φv)dt→ 0, as k →∞, ∀ φ ∈ D(0, T ), v ∈ V.

Combined with limit (4.9) this convergence implies

∫ T

0
aki (u(k), φv)dt−

∫ T

0
a∗i (u, φv)dt→ 0, as k →∞, ∀ φ ∈ D(0, T ), v ∈ V. (4.11)

Similarly, we can show

∫ T

0
aki (u(k)

e , φv)dt−
∫ T

0
a∗i (ue, φv)dt→ 0, as k →∞, ∀ φ ∈ D(0, T ), v ∈ V (4.12)

∫ T

0
ake (u(k)

e , φv)dt−
∫ T

0
a∗e(ue, φv)dt→ 0, as k →∞, ∀ φ ∈ D(0, T ), v ∈ V. (4.13)

The proof for the convergence of the other terms in equations (4.2)–(4.4) is standard, and

we refer to [19] p.477. By passing to the limit in the equations satisfied by (u(k), u
(k)
e , w(k),
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σ(k)), we argue that (u, ue, w,σ
∗) is a solution to the bidomain equations.

We then conclude that σ∗ realizes the minimum of J . Since u(k) are bounded in

L2(V ) and u(k)
e are bounded in L2(U), by the Rellich–Kondrachov selection theorem, we

can assume that u(k) converges strongly to u in L2(Q) and u(k)
e converge strongly to ue in

L2(Q). In fact, from convergence (4.6) it follows that {σ(k)} is also weakly convergent in

L2(Ω). The weak lower semicontinuity of
∫

Ω ||σ(k) − σ̂||2dx in L2(Ω) then implies that

J (σ∗) =
1

2

∫ T

0

∫
Ω

(u− umeas)
2 + (ue − ue,meas)

2dxdt+
α

2

∫
Ω
||σ∗ − σ̂||2dx

≤ 1

2
lim
k→∞

∫ T

0

∫
Ω

(u(k) − umeas)
2 + (u(k)

e − ue,meas)
2dxdt+

α

2
lim inf
k→∞

∫
Ω
||σ(k) − σ̂||2dx

≤ lim inf
k→∞

(
1

2

∫ T

0

∫
Ω

(u(k) − umeas)
2 + (u(k)

e − ue,meas)
2dxdt+

α

2

∫
Ω
||σ(k) − σ̂||2dx)

= lim
k→∞

J (σ(k)) = inf
σ∈Cad

J (σ),

and the existence of a minimizer is proved.

Remark 1. When J has a minimum at σ∗ belonging to the interior of Cad, the deriva-

tives of J in any direction are zero, which leads to the KKT system [59]. However, σ∗

could be on the boundary ∂Cad. In this case, the solution is not a stationary point of

the mismatch functional. Nevertheless, there are some special choices of the regulariza-

tion term to make sure σ∗ belongs to the interior of Cad. For example, we can choose

R =
∫

Ω || logσ − log σ̂||2dx as the regularization term, since the conductivity parameters

are strictly positive. In this case,

R =

∫
Ω
|| logσ − log σ̂||2dx→∞, as σ → 0 or σ →∞.

Notice that the first term in J is non-negative, so for proper values of m and M guaran-

tees that the minimum of J will not be on the boundary ∂Cad (see also [104]).

Remark 2. If we can refer to the more restrictive admissible domain for control variables
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C∗ad = {σ = (σil, σel, σit, σet, σin, σen) ∈ H1(Ω) : σ(x) ∈ [m,M ]2d,∀x ∈ Ω}, we can actu-

ally prove the existence without using the Dunford–Pettis property. For the minimizing

sequence σ(k) ⇀ σ∗ in L2(Ω), we also have ∇σ(k) ⇀ ∇σ∗ in L2(Ω;Rd) by the uniform

boundedness principle. Therefore {σ(k)} is bounded in H1(Ω), which then implies a

subsequence strongly convergent in L2(Ω). So with the admissible domain C∗ad we may

assume σ(k) → σ∗ pointwise a.e.

In the course of proving convergence (4.10), we obtain

∫ T

0

∫
Ω

(σ
(k)
il − σ∗il)al

T∇(φψ)al
T∇u(k) ≤ ||(σ(k)

il − σ∗il)al
T∇(φψ)||L2(Q) · ||al

T∇u(k)||L2(Q).

Notice that {||al
T∇u(k)||L2(Q)} is uniformly bounded since |al| = 1 and {∇u(k)} are

bounded in L2(Q;Rd). By the Dominated Convergence theorem,

||(σ(k)
il − σ∗il)al

T∇(φψ)||L2(Q) → 0 as k →∞.

Remark 3. Finally, from the theoretical point of view, uniqueness analysis of the solution

to the BICP remains an open problem.
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Chapter 5

Reduced-order modeling for cardiac

conductivity estimation

5.1 Introduction

Solution of a large scale inverse problem, such as the inverse conductivity problem, is

usually computationally demanding. High computational cost arises in many “queries”

of forward simulations with different model parameters. The computation is particularly

intensive in biomedical simulations, when the mesh and time constraints are expected

to be significant in clinical applications. In this chapter, we apply model reduction tech-

niques that are expected to dramatically decrease the computational cost of solving the

inverse conductivity problem.

Several strategies are available to cope with the challenge of reducing computational

costs (see e.g. [15]). One of these is the physical model reduction. Basically, this consists

of an educated downscaling of the forward problem into simpler system under a physical

assumption, yet hopefully retaining the main features of the forward problem. In view

of this, in this chapter we use the monodomain model as a surrogate of the bidomain

model, following the potential oriented line. Specifically, we evaluate the reliability of

the monodomain model when reproducing the potential propagation with the estimated

73



74 5.1. Introduction

tensor σm. Assumptions of the monodomain model are not necessarily realistic, never-

theless, we speculate that an appropriate estimate of the conductivity tensor σm based

on our variational procedure can still lead to an accurate reconstruction of the poten-

tial. This potentially has a great impact on reducing the computational cost for practical

applications (e.g. pace-maker leads placement optimization).

Another widely used approach in reduced order modeling is the mathematical model

reduction based on the definition of a “surrogate” solution for the forward problem. A

numerical solution to the forward problem by Galerkin projection can be represented, in

general terms, as an expansion

uh(x, t) =

n∑
j=1

uj(t)φj(x, t).

In finite elements, the basis function set {φj(x, t)} is given for instance by piecewise

polynomial functions. They are generally time-independent (apart from moving-domain

problems) and do not rely upon the specific problem. This guarantees versatility to the

method such that it can be applied to a vast class of differential problems. However,

versatility means that the basis is of general purpose, it does not contain any information

on the problem at hand and this generally leads to a large number of degrees of freedom

n to get an accurate solution. Mathematical model reduction aims at cheaply solving

the forward equations in a low-dimensional space still by a Galerkin projection process.

We construct a different set of basis functions (known as reduced basis) that we define

“educated”, since it includes features of the solutions to the forward problem considered.

This allows to represent a solution with a low number of degrees of freedom n. However,

the computation of an appropriate educated basis may be computationally expensive. An

offline-online decomposition is often adopted by model reduction techniques accordingly,

which includes an offline process for reduced basis construction and an online process to

solve the degrees of freedom uj cheaply, thanks to the small size n.

Among various techniques for the reduced basis construction, typical ones are the

Proper Orthogonal Decomposition (POD) approach [17, 48, 73, 136], the Greedy Reduced
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Basis (GRB) approach [22,46,110], and their combination [68,96]. In these approaches,

the reduced basis is constructed from a set of parameter-induced solutions of the original

full-order model. The POD approach, which is also named as the Karhunen–Loéve trans-

form (KLT) in signal processing and the Principal Component Analysis (PCA) in statistics,

has drawn widespread attention for its optimal ability to approximate the snapshots with

minimized error by the selection of the most energetic modes. We therefore employ the

POD approach in this chapter as a starting point. The GRB approach selects the snapshots

carefully with a greedy selection process according to a rule controlled by a sharp and

effective a posteriori error estimator. Although decent in the small number of snapshot

computations, the requirement of a rigorous error estimator makes it applicable only to

a limited class of problems where an error estimator is achievable.

In the particular circumstance of having a nonlinear forward model, as the models in

electrocardiology considered in this thesis, the reduced-order model obtained by Galerkin

projection has computational complexity still depending on the order of the full system.

Therefore, the dimension of the full-order model is not thoroughly reduced. Several tech-

niques have been proposed in the literature to reduce the computational cost of evaluat-

ing the nonlinear terms. One is to take schemes used in general function approximation,

such as the multi-linear forms of polynomial nonlinearities [8, 26, 41, 113]. A typical

example is the trajectory piecewise-linear (TPWL) approach developed by Rewienski and

White [113]. Although it was successfully applied to some practical problems [12, 112],

this approach may not be effective or efficient for systems with high order of nonlinear-

ity. Other techniques for nonlinear model reduction include the Best Point Interpolation

Method (BPIM) introduced by Nguyen et al. [95], the Missing Point Estimation (MPE)

proposed by Astrid [6], the Empirical Interpolation Method (EIM) developed by Barrault

et al. [9] and its discrete variant Discrete Empirical Interpolation Method (DEIM) proposed

by Chaturantabut and Sorensen [30]. These approaches are similar in the sense that they

select a small set of spatial points to avoid the expensive calculation of inner products

required in nonlinear evaluation. However, they differ in the fundamental procedures for
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obtaining the reduced system and for selecting the spatial points. MPE extracts certain

equations of the full system before the POD projection corresponding to a specially cho-

sen spatial points, whereas BPIM and EIM use the selected spatial interpolation points

for approximating the nonlinear terms. The BPIM and EIM approaches are similar [54]

in approximating the nonlinear term as a linear combination of spatial dependent basis

functions with time (or parameter) dependent coefficients. BPIM is optimal in the point

selection and gains a little improvement on accuracy as compared to EIM, but it is far

more computational expensive. As a result, we resort to EIM and use its discrete variant

DEIM in this chapter.

Besides physical and mathematical model reduction techniques, statistical model re-

duction techniques relying on machine learning (often referred to as meta-modeling) have

been investigated in particular in the chemometrics community. The idea is to fit a statis-

tical model that is able to predict the output of a nonlinear computational model which

has complex dynamics, while being expressed with fewer parameters and being extremely

computationally efficient [128]. This statistical approach has been employed in [138] for

atria electrophysiology modeling and the work is presented in Chapter 6.

In this chapter, we apply the POD-DEIM model reduction approach for the inverse

problem of cardiac conductivity estimation. The POD approach has been used in numer-

ous fields of science and engineering such as fluid-structure interaction [14] and aero-

dynamics [23], but its practical application in electrocardiology only starts from [17]

in 2011 and [18] in 2012. Although it allows reasonable estimation of ionic model

parameters in [17] and [18], a proper technique for nonlinear approximation was not

carried out and no study on the improvement of efficiency was reported. The POD-DEIM

approach for the effective solution of the FitzHugh–Nagumo system arising in neuron

modeling—which is equivalent to the monodomain equation in 1D coupled with the

FitzHugh–Nagumo ionic model—has been investigated by Chaturantabut [29]. In that

paper it is shown that the POD-DEIM approach with both the POD and DEIM dimensions

being 30 gives good approximation to the original full-order finite difference system (in
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1D). The model parameters were fixed in that study. The present work in this Chapter

is an application of the POD-DEIM method on the parameterized monodomain model in

3D for conductivity estimation.

After a brief statement of the full-order monodomain inverse conductivity problem

(MICP) in a discrete form (Sec. 5.2), the POD-DEIM is introduced (Sec. 5.3) and applied

to solve a reduced MICP (Sec. 5.4). The reduced-order model is tested in Sec. 5.5: we

investigate both the efficiency and accuracy of the POD-DEIM approach in conductivity

estimation. A failure-and-success attribute specially for the system in electrocardiology is

reported. We obtain a rather small set of samples by sampling the parameter space based

on polar coordinates and densifying the “boundary layer” of the sample space utilizing

Gauss–Lobatto nodes. In usage of the POD-DEIM reduced order model, the computa-

tional effort can be reduced by at least 90% in conductivity estimation.

5.2 The full-order monodomain inverse conductivity problem

The bidomain model—popular for its physiological foundation—is widely used to simu-

late action potential spreading in the myocardium, as has been used in Chapter 3. How-

ever, simulations of the cardiac electrical activity with the bidomain model require high

computational cost, since the model takes the form of a degenerate system of PDEs and

the mesh and time constraints are significant in order to simulate fast potential variation.

As introduced in Sec. 2.3, the monodomain model as a heuristic approximation of the

bidomain model has been proposed to provide computational improvements.

Although the assumption on its derivation lacks physiological foundation, the mon-

odomain model has been drastically used in clinic-oriented simulations [10, 67, 135].

One reason is that it requires significantly less computational efforts than the bidomain

model. Another motivation to the interest in the monodomain model is that, as an ap-

proximation of the bidomain model, it may serve as a powerful auxiliary tool to efficiently

solve the bidomain model [56,57,86]. Most importantly, a comparison between the bido-

main and monodomain models in [50] showed a strong qualitative agreement between
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Figure 5.1: The reconstruction of potential by the monodomain solver, computed with the
estimated conductivity σm = [1.704, 0.3551], gives an excellent matching with the bidomain
solution, which is computed with [σil, σel, σit, σet] = [3.5, 3, 0.3, 1.8].

the two models and reported a quantitative difference with 5 to 10 % relative error on the

activation time. It is further concluded in [20] that the discrepancy between the models

at the continuous level is quite small: of order 1% or even below in terms of activation

time relative error. The work in [20] also allows to estimate the discretization error so

providing necessary grid resolution in order to run accurate enough simulation.

We resort to the monodomain model in this chapter for the cardiac conductivity esti-

mation, following the potential oriented line. Namely, we speculate that an appropriate

estimate of the conductivity tensor σm based on our variational procedure can still lead

to an accurate reconstruction of the potential propagation. This is demonstrated by the

numerical result shown in Fig. 5.1, where the bidomain solution u was computed on a

slab mesh with [σil, σel, σit, σet] = [3.5, 3, 0.3, 1.8] and was used as synthetic measure to

estimate the conductivity σm in the monodomain solver. The reconstruction of potential

by the monodomain solver with the estimated conductivity σm = [1.704, 0.3551] gives an

excellent matching with the bidomain solution.

In the following, we describe the time and space discretization schemes for the mon-

odomain model, and state the monodomain inverse conductivity problem in a discrete

version. As a starting point of thorough studies on reduced order modeling for conduc-



Chapter 5. Reduced-order modeling for cardiac conductivity estimation 79

tivity estimation, here we simply use the Rogers–McCulloch ionic model.

Time and space discretization

Let us recall the monodomain equation coupled with the Rogers–McCulloch ionic model



βCm
∂u

∂t
−∇ · (σm∇u) + βIion(u,w) = Iapp in Q

∂w

∂t
+ g(u,w) = 0 in Q

σm∇u · n = 0 on ∂Q

u(x, 0) = u0(x) w(x, 0) = w0(x) in Ω.

(5.1)

We apply the same discretization techniques as in Sec. 3.3.1 to the monodomain system,

and in particular a second-order time extrapolation is employed in nonlinearity. The

notations here are similar as before so we will not redefine them. Specially, bold symbols

will denote the spacial variables in discrete form. The gating variable wl+1 in the ionic

model at time t = tl+1 is updated by

wl+1 −wl

∆t
= −g(ũl+1,wl+1) (5.2)

where ũl+1 = 2ul − ul−1 is the second-order time extrapolation of ul+1, g(·) is evaluated

point-wise. The algebraic monodomain system reads

Amul+1 = bl+1 (5.3)

where Am = βCm
α0
∆tM + Sm, and the right-hand side is evaluated as

bl+1 =
[
〈I l+1

app − βIion(ũl+1, wl+1), φj〉L2

]
+ βCmM

2∑
i=1

αi
∆t

ul+1−i. (5.4)

For computational efficiency and for the convenience to apply model reduction which

we will see in Sec. 5.4, we approximate the nonlinear function Iion and the stimulus Iapp
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piecewise linearly. Under this assumption, the right hand side is evaluated as

bl+1 = M(Il+1
app − βIion(ũl+1,wl+1)) + βCmM

2∑
i=1

αi
∆t

ul+1−i. (5.5)

In this computation, Iion(ũl+1,wl+1) is a point-wise evaluation. We state that this point-

wise assumption would highly improve computational efficiency without much lose of

accuracy as compared with the exact finite element approximation in (5.4). This will be

confirmed in Sec. 5.5.3.

The inverse problem

As we start, we assume that the conductivities σml and σmt are constant. A further study

will be carried out in the future assuming the conductivities are piece-wise constant. The

monodomain inverse conductivity problem (MICP) is formulated as: find σ = [σml, σmt] ∈

[mb,Mb]
2 that minimizes the functional

Jm(σ) =
1

2

L∑
l=1

(ul − ulmeas)
TXsite(u

l − ulmeas)χ
l
snap +

α

2
R(σ) (5.6)

subject to the monodomain system (5.3) coupled with (5.2). Here mb and Mb (mb < Mb)

are positive constants. We assume that the measurement sites are always grid points and

Xsite ∈ Rn×n is the matrix recording observation sites. The off-diagonal entries in Xsite

are zeros; in the diagonal, [Xsite]ii = 1 if the spatial grid xi is an observation site and

0 otherwise. The snapshot marker χlsnap equals 1 if tl is an observation moment and 0

otherwise.

To tackle the constrained minimization problem, we introduce the Lagrange multipli-

ers ql and rl, l ∈ {1, · · · , L}, define the Lagrangian function

Lm = Jm

−
L∑
l=1

(ql)T (Amul −MIlapp + βMIion(ũl,wl)− βCmM
2∑
i=1

αi
∆t

ul−i)
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−
L∑
l=1

(rl)T (
wl −wl−1

∆t
+ g(ũl,wl)), (5.7)

and then differentiate with respect to the state variables ul and wl to get the adjoint

system. The adjoint algebraic form of the monodomain system (5.3) reads

Amql = dl (5.8)

where the right hand side dl is obtained by

dl = β(Mql+2) ◦ ∂uIion(ũl+2,wl+2)− 2β(Mql+1) ◦ ∂uIion(ũl+1,wl+1)

− ∂ugrl + Xsite(u
l − ulmeas)χ

l
snap + βCmM

2∑
i=1

αi
∆t

ql+i.

In particular qL+1 = 0 = qL+2. The operation ◦ means entry-wise product. The dual

gating variable rl is updated by

rl+1 − rl

∆t
= ∂wgr

l + β(Mqlr) ◦ ∂wIion(ũl) (5.9)

In particular rL+1 = 0 = rL+2.

Then based on the adjoint equations we get the derivatives of Jm as follows

DJm

Dσml
= −

L∑
l=1

(ql)TSlu
l
r +

α

2

∂R
∂σml

(5.10)

DJm

Dσmt
= −

L∑
l=1

(ql)TStu
l
r +

α

2

∂R
∂σmt

. (5.11)

Here Sl and St are stiffness matrices with entries

[Sl]jk =

∫
Ω

ala
T
l ∇φk · ∇φjdx, [St]jk =

∫
Ω

(I− ala
T
l )∇φk · ∇φjdx.

Notice that the stiffness matrix Sm actually can be computed as Sm = σmlSl + σmtSt.
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The MICP can be solved by the BFGS optimization approach as stated in Chapter 3.

However, the computation is intensive since each “query” of the forward system or its ad-

joint counterpart is performed in the full-order n by solving large-scale algebraic systems

and computing high-dimensional matrix-vector operations. Moreover, if later we would

like to extend the application to a pathological tissue where a scar inside has different

(anomalous) values of conductivities, the number of “queries” will substantially increase

due to the increase of the total number of parameters. This has been demonstrated in

Sec. 3.4.2: Test 6. Altogether, in the current scenario, the MICP is too computation-

ally expensive to be applied in clinic. This motivates us to work on a model reduction

investigation with the aim of reducing the computational cost.

5.3 Model order reduction for nonlinear systems

We consider in general the discrete system of a parameterized nonlinear steady differen-

tial equation

Aτy(τ) = F(y(τ); τ) (5.12)

where τ denotes the model parameter of interest in an inverse problem and is contained

in a closed bounded domainD. In case of working with an unsteady differential equation,

the time t can also be treated as a parameter except for the physical parameters in the

system. To simplify the notations, we consider the steady case in the description below.

We assume that the matrix Aτ ∈ Rn×n has affine dependence on τ , and F(·) is a nonlinear

function evaluated at the solution y(τ) = [y1(τ), · · · , yn(τ)]T ∈ Rn componentwise, i.e.

F(y(τ); τ) = [F (y1(τ); τ), · · · , F (yn(τ); τ)]T

with F (·) being a nonlinear scalar-valued function. This componentwise-evaluation form

on the nonlinearity is natural in the context of finite difference (FD) discretized sys-

tems, and often in the finite element (FE) discretized systems as well for computational

efficiency. In particular for a linear FE discretization, the componentwise evaluation cor-
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responds to a piecewise linear approximation on the nonlinear term.

The dimension n of the full-order system (5.12), which reflects the number of degrees

of freedom (DOF) in the finite elements, is typically very large for high-fidelity simulation.

Therefore, simply solving (5.12) can be computationally demanding on execution time

and memory storage.

On the other hand, even though the trajectory of solution y(τ) along parameter τ

belongs to the high dimensional space Rn, the intrinsic structure of the solution manifold

could features a very low dimension. We desire to construct a small set of “educated”

basis functions {ϕi}Ni=1 (known as reduced basis), which should include features of the

solution and therefore depends on the current problem, such that the solution y(τ) can

be well approximated in the space span{ϕi} (called reduced space). Namely, the solution

can be represented as

y(τ) =
N∑
i=1

[yr(τ)]iϕi

where yr(τ) is the vector of coordinates in the reduced space of dimension N (N � n),

and without lose of generality {ϕi} is orthonormal. Let

Zy = [ϕ1, · · · ,ϕN ] ∈ Rn×N

be the matrix containing the reduced basis (RB), we can rewrite the solution representa-

tion as

y(τ) = Zyyr(τ). (5.13)

Mathematical model reduction aims at efficiently solving (5.12) in the reduced space

span{ϕi} by a Galerkin projection process. This can be achieved by plugging (5.13) into

the full-order model (FOM) (5.12) and projecting (5.12) onto Zy. A reduced order model

(ROM) is then obtained

ZTy AτZy︸ ︷︷ ︸
Ar

yr(τ) = ZTy F(Zyyr(τ); τ). (5.14)
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Notice that Ar = ZTy AτZy ∈ RN×N is a dense matrix but in general it features a very

small size, hence the linear system (5.14) can be tackled with a direct solver. We simply

omit the subscript τ here since Ar has affine parameter dependence.

The “educated” RB is constructed from the FOM (5.12) which is in large scale, thus

the computation is usually expensive. This leads to approaches based on the offline-online

paradigm. In the offline phase, accurate and computationally intensive simulations are

performed to construct the RB. In the online phase, the ROM (5.14) is solved many times

for different parameter values with remarkably lower computational costs than the FOM,

by taking advantage of the “educated” basis.

Techniques for RB construction start from a sampling on the parameter τ . We intro-

duce here a sample

S = {τ1, · · · , τs}

consisting of s distinct parameter points in D. Provided that the sample is proper enough,

the solutions {y(τi)} corresponding to the sample parameters can well represent the so-

lution space. A RB is constructed to guarantee that for each τi ∈ S the error of approx-

imating y(τi) in the reduced space is controlled by a desired tolerance. We follow the

POD approach, which usually constructs an “optimal" reduced basis as specified below.

5.3.1 Proper Orthogonal Decomposition (POD)

Given the sample S of parameters, we solve the FOM (5.12) for each parameter in S.

The solutions are called snapshots and denoted by {yi}mi=1 (m = s in current setting).

The Proper Orthogonal Decomposition (POD) approach seeks an orthonormal POD basis

{ϕ1, · · · ,ϕN} (a set of POD modes) in Rn of a given rank N (N << m) that can best

approximate the training space Xtrn = span{yi}mi=1. The “best” means the POD basis

solves the following minimizing problem

min
{ψi}

m∑
j=1

||yj −
N∑
i=1

〈yj ,ψi〉ψi||2 s.t. 〈ψi,ψj〉 = δij .
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Here
N∑
i=1
〈yj ,ψi〉ψi is the projection of the snapshot yj into the reduced space span{ψi}Ni=1.

If we gather the snapshots into the so called snapshot matrix Y = [y1, · · · ,ym] ∈ Rn×m

and denote the reduced basis matrix by Ψ = [ψ1, · · · ,ψN ] ∈ Rn×N , the minimizing

problem can be rewritten as

min
Ψ
||Y −ΨΨTY||2F s.t. ΨTΨ = IN .

We denote still by Zy the matrix of the optimal basis [ϕ1, · · · ,ϕN ] ∈ Rn×N , classical result

on low-rank approximation [87] shows that ZyZTy Y should be given by the truncated

singular value decomposition (SVD) of Y. To be specific, let

Y = UΣVT

be the SVD of Y, where U = [u1, · · · ,un] ∈ Rn×n and V = [v1, · · · ,vn] ∈ Rm×m are

orthogonal matrices and Σ ∈ Rn×m has zero entries everywhere except Σii = si with

s1 ≥ s2 ≥ · · · ≥ sd ≥ 0 (d = min{m,n}). The numbers si are called the singular

values of Y and the columns of U (V) are called the left (right) singular vectors. We can

decompose the matrices as

UΣVT =

[
UN Un−N

]ΣN 0

0 Σr


 VT

N

VT
m−N

 ,
where UN ∈ Rn×N and VN ∈ Rm×N contain the first N left and right singular vectors of

Y respectively, while Un−N ∈ Rn×(n−N) and Vm−N ∈ Rm×(m−N) contain the remaining.

The matrix ΣN ∈ RN×N is diagonal. The truncated SVD of Y of length N is

YN = UNΣNVT
N ,

which solves the minimizing problem as ZyZTy Y = YN . This gives ZTy Y = ZTy YN and
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leads to the solution

Zy = UN ,

since Y = UNΣNVT
N + Un−NΣn−NVT

n−N and UT
NUn−N = 0. In summary, the POD

modes are the first N left singular vectors of the snapshot matrix. We also have the error

formula given by the low-rank approximation

m∑
j=1

||yj −
N∑
i=1

〈yj ,ϕi〉ϕi||2 =
d∑

i=N+1

s2
i . (5.15)

In practice, we usually have n >> m, the correlation matrix YTY ∈ Rm×m is in small

size and its eigen-pairs are given by (s2
i ,vi). To compute the POD modes, we can compute

the eigen-decomposition of YTY first and then provide

ϕi = ui =
1

si
Yvi i = 1, · · · , N. (5.16)

If n << m in a special case, the correlation matrix YYT should be considered instead,

and the POD modes are the eigenvectors of YYT .

Alternatively, an efficient way for computing the POD modes through snapshot matrix

Y is to first compute the thin QR factorization of Y as Y = QR , and then compute the

SVD of the small matrix R ∈ Rm×m as R = URSRVT
R. Finally the POD modes can be

extracted in order from the columns of QUR.

Snapshots selection / Sampling

In practice, it is often easier to capture the fluctuations if we subtract the mean ȳ =

1
m

m∑
i=1

yi from each snapshot. That is, we compute the POD basis Zy from the shifted

snapshot matrix Y = [y1 − ȳ, · · · ,ym − ȳ]. In this case, the full-order solution will be

reconstructed as y(τ) = ȳ + Zyyr(τ). Without lose of generality, we assume later that

the snapshot mean is zero.

In constructing the POD basis, the choice of parameters over which snapshots are
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computed can greatly affect the quality of the resulting ROM. This is because the scope of

snapshots determines the domain of effectiveness of the reduced basis. Sampling is thus

a crucial issue that needs to be addressed in reduced basis construction.

Standard sampling schemes used in the offline phase include uniform sampling, ran-

dom sampling, the Latin hypercube sampling (LHS) method [82], and the centroidal

voronoi tessellation (CVT) sampling method [42]. When sampling a high-dimensional

parameter space, which is obviously challenging, the greedy sampling method was used

[24, 68, 110]. The key feature of greedy sampling is to adaptively select a parameter at

which the estimate of the solution error in the ROM is maximized. The error is either

estimated by a rigorous and effective a posteriori error estimator [68, 110] or by solving

a model-constrained optimization problem [24]. The previous one is applicable only to a

limited class of problems where an error estimator is achievable.

For optimal control applications, several online adaptive sampling procedures have

been proposed to let the sampling procedure take into account the optimization trajec-

tory. The Trust Region POD [4] approach proposed by Arian et al. constructs successively

improved POD bases according to parameter values (control values) updated during op-

timization. The updating procedure was embedded with the trust region method which

determines whether after an optimization step the POD basis should be updated. Ku-

nisch and Volkwein introduced the Optimality System POD (OS-POD, [74]) which also

successively updates the POD basis, but the main feature lies in the fact that the associ-

ated POD-reduced system is computed from the trajectory corresponding to the optimal

control value. This was achieved by adding the full-order system as a constraint in the

reduced optimization problem. Carlberg and Farhat proposed a goal-oriented framework

called Compact POD [27] using snapshots of the full-order model solutions as well as

their derivatives (known as sensitivities) with respect to the model parameters of interest.

That is [
y(τ1),

dy

dτ
(τ1), · · · ,y(τs),

dy

dτ
(τs)

]
. (5.17)

Remark. In the field of statistics, the POD is also called the Principal component analysis
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(PCA). Descriptions concerning the PCA date from 1901 given by Karl Pearson [102]. It

is a statistical tool mostly used in exploratory data analysis and dimensionality reduction.

In the PCA terminology, data are gathered in the observation matrix Y ∈ Rn×m usually

with the columns denoting m random variables and the rows denoting n observations on

the random variables. This matrix corresponds to the transpose of the snapshot matrix

that we have mentioned in describing POD. The purpose of PCA is to identify the intrin-

sic structure behind a set of multivariate interrelated observations in order to obtain a

compact description of it. This is achieved by transforming the observations to a set of

values of linearly uncorrelated variables called principal components, which are orthogo-

nal and ordered so that the first few have the largest possible variances. These principal

components are given by the eigenvectors of the covariance matrix.

5.3.2 Discrete Empirical Interpolation Method (DEIM)

In the reduced system (5.14) obtained by the POD projection, we have to evaluate the

nonlinear term

n(τ) = ZTy︸︷︷︸
N×n

F(Zyyr(τ); τ)︸ ︷︷ ︸
n×1

. (5.18)

This requires a matrix-vector multiplication Zyyr(τ) for reconstructing the full-order so-

lution, an evaluation of the nonlinearity F(·), and a matrix-vector multiplication ZTy F(·)

for projection. All these operations have computational complexity depending on the size

n of the full-order system (5.12), which is possibly in the magnitude of hundred thou-

sand. Therefore, solving the ROM (5.14) is almost as expensive as solving the full one.

This inefficiency exists as well while solving the adjoint system of (5.14).

The complexity of evaluating (5.18) can be made independent of the full order size n

by using the Discrete Empirical Interpolation Method (DEIM). The DEIM provides an in-

terpolation approximation for the nonlinear term F(Zyyr(τ); τ) (simply denoted as f(τ))

by a projection onto a low-dimensional subspace. For this purpose, we require a subspace

with basis {z1, · · · , zM} such that f(τ) is approximately contained in span{z1, · · · , zM}
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for the arguments τ of interest. Typically, one can sample τ , take snapshots of f(τ) com-

puted from the FOM with the samples, and then apply the POD on the snapshots to extract

a projection basis {z1, · · · , zM}. We need that M << n to guarantee a computationally

efficient DEIM approximation of f .

Let Zf = [z1, · · · , zM ] ∈ Rn×M , the approximation of f is in the form

f ≈ f̂ = Zfc.

To determine the coefficient vector c, the DEIM optimally extracts M distinguished rows

from the over-determined system f = Zfc. Specifically, the DEIM computes row indices

p1, · · · , pM in {1, ..., n} and requires:

[f ]pi = [f̂ ]pi . (5.19)

If we denote P = [ep1 , · · · , epM ] ∈ Rn×M with epi being the pi-th unit vector in Rn, the

coefficient vector c is solved from above interpolation property by

PT f = (PTZf)c

while PTZf is nonsingular. Finally the approximation of f writes

f ≈ f̂ = Zfc = Zf(P
TZf)

−1PT f = Zf(P
TZf)

−1F(PTZyyr(τ); τ). (5.20)

The last equality in (5.20) follows from the assumption that the function F(·) evaluates

component-wise at its input vector. The nonlinear term mentioned in (5.18) can then be

efficiently computed through

n(τ) ≈ ZTy Zf(P
TZf)

−1︸ ︷︷ ︸
N×M

F(PTZyyr(τ); τ)︸ ︷︷ ︸
M×1

. (5.21)

Notice that the matrices ZTy Zf(P
TZf)

−1 ∈ RN×M and PTZy ∈ RM×N are in low dimen-
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Algorithm 2 DEIM [30]

Input: {zl}Ml=1 ⊆ Rn linear independent
Output: indices p = [p1, · · · , pM ]T ∈ RM , M as the inverse of PTZf

1: [|ρ|, p1] = max{|z1|}
2: Zf ← [z1], P← [ep1 ], p← [p1], M← ρ−1

3: for l = 2, · · · ,M do
4: Solve (PTZf)c = PT zl
5: r = zl − Zfc
6: [|ρ|, pl] = max{|r|}
7: aT = eTplZf

8:

M←

 I −c

0 1

 M 0

−ρ−1aTM ρ−1


9: Zf ← [Zf zl], P← [P epl ], p← [pT pl]

T

10: end for

sions (usually in a magnitude of ten) and they can be precomputed so that afterwards

the computational complexity of evaluating n(τ) is in the order of only O(MN).

The interpolation indices p1, · · · , pM are selected inductively from the projection basis

{z1, · · · , zM} by the DEIM algorithm (Algorithm 2). At each iteration, an interpolation

index is selected to limit growth of the error bound of the approximation f̂ . In particular,

the first index p1 is the index on which z1 has the largest magnitude; each of the remain-

ing indices pl is the index on which the residual of approximating zl by the first l−1 basis

vectors {z1, · · · , zl−1} has the largest magnitude.

It is demonstrated that the DEIM algorithm is well-defined ( [30], lem. 2.2.2): PTZf

is non-singular in each iteration of Algorithm 2 and the interpolation indices are non-

repeated. The selection of the interpolation points depends on the basis {zi}Mi=1, however,

once the set of DEIM interpolation indices {pi}Mi=1 is determined from {zi}Mi=1, the DEIM

approximation is independent of the choice of basis spanning the space Range(Zf) [30].
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5.4 POD-DEIM for the inverse conductivity problem

In this section, we apply the POD-DEIM approach to the monodomain inverse conductiv-

ity problem.

5.4.1 POD-DEIM on the monodomain model

The POD basis

In construction of reduced basis for the parameterized monodomain model, two ways

can be followed as mentioned in [17]. One is to store a set of solutions of the full-order

model computed at different instants in time with a set of different parameters in a given

sample space, then collect all these solutions to build a unique snapshot matrix, upon

which the POD basis is finally built. In other words, we treat the conductivity parameter

σ and also the time t as parameters of the model. Another way for the reduced basis

construction is to build multiple POD bases instead of a unique one. Each POD basis

is constructed from the snapshots of solutions computed with a particular conductivity

parameter, which we call generating parameter and denote by σgen. In a generic use of

the bases for the monodomain model with a given parameter σgiv, the POD basis whose

generating parameter is the closest to σgiv among all will be selected.

We point out that the dynamic of the transmembrane potential u is not quite smooth

in time, due to the wavefront propagation or the upstroke (depolarization) spreading.

Therefore, the singular values of the snapshot matrix of u do not decay fast. We con-

firm this by a numerical experiment shown in Fig. 5.2 (left). In this test, the time step

∆t = 0.05 ms and the full-order model dimension is 24272. We collected snapshots of

the transmembrane potential u (and the ionic current Iion) computed with a fixed con-

ductivity parameter σ = [3, 1] for 500 time steps. The feature of slow decay shown by

Fig. 5.2 (left) is exceptional as compared with classical problems, in which singular val-

ues of a snapshot matrix usually decrease fast hence few POD modes are enough to give

an accurate approximation of the solution considered. For example, the singular val-
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Figure 5.2: Left: singular values of snapshot matrices of the transmembrane potential u and
ionic current Iion generated by one parameter. Right: singular values of a snapshot matrix of
the fluid velocity in the Navier–Stokes equation generated by multiple parameters [14].

ues of a snapshot matrix of the fluid velocity, computed in a fluid-structure interaction

problem [14] with different values of the Young modulus at different time instants, are

displayed in Fig. 5.2 right. In this singular-value plot, there is an obvious kink which does

not exist in Fig. 5.2 left.

Fig. 5.2 (left) shows that the singular value si of snapshots of the transmembrane po-

tential relative to the leading singular value s1 decays to 10−3 (red dash line in Fig. 5.2)

when i is 49 (113 for the ionic current). Referring to the error formula (5.15) this corre-

sponds to a “cut” of POD modes where the relative approximation error has a magnitude

of 10−3, since the error is the sum of squares of insignificant si’s. It suggests that u (Iion)

can still be well approximated by a POD basis of dimension less than 50 (120), if the

model parameter is close to the generating parameter of the POD basis. We also observe

that the ionic current Iion features even more complex nonlinearity than the transmem-

brane potential u, since more POD modes are needed for approximating the ionic current

with the same accuracy as approximating the transmembrane potential.

We stress here that the way to build a unique POD basis actually provides worthless

results. This can be identified from Fig. 5.3, in which the leading 500 singular values of

snapshots generated by four different conductivity parameters are reported. The relative

singular value si/s1 of snapshots of the transmembrane u decays to 10−3 (red dash line

in Fig. 5.3) when i is 136 (399 for the ionic current). Compared with the one-parameter

case shown in Fig. 5.2, a combination of snapshots from different parameters does not
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Figure 5.3: Singular values of snapshot matrices of u and Iion generated by four parameters.

reduce the number of POD modes necessary for accurate POD approximation.

Snapshots of sensitivities

It is also interesting to investigate the effectiveness of adding snapshots of sensitivities

in POD basis construction aimed at improving approximation accuracy. For this purpose,

we describe below the sensitivity equation of the monodomain model.

Applying differentiation with respect to σml on the monodomain model ((5.3) and

(5.5) coupled with (5.2)), we have

∂Am

∂σml
ul+1 + Am

∂ul+1

∂σml
=
∂bl+1

∂σml
. (5.22)

If we detail those derivatives involved, the sensitivity
∂ul+1

∂σml
can then be solved from

Am
∂ul+1

∂σml
= βCmM

2∑
i=1

αi
∆t

∂ul+1−i

∂σml
− Slu

l+1

− βM[∂uIion(ũl+1,wl+1) ◦ ∂ũl+1

∂σml
+ ∂wIion(ũl+1,wl+1) ◦ ∂wl+1

∂σml
], (5.23)
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where
∂wl+1

∂σml
is updated by

∂wl+1

∂σml
− ∂wl

∂σml

∆t
+ ∂ug

∂ũl+1

∂σml
+ ∂wg

∂wl+1

∂σml
= 0. (5.24)

The sensitivity
∂ul+1

∂σmt
is solved very similarly. The sensitivity of the ionic current, stated

in the continuous form without lose of generality, can be evaluated through

∂Iion

∂σmk
= ∂uIion

∂u

∂σmk
+ ∂wIion

∂w

∂σmk

where k stands for l or t.

Application of DEIM

To start, we assume that the reduced bases for the transmembrane potential u and the

ionic current Iion have been built at hand as Zu and Zion respectively. If we project the

discrete monodomain system (5.3, 5.5) onto the reduced space Zu , we obtain



ZTu AmZuul+1
r = bl+1

r l ∈ {0, 1, · · · , L− 1}

with bl+1
r = ZTu bl+1 = ZTu MIl+1

app︸ ︷︷ ︸
N×1

+βCm ZTu MZu︸ ︷︷ ︸
N×N

2∑
i=1

αi
∆t ul+1−i

r︸ ︷︷ ︸
N×1

−β ZTu M︸ ︷︷ ︸
N×n

Iion(Zuũl+1
r ,wl+1)︸ ︷︷ ︸
n×1

(5.25)

where ul+1
r is the solution at time t = tl+1 in the reduced space and ũl+1

r is its second-

order extrapolation.

As pointed out previously, although the system is in a reduced form, for the presence

of the nonlinear terms the computational cost still depends on the number of degrees

of freedom n of the full-order system. To be specific, the complexity in computing the

nonlinear term Iion in the right hand side is O(n), and the complexity in multiplying Iion

by ZuM ∈ RN×n is O(Nn). As discussed in Sec. 5.3.2, the complexity mainly results

from the fact that Iion(Zuũl+1
r ,wl+1) cannot be precomputed, since it depends nonlin-
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early on the full-order vector Zuũl+1
r and wl+1. We will apply DEIM approximation to

Iion(Zuũl+1
r ,wl+1) in the following.

We use the POD basis Zion ∈ Rn×M of snapshots of Iion as an input basis for the DEIM

algorithm, where M is the number of POD modes. The DEIM algorithm generates inter-

polation indices p = [p1, · · · , pM ]T for constructing the extraction matrix P. The DEIM

approximation is then

Iion(Zuũl+1
r ,wl+1) ≈ Zion(PTZion)−1︸ ︷︷ ︸

n×M

Iion(PTZuũl+1
r︸ ︷︷ ︸

M×1

, PTwl+1︸ ︷︷ ︸
M×1

). (5.26)

If we set

Ar = ZTu AmZu ∈ RN×N , Il+1
r = ZTu MIl+1

app ∈ RN×1, Mu = ZTu MZu ∈ RN×N ,

Miu = ZTu M︸ ︷︷ ︸
N×n

Zion(PTZion)−1︸ ︷︷ ︸
n×M

∈ RN×M , U = PTZu ∈ RM×N , wl+1
r = PTwl+1 ∈ RM×1,

the reduced monodomain system is then formulated as


Aru

l+1
r = Il+1

r + βCmMu

2∑
i=1

αi
∆tu

l+1−i
r − βMiuIion(Uũl+1

r , wl+1
r )

wl+1
r −wl

r

∆t
= −g(Uũl+1

r ,wl+1
r ).

(5.27)

5.4.2 The reduced monodomain inverse conductivity problem

After the monodomain model reduction, we can then formulate the reduced MICP as:

find σ = [σml, σmt] ∈ [mb,Mb]
2 that minimizes the functional

Jr(σ) =
1

2

L∑
l=1

(Zuulr − ulmeas)
TXsite(Zuulr − ulmeas)χ

l
snap +

α

2
R(σ) (5.28)
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subject to the reduced monodomain system (5.27). In order to obtain linear algebra

operations of complexity only O(N) in computing the cost function Jr, we can rewrite

Jr(σ) =
1

2

L∑
l=1

((ulr)TXuulr − 2(ûlmeas)
Tulr + ||̂̂ulmeas||2)χlsnap +

α

2
R(σ) (5.29)

where Xu = ZTuXsiteZu ∈ RN×N . The projected measurements ûlmeas = ZTuXsiteu
l
meas ∈

RN×1 and ̂̂ulmeas = Xsiteu
l
meas ∈ Rn×1 can be precomputed.

We still follow the Lagrange argument to acquire the adjoint system. Let us denote

u1···L
r =


u1

r

...

uLr

 w1···L
r =


w1

r

...

wL
r

 q1···L
r =


q1

r

...

uLq

 r1···L
r =


r1
r

...

rLr


where q1···L

r and r1···L
r are the Lagrange multipliers. We define the Lagrangian functional

Lr(u
1···L
r ,w1···L

r ,σ,q1···L
r , r1···L

r ) = Jr(σ)

−
L∑
l=1

(qlr)T (Aru
l
r − Ilr − βCmMu

2∑
i=1

αi
∆t

ul−ir + βMiuIion(Uũlr, wl
r))

−
L∑
l=1

(rlr)T (
wl

r −wl−1
r

∆t
+ g(Uũlr,w

l
r))

(5.30)

The adjoint form of the reduced discretized monodomain system can be constructed by

setting
∂Lr

∂ulr
= 0 for l = 1, · · · , L. It reads

ZTu AmZuqlr = dlr l ∈ {1, · · · , L} (5.31)

with

dlr = βUT {MT
iuql+2

r } ◦ ∂uIion(Uũl+2
r ,wl+2

r )− 2βUT {MT
iuql+1

r } ◦ ∂uIion(Uũl+1
r ,wl+1

r )

− ∂ugUT r̃lr + (Xuulr − ûlmeas)χ
l
snap + βCmMu

2∑
i=1

αi
∆t

ql+ir .
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Algorithm 3 Optimization-POD-DEIM

Input: initial guess σ0, POD basis {Ziu}si=1 and {Ziion}si=1, POD bases generating param-
eters {σigen}si=1

Output: estimated conductivity values σ
1: σ ← σ0

2: k ← 0, i0 ← −1
3: while k < kmax and not converged do
4: Search i∗ = arg min

1≤j≤s
||σ − σjgen||

5: if (i∗ 6= i0) then
6: Import the POD basis Zi∗u and Zi∗ion

7: i0 ← i∗
8: end if
9: Solve ur

1···L with σ from t1 to tL, using bases Zi∗u and Zi∗ion

10: Compute the cost function value Jr(σ)
11: Solve qr

1···L with σ from tL to t1, using bases Zi∗u and Zi∗ion

12: Compute the gradient ∇Jr(σ) of Jr using (5.33)–(5.34)
13: Update the inverse Hessian approximation and compute the search direction

vk (BFGS [98])
14: Set σ = σ + γkv

k where γk ∈ (0,∞) is computed from an Armijo line search
15: k ← k + 1
16: end while

The dual gating variable rlr is updated by the equation below derived from setting
∂Lr

∂wl
r

=

0 for l = 1, · · · , L:

rl+1
r − rlr

∆t
= ∂wgr

l
r + β{MT

iuqlr} ◦ ∂wIion(Uũlr,w
l
r). (5.32)

In particular for the superscripts exceeding L, we have qL+1
r = 0 = qL+2

r and rL+1
r = 0 =

rL+2
r .

Based on the adjoint equations we then get the derivatives of Jr

DJr

Dσml
= −

L∑
l=1

(qlr)TSluulr +
α

2

∂R
∂σml

(5.33)

DJr

Dσmt
= −

L∑
l=1

(qlr)TStuulr +
α

2

∂R
∂σmt

(5.34)

where Slu = ZTu SlZu ∈ RN×N , Stu = ZTu StZu ∈ RN×N . Notice that Ar = ZTu AmZu =

ZTu (βCm
α0
∆tM + Sm)Zu = βCm

α0
∆tMu + σmlSlu + σmtStu.
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The reduced inverse conductivity problem is eventually solved by Algorithm 3. In

particular, the norm || · || in step 4 of Algorithm 3 could be customized.

5.5 Numerical results

5.5.1 POD-DEIM on the forward problem

To investigate the performance of the POD-DEIM model reduction technique on the mon-

odomain system, we solved the ROM on a slab Ω = [0, 5]×[0, 5]×[0, 0.5] ⊆ R3 with 24272

mesh nodes. In each simulation, five stimuli of Iapp = 105 µA/cm3 were applied with four

at the corners and one at the center of the domain for a duration of 1 ms. We setted the

fibers to be constantly along the x-axis. The snapshots for POD basis construction were

taken every 0.05 ms with a duration of 25 ms.

In Fig. 5.4, we plot the first six POD modes of the transmembrane potential con-

structed from snapshots of u that were computed with conductivity parameter σgen =

[3, 2]. The parameter chosen has σml/σmt close to one, which makes the tissue almost

isotropic. This explains why the wave front propagated from the center of the slab tissue

is kind of circular. We also plot in Fig. 5.5 the leading POD modes of the transmembrane

potential constructed with σgen = [4, 0.1]. The wave front in this case is kind of elliptic

since the ratio σml/σmt is considerably greater than one. The corresponding POD modes

of the ionic current Iion constructed with σgen = [3, 2] and σgen = [4, 0.1] are plotted in

Fig. 5.6.

The comparison between Fig. 5.4 and 5.5 suggests that the POD modes constructed

with different conductivity parameters are very weakly correlated. Therefore, the ap-

proach of extracting POD modes from combined snapshots computed with different pa-

rameters can not achieve enough dimension reduction, as shown by Fig. 5.3.

To check the stability and accuracy of reduced order modeling, we took a uniform

sampling on the conductivity parameters: 25 parameter values were generated over the

domain [1, 5] × [0, 2]. For each parameter, a POD basis of the transmembrane potential
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Figure 5.4: POD modes of the transmembrane potential constructed with σgen = [3, 2].
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Figure 5.5: POD modes of the transmembrane potential constructed with σgen = [4, 0.1].
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POD mode 1 POD mode 2 POD mode 3

Iion

POD mode 1 POD mode 2 POD mode 3
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Figure 5.6: Top: POD modes of the ionic current constructed with σgen = [3, 2]. Bottom:
POD modes of the ionic current constructed with σgen = [4, 0.1].

  
  

Figure 5.7: Errors of u by POD-DEIM approximation. Left: errors w.r.t. the dimension of
the POD basis, with dim(Zu) ranging from 34 to 46 and dim(Zion) ranging from 82 to 106 ;
Right: errors on 16× 16 different conductivity parameters, with fixed POD-basis dimensions:
dim(Zu) = 45 and dim(Zion) = 100.
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(ionic current) was constructed offline from snapshots computed with that parameter. In

this way, 25 POD bases were available for importing during online computation of the

reduced-order monodomain model.

Fig. 5.7 reports the relative error on the the transmembrane potential computed by

the POD-DEIM approach. The errors in Fig. 5.7 (left) are with respect to the dimension

of the POD basis, with dim(Zu) ranging from 34 to 46 and dim(Zion) ranging from 82 to

106. The test conductivity parameter is σ = [2.6, 1.05]. We observe that the POD-DEIM

method provides stable and accurate approximation when the POD basis dimension is

around 40 for u and 90 for Iion.

In Fig. 5.7 (right) we plot the errors on 16 × 16 different conductivity parameters,

with fixed POD-basis dimensions: dim(Zu) = 45 and dim(Zion) = 100. We observe that

60.55% of the parameters in this test lead errors below 0.005, 21.48% of them lead errors

greater than 0.01 and they are mainly associated with conductivities at the boundary of

the sample space. These errors indicate that a uniform sampling with 25 parameters

would be inappropriate for its use in the inverse problem of conductivity estimation, this

is confirmed by other non-reported numerical tests.

5.5.2 Domain of effectiveness (DOE) of the reduced basis

As we have mentioned in the Introduction section of Chapter 3, the monodomain model

is strongly sensitive to the ratio of the longitudinal and tangential conductivities. This

statement could be explained by a comparison of the POD modes in Fig. 5.4 and Fig. 5.5.

As σml
σmt
≈ 1 (= 1.5 for σgen in Fig. 5.4), the wavefront propagated from the center is close

to a spherical shape; while σml
σmt

>> 1 (= 40 for σgen in Fig. 5.5), the wavefront shape is

rather elliptic. We claim that the conductivity ratio σml
σmt

is the main factor upon which the

transmembrane potential and accordingly the effectiveness of a reduced basis depend.

A single reduced basis is particularly applicable or effective on a specific domain of the

parameter space, which we will call the domain of effectiveness (DOE). Therefore, we

carry out a supportive study on the domains of effectiveness of different reduced bases,
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Figure 5.8: Domains of effectiveness of different reduced bases. The errors (denoted by e)
of the ROM solutions are indicated in different colors. Green: e ≤ 0.002, cyan: 0.002 <
e ≤ 0.005, blue: e > 0.005. The parameter space is partitioned by the red dash lines using
an equi-spaced partition on the range of arctan(σmt

σml
). The POD basis generating parameter

σgen in each picture is indicated by a red point. Upperleft: σgen = [3, 1.3]; Upperright:
σgen = [1.48, 0.7]; Lowerleft: σgen = [3, 0.35]; Lowerright: σgen = [1.48, 0.2].

while each basis has a unique generating parameter σgen that is different from others in

the conductivity ratio.

Given a POD basis Zu and a test parameter σ, we measure the effectiveness of Zu at

σ by the relative error of reduced-order solution

e(σ) =

L∑
l=1

||Zuulr − ul||2

L∑
l=1

||ul||2

where ul is the full-order solution at time tl given σ and ulr is the corresponding reduced-

order solution solved with the reduced basis Zu. We study the domains of effectiveness
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of different reduced bases and plot them in Fig. 5.8. In each picture, a unique generating

parameter σgen (indicated by the red point) was used for the construction of the reduced

basis. The reduced-order simulation errors are less than 0.002 at green points, between

0.002 and 0.005 at cyan points, and greater than 0.005 at blue points. The area of our

interest is the neighbourhood containing those green points and cyan points, therefore

we consider this area as the domain of effectiveness of the associated reduced basis.

In Fig. 5.8, the parameter space is partitioned by the red dash lines using an equi-

spaced partition on the range of arctan(σmt
σml

). It is interesting to see that the domain

of effectiveness of a reduced basis is apparently confined to an angular region of its

generating parameter. The region is wide while σml and/or σmt are relatively large (as

in Fig. 5.8 upperleft and lowerleft), and it is narrow while σml and σmt are relatively

small (as in Fig. 5.8 upperright and lowerright). This study supports the claim that the

transmembrane potentials solved from the monodomain model are strongly sensitive to

the conductivity ratio and amplitude.

A natural idea to enlarge the domain of effectiveness of a reduced basis is to include

extra sensitivity snapshots in the POD basis construction. Following the idea in Compact

POD [27], we took snapshots for the transmembrane potential u as

[
u1, δl

∂u1

∂σml
, δt

∂u1

∂σmt
, · · · ,uL, δl

∂uL

∂σml
, δt

∂uL

∂σmt

]
,

where δl and δt are scaling factors applied on the sensitivity snapshots. We also took

snapshots for the ionic current Iion in a similar way. To investigate the feasibility of this

concept, we fixed a generating parameter σgen = [3, 0.35] and would like to compare the

DOE of the sensitivity-based RB with the older one shown in Fig. 5.8 lowerleft. Two sets

of scaling factors were chosen in a way such that

σgen + [δl, δt] = [3.8, 1.32] σgen + [δl, δt] = [4.2, 0.48].

Two reduced bases were generated accordingly and their DOE are plotted in Fig. 5.9.
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Figure 5.9: Domains of effectiveness of sensitivity-based reduced bases both generated by
σgen = [3, 0.35]. The left one is based on σgen + [δl, δt] = [3.8, 1.32] (marked by the red circle)
and the right one takes σgen + [δl, δt] = [4.2, 0.48] (marked by the red circle).

The ROM in this test took 100 POD modes for u and 250 for Iion which are appropriate

numbers based on our experience. From this test, we discover that adding sensitivity

snapshots is not effective for widening the DOE. In addition, the largely increased neces-

sary number of POD modes makes this idea not feasible for application in inverse problem

such as conductivity estimation.

5.5.3 POD-DEIM on the inverse problem

The measures

Considering the lose of accuracy in using the reduced-order model, we may need to

acquire more measures to maintain the stability of the inverse conductivity solver. For

this purpose, we can increase the number of measurement sites in space and the number

of snapshots in time. In the following tests, we used 100× 100 measurement sites on the

tissue surface, which is achievable in experiments that we are carrying out with Professor

Flavio Fenton at Georgia Institute of Technology. We took snapshot for a duration of

T = 30 ms.

The DEIM approximation for nonlinearity was applied under the assumption that the

nonlinear term Iion was evaluated pointwise in the full order, which is equivalent to a

piece-wise linear finite element approximation. We state that this assumption greatly im-
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t = 14 ms t = 28 ms

Figure 5.10: Row 1: u computed with exact finite element approximation on the nonlinear
term Iion; Row 2: u computed with point-wise evaluation on the nonlinear term Iion; Row 3:
synthetic measure of u generated from Row 1 by adding 15% noise uniformly
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proves the computational efficiency of the full-order system while keeping enough accu-

racy when the mesh is fine. This is verified by a numerical experiment shown in Fig. 5.10.

In this test the mesh contains 76832 nodes. As one can see, the pointwise computation

on Iion (Row 2 of Fig. 5.10) presents ignorable error as compared with the exact finite

element approximation (Row 1 of Fig. 5.10). More importantly, the computational cost is

reduced to 7.07% from 759.284 seconds to 53.6954 seconds. Row 3 of Fig. 5.10 displays

the synthetic measures generated by adding 15% noise to the potential u computed with

exact evaluation of Iion. This typically represents the way we generate measures in future

tests of the reduced inverse solver.

Sampling

We have reported in Sec. 5.5.1 that a uniform sampling on the conductivity parameter

is not feasible: it needs too many sample points and the corresponding ROM approx-

imation still lacks accuracy at many test points. However, based on the DOE study in

Sec. 5.5.2, we can find a way that substantially decreases the number of sample points

while still keeps the ROM approximation having enough accuracy. This has been achieved

by sampling the polar coordinates of the conductivity values to take full advantage of the

angular feature of the DOE. One typical example is shown in Fig. 5.11. In this sampling,

the Gauss–Lobatto nodes were used to densify the “boundary layer” of the parameter

space.

Conductivity estimation

In the following, we conduct a group of tests on the performance of the POD-DEIM ap-

proach applied in the inverse conductivity problem, using the ten samples plotted in

Fig. 5.11. Six test points (plotted in blue in Fig. 5.11) were carefully chosen so that they

are not too close to the sample points. With each test point, we solved the full-order mon-

odomain equation without using pointwise computation on nonlinearity and then added

15% noise to the solution to generate the synthetic measures of the transmembrane po-
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Figure 5.11: Ten samples (in red) generated by sampling the polar coordinates of conductiv-
ity values. The “boundary layer” of the sample space is densified by the use of Gauss–Lobatto
nodes.

tential. The measurement snapshots were taken every 2 ms. We performed the numerical

experiments on a 76832-node mesh and also a 24272-node mesh with a common simula-

tion time step ∆t = 0.025 ms. In each running of the reduced inverse conductivity solver,

35 POD modes were taken for u and 80 for Iion, the norm || · || in step 4 of Algorithm

3 was taken as the Euclidean norm of the polar coordinates. The optimization iteration

started from a fixed initial guess σinitial = [1.5, 1] and was constrained by a maximum it-

eration number 40. We further restricted the admissible domain of the conductivities into

[1, 7]× [0.05, 7] and constrained it by the condition σml
σmt
≥ 0.8, inspired from conductivity

measures listed in Table 3.1.

The estimated conductivities are listed in Table 5.1 and Table 5.2 where the results

correspond to the 76832-node mesh and the 24272-node mesh respectively. From Table

5.1 we can see: on average each solve of the reduced monodomain system (or its dual),

including reduced basis importing, takes about only 3 ms as compared with 140 ms for

the full-order model. In the 24272-node case, 1.5 ms would be compared with 38 ms.

It is consistent that the computational cost reduction on the forward problem is in two

order of magnitudes. For conductivity estimation, the reduced inverse solver returns
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Table 5.1: Conductivity estimation on a slab mesh with DOF = 76832. T = 30 ms,
∆t = 0.025 ms, dtsnap = 2 ms, noise = 15%, σinitial = [1.5, 1].

σexact σestimated # fwd | bwd Total exe. time Exe. time/solve
Full Order [3.2, 0.5] [3.237 0.625] 29 | 17 6211 s 135.02 s

POD+DEIM [3.2, 0.5] [3.161 0.393] 89 | 41 439.6 s 3.38 s
Full Order [4.5, 1] [4.535 1.099] 46 | 35 11160 s 137.78 s

POD+DEIM [4.5, 1] [4.596 0.974] 73 | 41 353.1 s 3.10 s
Full Order [5.5, 3] [5.528 3.064] 41 | 41 12780 s 155.85 s

POD+DEIM [5.5, 3] [5.384 3.053] 60 | 41 246.6 s 2.44 s
Full Order [4, 2] [4.045 2.076] 27 | 27 7525 s 144.71 s

POD+DEIM [4, 2] [3.764 1.968] 90 | 41 396.1 s 3.02 s
Full Order [3, 2] [3.054 2.077] 15 | 15 4199 s 139.97 s

POD+DEIM [3, 2] [2.490 2.434] 107 | 31 396.1 s 2.87 s
Full Order [6, 5] [5.854 5.121] 41 | 41 12870 s 156.95 s

POD+DEIM [6, 5] [4.820 5.836] 41 | 41 131.6 s 1.60 s

Table 5.2: Conductivity estimation on a slab mesh with DOF = 24272. T = 30 ms,
∆t = 0.025 ms, dtsnap = 2 ms, noise = 15%, σinitial = [1.5, 1].

σexact σestimated # fwd | bwd Total exe. time Exe. time/solve
Full Order [3.2, 0.5] [3.441 0.853] 21 | 15 1362 s 37.83 s

POD+DEIM [3.2, 0.5] [3.414 0.802] 69 | 41 179 s 1.63 s
Full Order [4.5, 1] [4.723 1.318] 37 | 37 2873 s 38.82 s

POD+DEIM [4.5, 1] [4.871 1.067] 31 | 26 81.66 s 1.43 s
Full Order [5.5, 3] [5.656 3.283] 41 | 41 3161 s 38.55 s

POD+DEIM [5.5, 3] [5.871 3.593] 63 | 41 160.3 s 1.54 s
Full Order [4, 2] [4.246 2.281] 37 | 37 2837 s 38.34 s

POD+DEIM [4, 2] [4.361 2.384] 72 | 41 194.4 s 1.72 s
Full Order [3, 2] [3.255 2.280] 22 | 22 1688 s 38.36 s

POD+DEIM [3, 2] [3.445 1.933] 44 | 41 97.81 s 1.15 s
Full Order [6, 5] [5.994 5.351] 41 | 41 3136 s 38.24 s

POD+DEIM [6, 5] [5.310 6.637] 20 | 19 48.9 s 1.25 s
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Figure 5.12: Optimization iterations corresponds to Table 5.1
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Figure 5.13: Optimization trajectory corresponds to Table 5.1 for test points: [4.5, 1], [4, 2],
[6, 5]. The left column corresponds to the full-order inverse solver, while the right column
corresponds to the reduced inverse solver.
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Figure 5.14: Optimization iterations by adaptive POD oscillate around the exact conductivity
σexact = [4.5, 1] highlighted by the dash lines. Each optimization cycle is constrained by a
maximum iteration number 20.

slightly worse estimates than the full-order inverse solver, due to the lose of accuracy

of the ROM. However, the total execution time can be reduced by at least 90% and the

estimation results using ROM are very satisfying with all the test points except for the

last two, whose accuracies are weak on the conductivity ratio but fine on the magnitude.

These two weak estimations can be easily improved by adding extra one or two sample

points near the boundary of the admissible domain σml
σmt

= 1. Another impression the

results convey is: even with the 24272-node mesh, which features somewhat obvious

difference between the potential computed with the exact finite element approximation

on nonlinearity and the potential solved by pointwise evaluation on nonlinearity, the

conductivity estimations using ROM are still promising.

The iteration histories corresponding to the 76832-node case are plotted in Fig. 5.12.

Some of them are also shown in the plane as displayed in Fig. 5.13. We can see that

the optimal pathway in the reduced inverse solver is very similar to that in the full-order

inverse solver.

Since adaptive POD is a hot topic in the literature, here we test the practicabil-

ity of adaptation by an online procedure. We generated the potential measures with

σexact = [4.5, 1]. Given initial guess σinitial = [1.5, 1], we solved the full-order mon-

odomain system, extracted the snapshots of u and Iion for POD basis construction online,
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solved the reduced inverse solver with the current unique basis, took the estimated con-

ductivities to run a full-order simulation, built a new POD basis and solved the reduced

inverse solver again with the new basis and with previous estimate as the initial guess.

These steps were circulated until a stop criterion was fulfilled. In the test, we setted

a maximum iteration number 20 in each reduced inverse solving. The first four cycles

of the iterations are reported in Fig. 5.14. As we expected, the optimization iterations

intensively oscillate around the exact conductivity value. This is caused by the “self-

contradictory” feature of the reduced monodomain model: we are forced to use a RB

constructed with a unique generating parameter, but the domain of effectiveness of this

kind of RB is generally very narrow. In conclusion, a simple use of POD adaptation for

inverse conductivity problem is not feasible in practice. This concept needs to be further

explored, customized, and refined in depth.

5.6 Chapter conclusions

We have presented some failure and success facts in solving the reduced monodomain

inverse conductivity problem with the POD-DEIM approach. The monodomain solution

features some exceptional properties, not existing in classical problems, that cause diffi-

culties in reduced-order modeling.

The main challenge of model reduction lies in the POD basis construction. We have

observed that the domain of effectiveness (DOE) of a POD basis based on a single gen-

erating parameter is kind of narrow, especially when the amplitude of the conductivity

value is small. This phenomena has also been shown in a recent study on POD applica-

tion for ionic model parameter estimation [17]. The situation in our case is even worse,

considering the fact that we can not group snapshots for basis construction from differ-

ent generating parameters, due to the strong sensitivity of the transmembrane potential

to the conductivities. In other words, a unique POD basis is inadequate for the inverse

conductivity problem, where the simulations are performed with various conductivity pa-

rameters. This is confirmed by a numerical test of adaptive POD, which returns intensive
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oscillation around the exact values.

Another challenge that deserves mention is the failure of adding sensitivity snapshots,

which is expected to highly improve the effectiveness of the POD basis in classical prob-

lems [27]. We find that putting extra sensitivity snapshots into the snapshot matrix of

state variables doesn’t enlarge the DOE of the constructed RB as much as we desire. Even

if it did to some extent, the required number of POD modes is almost tripled, hence it is

not appropriate for online application.

Nevertheless, there are still some interesting observations that finally lead to a suc-

cess. We detect that the domain of effectiveness of a reduced basis is confined to an

angular region of its generating parameter, and the region would be enlarged if we ex-

pand the parameter amplitude. Based on this, we sample the parameter space utilizing

the polar coordinates and the Gauss–Lobatto nodes. A sample set of size ten is then

obtained. The usage of multiple POD bases, each generated with a sampled parameter,

provides satisfactory results. Overall, by utilizing this POD-DEIM reduced order model,

the computational effort can be reduced by at least 90% in conductivity estimation.

We do not claim that we have thoroughly solved all the difficulties in this chapter.

Alternative sampling strategies such as an adaptive sampling in particular for the current

problem should be investigated in future works. To our best knowledge, this is not an

easy work, because a heuristic observation on reduced basis adaptation online returns

unstable results.
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Chapter 6

Reduced-order modeling for atrial

electrophysiology by a data-driven

approach

This development of a data-driven model reduction technique for electrocardiology is a

project during the summer internship in 2014 at Siemens Corporate Research, Princeton,

NJ. The work was supervised by Tiziano Passerini and Tommaso Mansi and led to the

publication [138].

6.1 Introduction

Computational modeling of healthy and diseased atrial electrophysiology (EP) has a great

potential for use in clinical practice. It can provide non-invasive, cost effective and per-

sonalized assessment of the state of the heart; furthermore, it can support the planning

and guidance of cardiac therapies (such as the ablation therapy for atrial fibrillation) by

predicting the response of the patient. To make them suitable for use in the clinic, EP

models ought to be 1) computationally efficient, 2) reliable in capturing detailed cardiac

biology, and 3) easy to be personalized, directly or statistically, from clinical data.

115
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Recent EP models are capable of describing more and more complex cellular mecha-

nisms, such as detailed intracellular Ca2+ handling and the functioning of ion channels,

which are crucial for the detailed description of the organ electrical activity. However,

these models are computationally demanding due to the many and coupled algebraic

and ordinary differential equations accounting for different ionic channels and gating

variables. As an example, the CRN human atrial cell model [36] introduced in Sec. 2.2.1

features 35 static parameters and 21 ordinary differential equations to describe 12 ionic

channels, the corresponding gating variables and ionic concentrations (see the ionic chan-

nel diagram in Figure 2.8). Another challenge is the availability of robust and efficient

methods to personalize EP models, especially ones featuring a large number of param-

eters. Several simplified or phenomenological models could be used as computationally

efficient surrogates, such as the FitzHugh-Nagumo (FHN) model [47] which came be-

fore the CRN model chronologically. However, these models usually lack the capability

of describing important physiological properties. Moreover, to the best of our knowl-

edge no simplified model similar to the minimal one for ventricular dynamics is currently

available for human atria-specific cellular EP.

The topic of reduced-order modeling for cardiac electrophysiology in particular has

been explored in the literature. Most relevant to this work, an approach based on proper

orthogonal decomposition and the Galerkin method has been proposed in [18] and also

in Chapter 5.

Model reduction techniques relying on statistical learning (often referred to as meta-

modeling) have been used in particular in the chemometrics community. The idea is to

derive a statistical model that is able to predict the output of a nonlinear computational

model which has complex dynamics, while being expressed with fewer parameters and

being extremely computationally efficient [128]. Recently, Sobie [123] used a Partial

Least Squares Regression (PLSR) model for the sensitivity analysis of ventricular cell mod-

els on the model parameters. The statistical model proved is able to regress with excellent

accuracy some action potential quantities such as action potential duration (APD). Mansi
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et al. [81] also used a data-driven approach with manifold learning techniques to predict

the sarcomere force exerted by a cardiac myofilament model.

Motivated by recent progresses in meta-modeling [81], we apply a data-driven ap-

proach to the reduction of state-of-the-art cellular models used for atria simulation in

literature. The reduced model learned by regression keeps the ability to capture the

complex dynamics of the original biophysically detailed model, while in simple form and

depending on a smaller number of parameters. This makes the model efficient and suit-

able for use for large scale simulations at the organ level. To the best of our knowledge,

this represents the first example of application of a model reduction technique based on

statistical learning to the multiscale modeling of cardiac EP. In this work, we focus on the

CRN atrial cell model. We first use the Principal Component Analysis (PCA) to reduce the

dimensionality of the AP manifold (Sec. 6.2.1). We then learn a regression model of AP

dynamics at the cell level, given a set of CRN model parameters (Sec. 6.2.2). Finally we

use this reduced cellular model for tissue-level EP modeling (Sec. 6.2.3).

As reported in Sec. 6.3, AP manifold dimension can be reduced to 15 despite being the

output of a nonlinear system. Our regression model demonstrates the ability of captur-

ing the physiological complexity of cardiac AP. It drastically improves the performance

of atrial tissue-level EP modeling by achieving a 75% reduction of the computational

cost with the same computational time step and two order of magnitudes less computa-

tional time with larger time steps (in the order of seconds to compute one heart cycle of

electrical activation in a patient-specific atrial anatomy, using a regular workstation).

6.2 Methods

Although the methods described in the following do not depend on the specific choice

of the cellular model, we focus here on the CRN cell model, a model suitable for the

description of atrial electrophysiology. The CRN cell model was developed based on

human atrial cell data and has been validated for use in both tissue [7] and organ [5]

level simulations. The model was introduced in Sec. 2.2.1, and its dominating equation
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is restated here as
du

dt
= −Iion + Istim

Cm
, (6.1)

where Iion is the total of 12 ionic currents.

For modeling electrophysiology at the tissue level, we resort to the monodomain

model coupled with the CRN cell model. The monodomain equation has been reshaped

as
∂u

∂t
=

1

βCm
∇ · (σm∇u)− Iion + Istim

Cm
, (6.2)

where Istim = − 1
β Iapp as compared with the formulation in (2.16). While lacking the

knowledge of proper conductivity values of σm, we customize the value in a reasonable

range for simulations in this Chapter.

6.2.1 AP manifold learning for dimensionality reduction

The solution of equation (6.1) is the time-dependent transmembrane action potential

(AP) u(t). We use manifold learning techniques to reduce the dimensionality of the man-

ifold ΩAP to which u(t) belongs. Namely, we analyze the number of intrinsic parameters

q that is necessary to capture the observed AP data. Let n be the number of observa-

tions. For each observation i, we choose a unique set of model parameters θi ∈ R1×p and

compute the AP in m time snapshots. The results are gathered in the observation vector

ui = [ui(t1), · · · , ui(tm)] ∈ R1×m. The n×m observation matrix

Y =



u1

u2

...

un


=



u1(t1) u1(t2) · · · u1(tm)

u2(t1) u2(t2) · · · u2(tm)

...
...

...
...

un(t1) un(t2) · · · un(tm)


represents a sampling of the AP manifold. Before dimension reduction, values in the AP

matrix Y are converted into z-scores — each column is mean-centered and normalized by

its standard deviation [70]. After this pre-processing, we denote the AP matrix by Yzs. To
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uncover the intrinsic structure of the AP manifold, both the Principal Component Analysis

(PCA) [52] and the Locally Linear Embedding (LLE) [118] manifold learning techniques

are tested.

The PCA has been introduced at the end of Sec. 5.3.1, we may use here different

notations for concepts already introduced in a different context. The PCA projects the

high-dimensional space ΩAP onto the reduced space Ωpca
AP formed by principal compo-

nents wl ∈ Rm×1 (l ∈ {1, · · · , q}) that are orthogonal (uncorrelated) and maximize the

observed covariance. The principal components wl’s are given by the eigenvectors of the

covariance matrix YT
zsYzs ∈ Rm×m in the decreasing order of corresponding eigenvalues.

The transformation from an observation z ∈ R1×m in ΩAP to a new vector upca ∈ R1×q

of principal component scores in Ωpca
AP is

upca = zW

where W = [w1, · · · ,wq] ∈ Rm×q. Given an observation by the PCA coefficient vector

ûpca ∈ R1×q, the reconstruction from space Ωpca
AP to space ΩAP is by

û = ȳ + (ûpcaW
T ) ◦ σY .

Here ȳ and σY are vectors containing the means and standard deviations of observations

in Y, and ◦ means element-wise product.

The LLE seeks a projection of data onto a low-dimensional space Ωlle
AP by a neigh-

bourhood preserving mapping. It can be thought of as a process of local PCA which are

globally compared to capture the best nonlinear structure. The standard LLE algorithm

is in three steps:

1. search the k (user defined) nearest neighbours of each data point zi, denote the

neighbour indices as {n1, · · · , nk};

2. compute the barycentric coordinates {wij}kj=1 that best reconstruct each data point

zi from its neighbours;
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Table 6.1: Parameters in the CRN model

Parameter Definition Baseline value
gNa Maximal fast inward Na+ current (INa) conductance 7.8 nS/pF
gK1 Maximal inward rectifier K+ current (IK1) conductance 0.09 nS/pF
gto Maximal transient outward K+ current (Ito) conductance 0.1652 nS/pF
gKr Maximal rapid delayed rectifier K+ current (IKr) conductance 0.0294 nS/pF
gKs Maximal slow delayed rectifier K+ current (IKs) conductance 0.129 nS/pF
gCa,L Maximal L-type inward Ca2+ current (ICa,L) conductance 0.1238 nS/pF
gb,Ca Maximal background Ca2+ current (Ib,Ca) conductance 0.00113 nS/pF
gb,Na Maximal background Na+ current (Ib,Na) conductance 0.000674 nS/pF
INaK(max) Maximal Na+ −K+ pump current (INaK) 0.60 pA/pF
INaCa(max) Maximal Na+/Ca2+ exchanger current (INaCa) 1600 pA/pF
Ip,Ca(max) Maximal sarcoplasmic Ca2+ pump current (Ip,Ca) 0.275 pA/pF
gKur(max) Scale factor of ultrarapid delayed rectifier K+ current (IKur) 1

3. compute the embedding coordinates vector uille ∈ R1×q of zi in Ωlle
AP with fixed

weights wij by minimizing the embedding cost function

Φ(Uemb) =
n∑
i=1

|uille −
k∑
j=1

wiju
nj

lle |2

where Uemb = [u1
lle, · · · ,unlle].

Given an observation by the LLE coefficient vector ûlle, the reconstruction from space

Ωlle
AP to space ΩAP starts from finding its k nearest neighbours within space Ωlle

AP and then

follows a similar way as above.

6.2.2 Regression model

We then learn a regression model of action potential dynamics given a sample space of

the CRN model parameters θ ∈ R1×p and their corresponding AP outputs u ∈ R1×m.

Model Input. The CRN model parameters θ are used as the regression inputs.

Model Output. Instead of the time-series of action potential u(t), we consider the

reduced AP representation computed in Section 6.2.1 as output: the regression model

predicts the q embedding coordinates uemb (either upca or ulle), which are then used to

reconstruct the AP time frames u with the basis provided by PCA or LLE.
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Model Construction. The data-driven model writes

uemb = f(θ), f : Rp → Rq.

Rather than directly regressing uemb from θ, we propose a two-step model construction

process based on statistical learning. We first regress some phenomenological features of

the AP, and then use them as additional inputs for the second regression step to increase

the accuracy of the overall prediction. The rationale behind this choice is that many

phenomenological features of AP can be regressed with high accuracy from θ, as shown

in Sec. 6.3, and adding them as features helps further constraining the second regression

problem.

More precisely, we characterize the action potential by different properties: peak volt-

age (Vpeak), resting membrane potential (Vrest), action potential duration (APD). We

learn a prediction model for these quantities

f1 : θ 7→ [Vpeak, Vrest, APD]

using the projection pursuit regression (PPR) method [53]. The central idea of PPR is

to extract optimal linear combinations of inputs as derived features, the outputs are then

modelled as a nonlinear function of these features. The model for each component (say

f1) of f1 has the form

f1(θ) =
s∑
j=1

gj(θωj),

where the projection direction ωj is a unit vector in Rp×1, the function gj(·) is unspeci-

fied and estimated using a flexible smoothing method. The model is built in an iterative

manner: given projection direction ω (consider s = 1 for instance and omit the sub-

script), apply a univariate smoother to obtain an estimation of g; given function g, use

Gauss-Newton search to minimize the fitting error function over test directions and then

obtain an optimal direction ω. The number of ridge terms s is determined by a backward
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deletion procedure. In this work, we use the R function ppr1, where R is a free software

environment for statistical computing.

The second step of the full statistical learning procedure is to regress the embedding

coordinates uemb by including predicted values of those AP quantities as inputs together

with the CRN model parameters θ. This step estimates a model

f2 : [θ, f1(θ)] 7→ uemb

using either the multivariate adaptive regression spline (MARS [52]) or the PPR method

as in the first step. MARS is a non-parametric regression method extending linear regres-

sion by fitting linear or cubic splines to capture data nonlinearity. The model for each

component (say f2) of f2 has additive form as

f2(θ, f1(θ)) = β0 +

J∑
j=1

βjhj(θ, f1(θ)),

where hj(x) is a function of the form max(x − c, 0) or max(c − x, 0) or their products

with c being a constant. The model is built by a greedy approach fitting the splines to

the training data, and then a backward deletion pass on splines to minimize over-fitting.

We use the R package earth [84] for MARS model construction. A possible modification

of this step is to iteratively use the components of uemb as inputs. To be specific, we use

[θ, f1(θ)] and also uemb(1) to regress uemb(2), and similarly for the following components

of uemb.

AP Prediction. Given a new set of parameters θ̂, the AP prediction is as follows

θ̂ → ûemb = f2(θ̂, f1(θ̂))→ û reconstruction from ûemb.

1https://stat.ethz.ch/R-manual/R-devel/library/stats/html/ppr.html
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6.2.3 Application to tissue-level atrial EP modeling

We present a framework for efficient patient-specific simulation of cardiac transmem-

brane potential. We process medical images for computational domain preparation, use

the reduced regression model constructed in Sec. 6.2.2 for cellular AP simulation and the

lattice-Boltzmann algorithm for AP propagation. Details of EP modeling on the atria as

an example is described in the following.

Computational domain preparation from medical images

Starting from atria images (e.g. from CT), the left and right atrium are automatically

segmented using a machine learning approach [142]. Regional atrial wall thickness can

be extracted from high resolution images, but this may be challenging to obtain for the

whole atria. We follow a simpler approach, applying a uniform mesh thickening based

on thresholding a level-set representation of the atrial surface on an isotropic Cartesian

grid. Grid nodes lying at the sino-atrial node region are manually annotated. If available,

information on the fiber orientation can be readily included in the computational domain,

as described in [141] for the case of ventricular tissue. In this work we do not model

the presence of fibers in the atrial tissue. Since tissue anisotropy plays a role in the

monodomain equation, but not in the cell model, the proposed model reduction strategy

is not affected by this choice.

Lattice-Boltzmann method for cardiac EP

We solve the monodomain equation on a Cartesian grid by applying the lattice-Boltzmann

method introduced in [111]. In the lattice-Boltzmann approach, the potential u is rep-

resented in terms of the probability fi(x, t) of finding a particle at location (x, t) moving

with velocity ei. The transmembrane potential is approximated by the fi’s through

u(x, t) =
∑
i

fi(x, t).
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We use a 7-connectivity topology (6 connections + central position). The directions of

the velocities ei are related to the links connecting every lattice node to its 6 nearest

neighbours on the Cartesian grid, as well as a link to itself.

The lattice Boltzmann equation (LBE) derived for the monodomain model by Rapaka

et al. in [111] is solved by two successive steps:

f∗ = f(x, t)−A(f − u(x, t)ω)−∆t Iion+Istim
Cm

(x, t)ω (6.3)

f(x+ ei∆x, t+ ∆t) = f∗ (6.4)

where f(x+ ei∆x, t+ ∆t) is the column vector having components fi(x+ ei∆x, t+ ∆t),

and ∆x and ∆t are the the grid interval and the time step, respectively. Here, ω =

[ω1, ω2, · · · , ω7]T is the vector of weight coefficients and ωi = 1/7 is chosen. Equation

(6.3) gives a strictly local collision rule in which f∗ is a post-collision state of the vector of

distribution functions. The collision matrix A relaxes the distribution function fi towards

the local equilibrium value of the potential u, and is given by the multiple-relaxation-time

(MRT) model A = M−1SM, where M and S are detailed in [111] and [140]. After

collision, the distribution functions stream along their corresponding directions to the

neighbouring node (eq. 6.4).

The Neumann boundary condition on a surface of complex geometries can be handled

by means of a level-set formulation without the need of advanced meshing algorithms.

For details on the Lattice-Boltzmann algorithm, we refer to [111]. The ionic current term

Iion in the equation (6.3) is registered (see below) from the designed regression model.

Registration of the regression cellular model

The CRN cellular model was designed by setting Iion as a sum of analytical functions of

u and controlling the time evolution of u using equation (6.1). The parameters inside

the model are then adjusted by fitting experimental data (action potentials) measured in

isolated atrial myocites [36]. The regression model we designed is discrete. We describe

its registration in tissue-level modeling as the following steps.
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1. Given a set of model parameters, the regression model predicts the full time se-

quence uref of AP, in m time snapshots (as for the observations in the training data

set). To obtain the potential value at each time in the heart cycle, we align uref

at the time tupstroke of AP upstroke or depolarization; then we extract the proper

snapshot from uref .

2. To monitor tupstroke in each cell, we propose to use the simple Mitchell–Schaeffer

(MS) model [88] (having only one gating variable). For the sake of clarity, we

assume that the time step ∆t used by the monodomain solver is a multiple of the

time step used to sample uref .

3. After the upstroke, at time ti = tupstroke + i∆t, the term involving ionic current in

equation (6.3) is computed as follows

−Iion + Istim

Cm
(x, ti) =

uref(i)− u(x, ti−1)

∆t
,

with i ∈ N corresponding to the selected time snapshot of uref . Notice that this

discrete from is still fitted by single cellular AP in which case u(x, ti−1) should be

uref(i − 1), and it is consistent with the backward Euler discretization of equation

(6.1) which describes the original CRN cellular model.

4. After AP repolarization, we switch to use the MS model to monitor the next heart

beat.

To find more sophisticated ways for monitoring AP upstroke is a subject of future

work.

6.3 Experiments and results

6.3.1 Model parameter selection and sampling

We considered as model input a set of 12 parameters listed in Table 6.1 with each con-

trolling an ionic channel in the CRN model. The chosen parameters represent maximal
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Figure 6.1: Samples with SD=0.3 by different number of parameters

ionic conductances and maximal channel currents. A sample was generated by scaling

the baseline values listed in [36], and scaling factors were chosen randomly from a log-

normal distribution with mean value 1 and standard deviation 0.3. It is worth mentioning

that using these 12 parameters rather than the entire set of 35 parameters in the original

model can still capture a large variety of AP patterns. As shown in Figure 6.1, the variety

of samples generated by these 12 parameters is comparable with that of the 35-parameter

samples. In other words, it’s unnecessary to use the full set of parameters to explore the

ΩAP manifold, while taking a larger number of parameters may reduce the regression

accuracy and make the model personalization less efficient.

Different samples can be obtained with alternative choices of the parameters to be

used as model input. For instance, the parameters selection could be guided by a sensi-

tivity analysis of relevant features of the cell model (e.g., the APD). This would allow the

definition of different samples for different applications. In an extreme example such as

the study of atrial fibrillation, characterized by a significantly shortened APD, a special-

ized sample could be constructed by perturbing the parameters after proper adjustment

of the reference values, as shown in [72].

For the generation of the database, an electrical stimulus was applied with ampli-

tude −20 pA/pF starting at t = 10 ms and lasting for 1 ms. In the first 500 ms, u(t)
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was recorded in 1000 time snapshots. In our first experiment, the training set consisted

of 1000 observations and the testing set consisted of 500 different observations. The

goodness of fit of the predicted output is measured in different ways (and always on the

original data before the dimension reduction or the conversion into z-scores):

• R2 value defined as

R2 = 1− SSres

SStot

with SSres being the residual sum of squares and SStot being the total sum of

squares,

• Maximum Amplitude Difference (MAD, in mV) defined by

MAD(yi, yj) = |max(yi(t))−max(yj(t))|,

• absolute differences between Areas Under the Curves (AUC).

The resting potential Vrest is defined as the potential recorded at the end of the simulation,

i.e at t = 500 ms. The action potential duration APD20 (APD40, APD60) is defined as

the time from AP onset (argt max du
dt ) to the -20 mV (-40 mV, -60 mV) repolarization

moment. For the training dataset in this experiment, the MAD,Vrest, APD60 variations

in mean ± SD form were 29.2772 ± 8.43309 mV, -77.4807 ± 5.61862 mV, and 269.346

± 67.45435 ms respectively.

6.3.2 PCA versus LLE for manifold learning

The reduced spaces Ωpca
AP and Ωlle

AP were constructed from the training set. We find that

the PCA and LLE dimension reduction techniques perform similarly on the AP manifold

ΩAP, despite the fact that LLE can capture nonlinear manifold structures. To investigate

this, we compare the accuracy of reconstruction by plotting the maximum relative error

(relative to the mean value of training data) of APD60 in the left of Figure 6.2, and the

maximum R2 value in the right. Each red vertical line in the right denotes the minimum
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Figure 6.2: Goodness of reconstruction on testing data using PCA and LLE.

number of components needed for R2 > 0.99 in reconstructing the AP in our training

data. For LLE, the number of neighbors k is chose as max(20, ncomp) with ncomp being

the number of components. An optimal number of neighbors can be chosen through

benchmarking and the goodness of reconstruction will be improved, but the overall per-

formance versus the number of components is almost the same. We see that both PCA

and LLE need more that 10 components to accurately capture AP dynamics, but 15 com-

ponents are sufficient (compared with the original 1000 time frames).

In consideration of the convenience of AP reconstruction, we will use PCA dimension

reduction in subsequent experiments. Figure 6.3 illustrates the modes of AP variations

estimated by PCA components. In particular, the first mode captures the AP amplitude,

the following modes capture variations of curve curvatures in different phases of the

heart beat.

6.3.3 Regression model construction

As mentioned in Sec. 6.2.2, we build a model by a two-step regression method. In the

first step, three regression methods were tested to predict [Vpeak, Vrest, APD60, APD40,

APD20]: PLSR, MARS, and PPR. To study the accuracy of PLSR, we set the number of

components option in PLSR to be the number of model inputs p. In the earth function

for MARS, we chose the maximum interaction degree as 2, and the maximum number
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Figure 6.3: Dimensionality reduction of the AP manifold generated by the CRN model. The
first six PCA modes are plotted.
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of model terms as 80. In use of the ppr function for PPR, the number of terms in the

model was set as 10, and the optimization level was set to re-balance the contributions

from each regressor at each step. We report their R2 values in Figure 6.4. We see that

the most widely used method PLSR can accurately predict Vpeak, but fails in regressing

Vrest. This demonstrates the nonlinear complexity of the CRN atrial model, compared

with sample variations of a ventricle model which can be easily predicted by PLSR with

R2 value 0.98 [123]. This results consists with the sample patterns in Figure 6.1 and the

mode variations represented by PCA. We also find that MARS can accurately predict Vpeak

and Vrest, but returns worse results in APD prediction than PPR. Overall, PPR performs

the best in this test, with all the R2 values are above 0.97.

We also study the PPR model stability on the range of variation of the testing data. In

Figure 6.5, the x-axis represents the standard deviation of testing data. We see that the

R2 values decrease as we increase SD, but for SD = 0.4, all R2 values are still greater

than 0.9. For SD=0.5, the predictor is much weaker. However, for the purpose of mod-

eling patient specific EP, we believe that the range of variation of the model parameters

obtained with a SD of 0.3 is large enough to reproduce the AP patterns of a large group

of patients. Moreover, specific regression models can be designed for disease states char-

acterized by altered AP patterns such as atrial fibrillation, when the APD is much shorter.

This can be achieved e.g. by scaling adjusted values as in [72].

In the second step of model construction, we use extra parameters predicted from

step one: f1 = [Vpeak, Vrest, APD60, APD40, APD20]. To predict uemb, i.e. the embedding

coordinates in the 15-dimensional reduced space Ωpca
AP of ΩAP, for both MARS and PPR

we tested four approaches:

(M1) use only θ as model input;

(M2) use [θ, f1] as model input;

(M3) use θ as model input, and iteratively regress components of uemb, i.e. use

[θ,uemb(1), · · ·uemb(i)] as model input to predict uemb(i+ 1);
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Figure 6.4: Regression on Vpeak, Vrest, and APD by three methods: PLSR (column 1), MARS
(column 2), PPR (column 3)
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Figure 6.5: Model stability analysis on testing data variation range.

(M4) use [θ, f1] as model input, and iteratively regress components of uemb.

We plot the MARS prediction in Figure 6.6 and the PPR prediction in Figure 6.7. Table

6.2 and 6.3 list the corresponding fitting errors by MARS and PPR predictions relative to

mean values of the training data, respectively. The errors in MAD and Vrest measure the

AP amplitudes, errors in APD measure the variation of curve curvatures (AP patterns),

and AUC measures the errors in a global way.

As one can see, adding f1 as an extra parameter made the predicted AP curves have

better APD fit and thus reduced the APD errors, while iteratively regressing the PCA

components significantly decreased the MAD error. Overall, method M4 produced the

best prediction. Both MARS and PPR predict the AP dynamics accurately, and PPR is

accurate enough to be used without extra parameters. Compared with MARS, the regres-

sion accuracy is improved while using PPR. However, if we consider the regression model

application in 3D EP modeling and EP model personalization, the regression model pre-

diction speed impacts the personalization efficiency. In this scenario, MARS seems to be

more promising based on our tests, as it is proved to be somewhat faster than PPR by the

fact that PPR needs to store smoothing splines for each ridge function term in order to

compute prediction.
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Figure 6.6: AP regression by MARS. 1st row: exact,M1,M2; 2nd row: M3,M4.

Figure 6.7: AP regression by PPR. Left: exact, Right: M4.

6.3.4 Application to tissue-level EP modeling

An application of this regression model to 3D tissue-level EP modeling was tested in this

subsection. We used as reference a given time series uref of cellular AP, with resting po-

tential -80.83 mV and AP amplitude 8 mV. To monitor upstroke, we used the MS model

with parameters as in [88], except for choosing the change-over voltage parameter vgate
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Table 6.2: Errors of the regressed AP (by MARS) compared to the original AP.

Relative Error (%) in (90-percentile Mean SD)
Method M1 M2 M3 M4

MAD 5.18 2.84 2.33 2.54 1.19 1.22 2.39 1.42 4.21 2.90 1.38 2.18
Vrest 2.50 1.20 1.52 1.50 0.68 0.80 0.99 0.46 0.72 1.58 0.73 0.89
APD60 11.88 5.48 6.68 5.66 2.75 3.12 9.37 4.53 4.53 5.84 2.68 2.94
APD40 11.72 5.25 5.93 6.59 2.85 3.64 11.23 5.12 5.67 6.10 2.60 2.92
APD20 18.93 8.17 11.29 8.25 3.88 7.75 12.75 5.87 9.17 9.00 4.52 8.69
AUC 6.11 2.98 3.53 2.94 1.37 1.72 6.38 2.95 3.04 3.00 1.41 1.76

Table 6.3: Errors of the regressed AP (by PPR) compared to the original AP.

Relative Error (%) in (90-percentile Mean SD)
Method M1 M2 M3 M4

MAD 45.10 23.32 16.43 45.72 23.25 16.50 1.75 0.91 1.21 2.10 0.99 1.47
Vrest 1.83 0.86 0.91 1.64 0.74 0.85 0.81 0.37 0.50 1.42 0.67 0.80
APD60 7.51 3.35 3.59 6.12 2.66 3.12 6.59 2.88 3.41 6.12 2.73 3.31
APD40 8.30 3.56 4.14 5.98 2.84 3.05 6.35 2.89 3.52 5.61 2.76 2.84
APD20 12.37 5.29 7.02 8.62 4.05 4.94 8.06 3.72 6.94 7.87 3.51 7.47
AUC 3.65 1.70 2.06 2.99 1.39 1.55 3.82 1.74 2.06 2.70 1.26 1.58

to be 0.46=(-40+80.83)/(8+80.83), consistent with the INa channel upstroke -40 mV

in the original CRN model. We simulate the potential propagation on a patient-specific

geometry of left and right atrium reconstructed from medical images, with stimulus ap-

plied on the sino-atrial node. Cell model registration started at the moment u = −10 mV

right after AP depolarization, and stopped while u = −75 mV after AP repolarization.

The time step ∆t was 0.05 ms.

Using registration of the proposed regression model reduced the computational time

by 75% (from 84 seconds of computation time for solving one heart cycle with the original

CRN model, to 23 seconds with the reduced model), see results in table 6.4 with different

final time T . The computation speed was dramatically improved as we increased the time

step for the regression model registration, which is prohibited by stability requirements

of numerical solvers for the original CRN model. For ∆t = 1 ms, the computational

cost was reduced to 1.5% and the simulation was almost real-time (in the order of one

second per heart cycle). All computations were performed on a standard workstation.

Some snapshots of the simulation are reported in Figure 6.8.
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Table 6.4: Efficiency comparison between the original CRN model and the reduced CRN
model.

Model ∆t T=1 s T=2 s T=4 s

Original CRN 0.05 ms 167.78 s 339.42 s 676.03 s
Reduced CRN 0.05 ms 46.12 s 94.5 s 128.88 s
Reduced CRN 0.5 ms 4.67 s 9.64 s 18.5 s
Reduced CRN 1 ms 2.57 s 4.7 s 9.46 s

t = 10 ms t = 130 ms

t = 250 ms t = 370 ms

Figure 6.8: Simulation on the atria by the regression model registration. From left to right:
t =10 ms; t = 130 ms; t=250 ms; t = 370 ms.
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Table 6.5: Errors of the regressed AP (by PPR with DI parameter) compared to the original
AP.

Relative Error (%) in (90-percentile Mean SD)

Data SD = 0.3 SD = 0.2

MAD 10.1659 4.61849 5.57327 6.297828 4.386615 4.17627
Vrest 0.56859 0.27091 0.49154 0.20318 0.098738 0.13962
APD60 10.0082 4.53703 4.80177 3.9263 1.60495 2.31019
APD40 12.6205 5.48759 7.15154 5.37466 2.17504 2.62042
APD20 15.32442 6.771756 13.04303 6.65314 2.93477 5.29514
AUC 4.69999 2.09210 2.38051 2.0124 0.85393 0.95506

6.3.5 Restitution study by diastolic interval change

The reduced model can be extended to recover the restitution properties of AP (see

Sec. 2.1.2 or Fig. 2.5) with varying diastolic interval (DI). DI is defined as

DI = CL−APD60,

with CL being the cycle length of heart beat. In a preliminary experiment, we added

DI to the set of model parameters θ; the baseline value of DI was 250 ms, and it was

randomly sampled to generate the observation matrix, as explained above. More sophis-

ticated control of the action potential duration alternans, as done in [66], is a possible

extension of this work. Random scale factors for DI were in log-normal distribution with

mean value 1 and standard deviation 0.3. We increased the number of training data to

be 1500 since the AP dynamics is more complex.

In this test the prediction fit of AP was not as good as in previous ones, but the overall

fitting errors were in an acceptable range (in the order of 5%). Especially if we use sample

data with standard deviation 0.2, the regression result is comparable with the case that

the DI parameter is not included. See the error list in table 6.5 and a sample of predicted

APs in Figure 6.9. In this test, the PPR regression was adopted. The MARS regression

provides a little worse prediction but still with acceptable error. This test result suggests

that the regression model has potential use in modeling complex pathological patterns in

diseases such as atrial fibrillation.
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Figure 6.9: AP regression by PPR with DI parameter. Top two: SD = 0.3; bottom two: SD
= 0.2
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6.4 Discussion and conclusion

In this chapter, we use a data-driven approach for the CRN cellular model reduction.

The regression model we designed is able to capture the AP dynamics of the original

CRN model, while in a very simple form. Before the model construction, the AP mani-

fold dimension was reduced 15 parameters using a manifold learning technique (PCA).

In model construction, different AP quantities (APD for instance) were accurately re-

gressed using the PPR method. The embedding coordinates of the action potential in

its reduced space were then regressed by PPR or MARS using the above quantities as

extra parameters and an iterative regression strategy on the outputs could be option-

ally applied. This approach returns accurate results even with sample parameters having

standard deviation 0.3. It’s also interesting to see that this approach can still be used

to study the restitution properties of AP with changing diastolic intervals. Finally and

most significantly, the application of this regression model to tissue-level EP modeling

dramatically improves the computational efficiency: it decreases the computational time

up to two orders of magnitude as compared to using the original non-reduced model and

enables almost real-time computations (order of seconds for computing a heart cycle on

a standard workstation).

The statistical learning approach is general enough, that it can be applied to the re-

duction of any other cardiac cell models. Moreover, with a proper design of the training

data set the reduced model can be tailored to the specific application, for the prediction

of the most relevant features (for instance, a specific ionic current or a channel blocker).

In future work, we will focus on more precise ways for monitoring AP upstroke, such

as the use of the eikonal equation for the depolarization time, or a regression approach on

the sodium ionic channel which controls the AP depolarization phase. We also intend to

study the AP restitution properties with a more sophisticated control of the action poten-

tial duration alternans, as done in [66], with the aim of modeling complex pathological

patterns such as atrial fibrillation.



Chapter 7

Conclusions

In this thesis, we address some challenges arose in cardiac electrophysiological modeling.

The first part of the thesis (Chapter 3–5) is on the estimation of cardiac conductivities

from potential measures. The inverse conductivity problem itself is novel. Surprisingly

enough, there is few literature (and quite not consistent) on these parameter values, but

the interest in an accurate in vivo estimation of these parameters is high since it is a

crucial step for applying computational electrocardiology in practice. Here we bring our

contributions:

1. we provide for the first time a rigorous mathematical formulation of the inverse

conductivity problem based on constrained minimization arguments and an exis-

tence analysis;

2. we significantly improve numerical approaches in the literature by resorting to a

derivative-based optimization method with the settlement of some challenges due

to discontinuity;

3. thanks to the improvement at the previous point, we perform results in 3D that

were not available in literatures on variational conductivity estimation;

4. we apply the POD-DEIM approach to the inverse conductivity problem, which fea-

tures very different properties from classical problems, and reduce the online com-
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putational effort by at least 90%;

5. we obtain a rather small set of samples by sampling the parameter space based on

polar coordinates and densifying the “boundary layer” of the sample space utilizing

Gauss–Lobatto nodes.

The second part of the thesis (Chapter 6) is an internship project accomplished at

Siemens Corporate Research, Princeton, NJ. The work is on the development of a data-

driven approach to the reduction of state-of-the-art cellular models used for atrial elec-

trophysiological simulation. The novelties and advantages lie in the following aspects.

1. Our regression model keeps the ability to capture the complex dynamics of the

original biophysically detailed model, while in very simple form and depending on

a smaller number of parameters.

2. The reduced cellular model drastically improves the performance of tissue-level

atrial electrophysiology (EP) modeling and enables almost real-time computations.

This represents the first example of application of a statistical model reduction tech-

nique to the multiscale modeling of cardiac EP.

3. The model is also capable of describing the restitution properties of the AP.
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