
WWEBEB SERVICESSERVICES WITHWITH A APACHEPACHE A AXISXIS

1. Installation
Installation instructions for Axis are available at http://ws.apache.org/axis/java/install.html

Here is a brief summary.

1.1. Application Server

Axis runs in an application server, Tomcat can be chosen if you haven't got one yet.

Download a 5.x version from http://tomcat.apache.org/ (we used the 5.5.12 version).

Just unzip it in a directory. In order to run Tomcat you just need to set up your CLASSPATH variable

correctly.

1.2. Axis

Download Axis from http://ws.apache.org/axis/java/releases.html (we used the latest version 1.3).

"Un-targz" (or "un-zip") it in a temporary directory. Copy the directory named axis and located in axis-

1.3/webapps/ in the tomcat_root_dir/webapps/ directory. So now you must have a

tomcat_root_dir/webapps/axis/WEB-INF/classes directory and a tomcat_root_dir/webapps/axis/WEB-

INF/lib one.The lib directory contains the libraries needed to use Axis, and you will have to put your Java

classes implementing your services in the classes directory.

Now verify that Axis is up and running by looking at the web page : http://127.0.0.1:8080/axis

By clicking on the Validation link, you can check that all libraries needed were found. We recommend that

you also download the two optional libraries, as they allow us to use file transfer abilities of web services.

You need to restart the application server in order that it is able to find the new libraries. Don't forget to

add theses libraries to your CLASSPATH variable.

e.g. :

export CATALINA_HOME=/opt/apache-tomcat-5.5.12
export AXIS_HOME=$CATALINA_HOME/webapps/axis
export AXIS_LIB=$AXIS_HOME/WEB-INF/lib
export AXISCLASSPATH=$AXIS_LIB/axis.jar:$AXIS_LIB/commons-discovery-0.2.jar:.........

If after restarting the server some libraries remained not found, try copying its in the /opt/apache-

tomcat-5.5.12/common/lib/ directory and restart the server once again.

1.3. Hello World WS

Axis offers two tools for generating :

– WSDL files from Java interfaces describing the services we want to implement.

– All the Java classes needed to run a service and writing a client from a WSDL file.

1.3.1. Writing the interface

public interface HelloWorld extends java.rmi.Remote {
 public String getHelloWorld() throws java.rmi.RemoteException;
}

http://ws.apache.org/axis/java/install.html
http://127.0.0.1:8080/axis
http://ws.apache.org/axis/java/releases.html
http://tomcat.apache.org/

1.3.2. Generating the WSDL file

Compile the interface above and then use the Java2WSDL tool :

java org.apache.axis.wsdl.Java2WSDL -o helloworld.wsdl
-l"http://localhost:8080/axis/services/HelloWorld" -n"urn:helloworld"
-p"helloworld" "urn:helloworld" HelloWorld

-o : name of the file we want to create
-l : where we want the service to be reached by clients
-n : namespace used in the wsdl file generated
-p : put files in a helloworld package

This command create a wsdl file named helloworld.wsdl.

1.3.3. Generating the WS code

Then we can use the WSDL2Java in order to generate the skeleton implementation of our service :

java org.apache.axis.wsdl.WSDL2Java -o . -s helloworld.wsdl

-o : where we want to put the output files
-s : will make the tool generate the server side classes. By default, it only
generates the client utility classes.

1.3.4. Implementing and deploying the service

You just need to edit the HelloWorldSoapBindingImpl.java file. That's the file you have to modify

to implement your service. Replace the return null statement by a return(“Hello World”).

Then, compile all the classes and put the package with compiled classes in the classes directory

indicated above.

Move in this directory containing the compiled classes, and type the deploy command (the

undeploy command can be used in the same way) :

alias deploy='java org.apache.axis.client.AdminClient -p8080 deploy.wsdd'

-p : specify on which port the service will be available (We guess here your
application server is running on 8080 port)

Then you can check service has been well deployed by visiting the http://127.0.0.1/axis/service

page.

1.3.5. Client tools

Classes generated by the WSDL2Java tool allow to code a client in a quick way.

Here is an example of a client calling the previous service, coded with the generated classes of

WSDL2Java.

http://127.0.0.1/axis/service

import helloworld.*;

public class ClientHelloWorld {
public static void main(String[] args) {

try {
HelloWorldServiceLocator locator = new

HelloWorldServiceLocator();
HelloWorld service = locator.getgetHelloWorld();

System.out.println((String)service.getHelloWorld());
} catch (Exception e) {

System.err.println(e.getMessage());
}

}
}

	1. Installation
	1.1. Application Server
	1.2. Axis
	1.3. Hello World WS
	1.3.1. Writing the interface
	1.3.2. Generating the WSDL file
	1.3.3. Generating the WS code
	1.3.4. Implementing and deploying the service
	1.3.5. Client tools

