
 
 
 
 
 
 
 
On the Scrambled Sobol  sequences 
Lecture Notes in Computer Science 3516, 775-782, Springer 
2005    
 
  
  
 



On the Scrambled Soból Sequence

Hongmei Chi1, Peter Beerli2, Deidre W. Evans1, and Micheal Mascagni2

1 Department of Computer and Information Sciences,
Florida A&M University, Tallahassee, FL 32307-5100

hchi@cis.famu.edu
2 School of Computational Science and Information Technology,

Florida State University, Tallahassee, FL 32306-4120

Abstract. The Soból sequence is the most popular quasirandom se-
quence because of its simplicity and efficiency in implementation. We
summarize aspects of the scrambling technique applied to Soból se-
quences and propose a new simpler modified scrambling algorithm, called
the multi-digit scrambling scheme. Most proposed scrambling methods
randomize a single digit at each iteration. In contrast, our multi-digit
scrambling scheme randomizes one point at each iteration, and therefore
is more efficient. After the scrambled Soból sequence is produced, we use
this sequence to evaluate a particular derivative security, and found that
when this sequence is numerically tested, it is shown empirically to be
far superior to the original unscrambled sequence.

1 Introduction

The use of quasirandom, rather than random, numbers in Monte Carlo methods,
is called quasi–Monte Carlo methods, which converge much faster than normal
Monte Carlo. Quasi–Monte Carlo methods are now widely used in scientific
computation, especially in estimating integrals over multidimensional domains
and in many different financial computations.

The Soból sequence [21, 22] is one of the standard quasirandom sequences and
is widely used in quasi–Monte Carlo applications. The efficient implementation of
Soból sequence uses Gray codes. We summarize aspects of this technique applied
to Soból sequences and propose a new scrambling algorithm, called a multiple
digit scrambling scheme. Most proposed scrambling methods [1, 8, 16, 19] ran-
domized a single digit at each iteration. In contrast, our multi-digit scrambling
scheme, which randomizes one point at each iteration, is efficient and fast be-
cause the popular modular power-of-two pseudorandom number generators are
used to speed it up.

The construction of the Soból sequence uses linear recurrence relations over
the finite field, F2, where F2 = {0, 1}. Let the binary expansion of the nonnega-
tive integer n be given by n = n120 +n221 + ...+nw2w−1. Then the nth element
of the jth dimension of the Soból sequence, x

(j)
n , can be generated by

x(j)
n = n1ν

(j)
1 ⊕ n2ν

(j)
2 ⊕ ... ⊕ nwν(j)

w (1)
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where ν
(j)
i is a binary fraction called the ith direction number in the jth dimen-

sion. These direction numbers are generated by the following q-term recurrence
relation

ν
(j)
i = a1ν

(j)
i−1 ⊕ a2ν

(j)
i−2 ⊕ ...aqν

(j)
i−q+1 ⊕ ν

(j)
i−q ⊕ (ν(j)

i−q/2q). (2)

We have i > q, and the bit, ai, comes from the coefficients of a degree-q
primitive polynomial over F2. Note that one should use a different primitive
polynomial to generate the Soból direction numbers in each different dimension.
Another representation of ν

(j)
i is to use the integer m

(j)
i = ν

(j)
i ∗ 2i. Thus, the

choice of q initial direction numbers ν
(j)
i becomes the problem of choosing q odd

integers m
(j)
i < 2i. The initial direction numbers, ν

(j)
i = m

(j)
i

2i , in the recurrence,
where i ≤ q, can be decided by the m

(j)
i ’s, which can be arbitrary odd integers

less than 2i. The Gray code is widely used in implementations [4, 11] of the Soból
sequence.

The direction numbers in Soból sequences come recursively from a degree-q
primitive polynomial; however, the first q direction numbers can be arbitrarily
assigned for the above recursion (equation (2)). Selecting them is crucial for
obtaining high-quality Soból sequences. The top pictures in both Fig. 1 and Fig.
2 show that different choices of initial direction numbers can make the Soból
sequence quite different. The initial direction numbers for the top picture in
figure (1) is from Bratley and Fox’s paper [4]; while top picture in figure (2)
results when the initial direction numbers are all ones.

Soból [22] realized the importance of initial direction numbers, and pub-
lished an additional property (called Property A) for direction numbers to
produce more uniform Soból sequences; but implementations [11] of Soból se-
quences showed that Property A is not really that useful in practice. Cheng and
Druzdzel [5, 20] developed an empirical method to search for initial direction
numbers, m

(j)
i , in a restricted space. Their search space was limited because they

had to know the total number of quasirandom numbers, N , in advance to use
their method. Jackel [10] used a random sampling method to choose the initial
m

(j)
i with a uniform random number uij , so that m

(j)
i = �uij×2i−1� for 0 < i < q

with the condition that m
(j)
i is odd.

Owing to the arbitrary nature of initial direction numbers of the sequence,
poor two-dimensional projections frequently appear in the Soból sequence. Mo-
rokoff and Caflisch [18] noted that poor two-dimensional projections for the
Soból sequence can occur anytime because of the improper choices of initial
direction numbers. The bad news is that we do not know in advance which ini-
tial direction numbers cause poor two-dimensional projections. In other words,
poor two-dimensional projections are difficult to prevent by trying to effectively
choose initial direction numbers. Fortunately, scrambling Soból sequences [8, 19]
can help us improve the quality of the Soból sequence having to pay attention
to the proper choice of the initial direction numbers.
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Fig. 1. Left: 4096 points of the original Soból sequence and the initial direction numbers

are from Bratley and Fox’s paper [4]; right: 4096 points of the scrambled version of the

Soból sequence

2 Scrambling Methods

Recall that Soból sequence is defined over the finite field, F2 [13]. Digit permuta-
tion is commonly thought effective in the finite field, Fp. When digit permutation
is used to scramble a quasirandom point over Fp, the zero is commonly left out.
The reason is that permuting zero (assuming an infinite string of trailing zeros)
leads to a biased sequence in the sense that zero can be added to the end of any
sequence while no other digit can. So this strategy for pure digital permutation,
where zero is not changed, is not suitable for the Soból sequence because the
Soból sequence is over F2. For example, we could write 0.0101 as 0.01010000 if
we want to scramble 8 digits. If zero is left out, the scrambled results for 0.0101
and 0.01010000 are same. Otherwise, the bias may be introduced.

The linear permutation [8] is also not a proper method for scrambling the
Soból sequence. Let xn = (x(1)

n , x
(2)
n , . . . , x

(s)
n ) be any quasirandom number in

[0, 1)s, and zn = (z(1)
n , z

(2)
n , . . . , z

(s)
n ) be the scrambled version of the point xn.

Suppose that each x
(j)
n has a b-ary representation as x

(j)
n = 0.x

(j)
n1 x

(j)
n2 ...x

(j)
nK ...,

where K defines the number of digits to be scrambled in each point. Then we
define

z(j)
n = c1x

(j)
n + c2, for j = 1, 2, .., s, (3)

where c1 ∈ {1, 2, ..., b − 1} and c2 ∈ {0, 1, 2, ..., b − 1}. Since the Soból sequence
is built over F2, one must assign 1 to c1 and 0 or 1 to c2. Since the choice of c1

is crucial to the quality of the scrambled Soból sequence, this linear scrambling
method is not suitable for the Soból sequence or any sequence over F2.

As stated previously, the quality of the Soból sequence depends heavily on
the choices of initial direction numbers. The correlations between different di-
mensions are due to improper choices of initial direction numbers [5]. Many
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methods [5, 10] to improve the Soból sequence focus on placing more uniformity
into the initial direction numbers; but this approach is difficult to judge by any
measure. We concentrate on improving the Soból sequence independent of the
initial direction numbers. This idea motivates us to find another approach to
obtain high-quality Soból sequences by means of scrambling each point.
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Fig. 2. Left: 4096 points of the original Soból sequence with all initial direction numbers

ones [23], right: 4096 points of the scrambled version of the Soból sequence

3 An Algorithm for Scrambling the Soból Sequence

We provide a new approach for scrambling the Soból sequence, and measure the
effectiveness of this approach with the number theoretic criterion that we have
used in [6]. Using this new approach, we can now scramble the Soból sequence
in any number of dimensions.

The idea of our algorithm is to scramble k bits of the Soból sequence instead
of scrambling one digit at a time. The value of k could be any positive integer
as long as we could find a suitable Linear Congruential Generators (LCG) for it.
Assume xn is nth Soból point, and we want to scramble first k bits of xn. Let
zn be the scrambled version of xn. Our procedure is described as follows:

1. yn = �xn ∗ 2k�, is the k most-significant bits of xn, to be scrambled.
2. y∗

n = ayn (mod m) and m ≥ 2k − 1, is the linear scrambling, applied to this
integer.

3. zn = y∗
n

2k +(xn − yn

2k ), is the reinsertion of these scrambled bits into the Soból
point.

The key step of this approach is based on using LCGs as scramblers. LCGs
with both power-of-two and prime moduli are common pseudorandom number
generators. When the modulus of an LCG is a power-of-two, the implementation
is cheap and fast due to the fact that modular addition and multiplication are
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just ordinary computer arithmetic when the modulus corresponds to a computer
word size. The disadvantage, in terms of quality, is hard to obtain the desired
quality of pseudorandom numbers when using a power-of-two as modulus. More
details are given in [14, 15]. So LCGs with prime moduli are chosen in this paper.

The rest of our job is to search for a suitable and reliable LCG as our scram-
bler. When the modulus of a LCG is prime, implementation is more expensive. A
special form of prime, such as a Merssene1 or a Sophie-Germain prime2, can be
chosen so that the costliest part of the generation, the modular multiplication,
can be minimized [15].

To simplify the scrambling process, we look to LCGs for guidance. Consider
the following LCG:

y∗
n = ayn (mod m), (4)

where m is chosen to be a Merssene, 2k−1, or Sophie-Germain prime in the form
of 2k+1 − k0, k is the number of bits needed to “scramble”, and a is a primitive
root modulo m [12, 7]. We choose the modulus to be a Merssene or Sophie-
Germain [15] because of the existence of a fast modular multiplication algorithms
for these primes. The optimal a should generate the optimal Soból sequence, and
the optimal a’s for modulus 231 − 1 are tabulated in [7]. A proposed algorithm
for finding such optimal primitive root modulus m, a prime, is described [6].

Primarily, our algorithm provides a practical method to obtain a family of
scrambled Soból sequences. Secondarily, it gives us a simple and unified way
to generate an optimal Soból sequence from this family. According to Owen’s
proof [19], after scrambling, the Soból sequence is still a (t, s)-net with base 2.
However, using our algorithm, we can begin with the worse choices for initial
direction numbers in the Soból sequence: all initial direction numbers are ones.
The results are showed in Fig.2. The only unscrambled portion is a straight line
in both pictures. The reason is that the new scrambling algorithm cannot change
the point with the same elements into a point with different elements.

4 Geometric Asian Options

Here, we present the valuation of a complex option, which has a simple analytical
solution. The popular example for such problems is a European call option on
the geometric mean of several assets, sometimes called a geometric Asian option.
Let K be the strike price at the maturity date, T . Then the geometric mean of
N assets is defined as

G = (
N∏

i=1

Si)
1
N ,

where Si is the ith asset price. Therefore the payoff of this call option at maturity
can be expressed as max(0, G − K). Boyle [3] proposed an analytical solution

1If 2q − 1 and q are primes, then 2q − 1 is a Merssene prime.
2If 2q + 1 and q are primes, then 2q + 1 is a Sophie-Germain prime.
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for the price of a geometric Asian option. The basic idea is that the product of
lognormally distributed variables is also lognormally distributed. This property
results because the behavior of an asset price, Si, follows geometric Brownian
motion [2]. The formula for using the Black-Scholes equation [2, 9] to evaluate
a European call option can be represented as

CT = S ∗ Norm(d1) − K ∗ e−r(T−t) ∗ Norm(d2), (5)

with d1 =
ln(S/K) + (r + σ2)(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t,

where t is current time, r is a risk-free rate of interest, which is constant in
the Black-Scholes world, and Norm(d2) is the cumulative normal distribution.
Because the geometric Asian option has an analytical solution, we have a
benchmark to compare our simulation results with analytical solutions. The
parameters used for our numerical studies are as follows:

Number of assets N
Initial asset prices, Si(0) 100, for i = 1, 2, ..., N
Volatilities, σi 0.3
Correlations, ρij 0.5, for i < j
Strike price, K 100
Risk-free rate, r 10%
Time to maturity, T 1 year

The formula for computing the analytic solution for a geometric Asian
option is computed by a modified Black-Scholes formula. Using the Black-
Scholes formula, we can compute the call price by using equation (5) with
modified parameters, S and σ2, as follows:

S = Ge(−A/2+σ2/2)T

A =
1
N

N∑

i=1

σ2
i (6)

σ2 =
1

N2

N∑

i=1

N∑

i=j

ρijσiσj .

We followed the above formula in equation (5) and (6), computed the prices for
different values of N = 10 and N = 30, with K = 100, and computed p = 12.292
and p = 12.631 respectively. For each simulation, we had an analytical solution,
so we computed the relative difference between that and our simulated solution
with the formula |pqmc−p|

p , where p is the analytical solution and pqmc is the
price obtained by simulation. For different N , we computed pqmc by simulating
the asset price fluctuations using geometric Brownian motion. The results are
shown in Fig.3.
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Fig. 3. Left: geometric mean of 10 stock prices; right: geometric mean of 30 stock

prices. Here the label “Sobol” refers to the original Soból sequence [4], while “DSobol”

refers to our optimal Soból sequence

From equation (5), we can see that random variables are drawn from a normal
distribution. Each Soból point must be transformed into a normal variable. The
favored transformation method for quasirandom numbers is the inverse of the cu-
mulative normal distribution function. The inverse normal function provided by
Moro [17] was used in our numerical studies. From Fig. 3, it is easily seen that the
optimal Soból sequence performs much better than the original Soból sequence.

5 Conclusions

A new algorithm for scrambling the Soból sequence is proposed. This approach
can avoid the consequences of improper choices of initial direction numbers that
negatively impact the quality of this sequence. Therefore, our approach can en-
hance the quality of the Soból sequence without worrying about the choices of
initial direction numbers. In addition, we proposed an algorithm and found an
optimal Soból sequence within the scrambled family. We applied this sequence
to evaluate a complex security and found promising results even for high di-
mensions. We have shown the performance of the Soból sequence generated by
our new algorithm empirically to be far superior to the original sequence. The
promising results prompt us to use more applications to test the sequences, and
to reach for more general scrambling techniques for the Soból sequence.
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