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Abstract — Today wavelets are recognized to have a wide range of useful proper-

ties that allow them to treat effectively multifacet problems, such as data compres-

sion, scale-localization analysis, feature extraction, statistics, numerical simulation,

visualization, and communication. Second-generation wavelets represent a recent

improvement of the wavelet algorithm, allowing for greater flexibility in the spatial

domain and other computational advantages. We will show how these wavelets can

be employed to extract large-scale coherent structures from (1.) three-dimensional

turbulent flows and (2.) high Rayleigh number thermal convection. We will discuss

the concept of modelling via decomposition into coherent and incoherent fields, taking

into account the effect of the incoherent field via statistical modelling. We will discuss

wavelet properties and how they can be utilized and integrated in handling large-scale

problems in earthquake physics and other nonlinear phenomena in the geosciences.

Key words: wavelets, second generation wavelets, physical modelling, statistical

modelling, geological processes

1 Introduction

Today there is an ongoing explosion in the volume of information coming from high-

resolution numerical simulations of nonlinear phenomena, from more precise instru-

mentation on satellite missions, and from laboratory experiments of greater precision

in many areas of the geosciences and environmental disciplines. Gargantuan amounts

of data are being produced by modelling of earthquakes and its concomitant manifes-

tations of wave propagation and stress transfer, which are intrinsically nonlinear and

have a multiple-scale character in both space and time. Indeed this current tsunami
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involving massive amounts of data has precipitated an urgent need for novel tools to

process data more efficiently and to unravel the the complex dynamical mechanisms

buried inside this mountain of numbers.

The last decade has witnessed the development of wavelets or wavelet analysis, a

new mathematical tool, which originated in seismology (Goupillaud et al. 1984)

and in a brief period has quickly spread to a whole spectrum of fields in science and

engineering and has been promoted in a popular book by Burke-Hubbard (1998).

Wavelets have reached a certain level of maturity as a well-defined mathematical sub-

ject with a strong interdisciplinary character (Strang and Nguyen 1996, Mallat

1998, Van den Berg 1999), which has certainly begun to make an impact in the

geophysical community (Chao and Naito 1995, Kumar and Foufoula-Georgiou

1997, Vasilyev et al. 1997a, Bergeron et al. 1999, Yuen et al. 2002, Alexan-

drescu et al. 1995, Simons and Hager 1997, Chiao and Kuo 2001, Vecsey and

Matyska 2001). Wavelets are mathematical transformations, which allow one to

tackle problems of multiple-scale character in time and space in visualization (De-

Vore et al. 1992, Mallat 1998), analysis (Daubechies 1988, Daubechies 1990,

Meyer 1990), statistics (Jameson and Miyama 2000, Luo and Jameson 2002) and

in the solution of nonlinear partial differential equations (Erlebacher et al. 1996,

Vasilyev and Paolucci 1997, ?, ?). Wavelets are best suited for problems with a

sharp multiple-scale character and should be used in cutting-edge applications, where

the edge of the envelope in the computational front is being pushed. Our research

team, with members coming from different disciplines, can be called on to address

some of these diverse problems in a unified fashion.

In this paper we will first describe the general properties of second generation

wavelets (Sweldens 1996, Sweldens 1998). Then we will discuss the concept of

decomposition into coherent and incoherent structures and how this idea is applied to

two diverse chaotic situations, one in turbulent flows and the other in high Rayleigh

number thermal convection. In particular, we will describe a wavelet approach that

can be used for efficient numerical simulation of the coherent field evolution and briefly

introduce statistical methods that can be used to understand and, in the future, to

model the effects of the incoherent field on the evolution of the coherent structures.

We will also show how thermal plumes can be efficiently extracted from a voluminous

data set using the idea of wavelet thresholding (Donoho 1993). Finally we go over

the prospects of using second-generation wavelets for analysis work in other fields of

geophysics.

2 General Properties of Second Generation Wavelets

Wavelet analysis is a recent numerical concept, which allows one to represent a

function in terms of basis functions, localized in both space and scale (Daubechies

1988, Sweldens 1996). Good wavelet localization properties in both physical (x)

and wavenumber (ξ) spaces are illustrated in Figure 1. One may think of a wavelet

decomposition as a multilevel or multiresolution representation of a function, where



ROLE OF WAVELETS IN THE PHYSICAL AND STATISTICAL MODELLING 3

−5 −4 −3 −2 −1 0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

  x

  ψ
(x

)

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

  ξ/π

  Ψ
(ξ

)

Fig. 1. Second generation wavelet of order 6, ψ(x), and its Fourier transform, Ψ(ξ).

each level of resolution j (except the coarsest one) consists of wavelets ψj
l

or family

of wavelets ψµ,j
l

having the same scale but located at different positions. The most

general wavelet decomposition of a function f(x) can be written as

f(x) =
∑

k∈K0

c
0
kφ

0
k(x) +

+∞
∑

j=0

∑

µ

∑

l∈Lµ,j

d
µ,j
l
ψ

µ,j
l

(x), (1)

where φ0
k(x) and ψ

µ,j
l

are respectively n-dimensional scaling functions and wavelets

of different families (µ) and levels of resolution (j). The major strength of wavelet

analysis, i.e., their ability to both compress and de-noise signals, now appears. For

functions that contain isolated small scales on a large-scale background, most wavelet

coefficients will be small, as illustrated in Figure 2. A good approximation can be

retained even after discarding a large number of wavelets with small coefficients.

This attractive property of wavelets allows one either to compress or to de-noise the

function.

Traditionally, wavelets are constructed by the discrete (typically dyadic) dilation

and translation of a single mother wavelet ψ(x). This results in the construction of

first generation wavelets (Daubechies 1988) that are defined either in infinite or

periodic domains. It is desirable in many geophysical applications to have a larger

class of wavelets that can be defined in general domains and on irregular sampling

intervals. We must abandon translation/dilation relations of the first generation

wavelets and instead construct the wavelets in the physical domain rather than in

Fourier space. Recently, a whole new class of wavelets, currently referred to as second

generation wavelets (Sweldens 1996, Sweldens 1998) have come to the fore. The

main advantages of the second generation wavelets over the first generation wavelets

include the following:

1. Second generation wavelets are constructed in a spatial domain and can be cus-

tomized for complex multi-dimensional domains and irregular sampling intervals.
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Fig. 2. Distribution of coefficients dj

k
and c0k (right) of the second generation wavelet decomposition

of the function f(x) = cos(80πx)e−64x2

(left). Only coefficient whose absolute value is above

10−3 are shown.

2. No auxiliary memory is required and the original signal can be replaced with

its wavelet transform.

Second generation wavelets have been utilized recently to construct a dynamically

adaptive wavelet collocation method (Vasilyev and Bowman 2000) for the solution

of both time evolution and elliptic problems. (?, ?). The method employs wavelet

compression as an integral part of the solution. The adaptation is achieved by re-

taining only those wavelets whose coefficients are greater than an a priori prescribed

threshold. This property of the multi-level wavelet approximation allows local grid

refinement up to an arbitrary small scale without a drastic increase in the number of

grid points; thus high resolution computations are carried out only in those regions

where sharp transitions occur. With this adaptation strategy, a solution is obtained

on a near optimal grid, i.e., the compression of the solution is performed at each time

step.

3 Simulation and Modelling

3.1 Wavelet De-Noising

The wavelet de-noising procedure, also called wavelet-shrinkage, was originally in-

troduced by Donoho (Donoho 1993, Donoho 1994). It can be briefly described as

follows: given a function that is the superposition of a smooth function and noise,

one performs a forward wavelet transform, and sets to zero the “noisy” wavelet coef-

ficients if the square of the wavelet coefficient is less than the noise variance σ2. This

procedure, known as hard or linear thresholding, is optimal for denoising signals in

the presence of Gaussian white noise because wavelet-based estimators minimize the

maximal L2-error for functions with inhomogeneous regularity. In many geophysical

applications, the assumption of Gaussian noise is no longer true (Holzer and Siggia

1994, Ten et al. 1997). In this case, alternative nonlinear thresholding strategies,



ROLE OF WAVELETS IN THE PHYSICAL AND STATISTICAL MODELLING 5

Vorticity, |~ω|

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

Location of wavelets that form |~ω>|

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Wavelet-filtered vorticity, |~ω>|

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

Residual vorticity, |~ω≤|

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

Fig. 3. Example of vorticity field decomposition (Eq. (2)) using wavelet thresholding filter for

three-dimensional forced isotropic turbulence (two-dimensional slices of the three-dimensional

field are shown). The locations of wavelets corresponding to coherent field are also shown.

Reλ = 168.

called soft thresholding, can be utilized (Donoho and Johnstone 1994). In soft

thresholding, the threshold values for wavelet coefficients are scale-dependent. The

most general version of soft thresholding is when the threshold value depends on both

wavelet scale and wavelet location.

3.2 Coherent-Incoherent Decomposition

The wavelet de-noising property was recently used by Farge et al. (Farge et al.

1999) to suggest an approach for simulating turbulent flow, called Coherent Vortex

Simulation (CVS). In CVS the turbulent vorticity field is decomposed into coherent

(organized), ~ω>, and incoherent (random, Gaussian), ~ω≤, fields:

~ω = ~ω> + ~ω≤. (2)

This decomposition is achieved by performing a forward wavelet transform, setting

to zero wavelet coefficients whose L2 or L∞ norm is below an a priori prescribed
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(b) Equivalent Fourier cutoff filter.

Fig. 4. PDF of forced isotropic turbulence field using second generation wavelet filter at 86% com-

pression (a) and Fourier cutoff filter at the equivalent compression (b) for three-dimensional

forced isotropic turbulence at Reλ = 168. Filtered field: ( ), with its associated Gaus-

sian PDF: ( ). Residual field: ( ), with its associated Gaussian PDF: ( ).

threshold parameter ε, which can vary for different levels of resolution, followed by

an inverse wavelet transform. An example of the vorticity field decomposition for

three-dimensional forced homogeneous turbulence is shown in Figure 3, where two-

dimensional slices are shown. Figure 3 also shows the locations of wavelets that form

|~ω>|, i.e., whose coefficients are above ε. When a non-linear wavelet thresholding

filter is applied to a moderately high Reynolds number isotropic turbulence field, the

residual field is close to being statistically Gaussian. This has been shown in Farge

et al. (1999) for two-dimensional turbulent flow and by Goldstein et al. (2000) for

three-dimensional homogeneous turbulent flow.

To demonstrate the ability of wavelet filtering to decompose the vorticity field into

coherent and incoherent fields, we present the results of an a priori analysis of forced

isotropic turbulence field at Reλ = 168 (Jimenez and Wray 1993). In Figure 4

the Probability Density Functions (PDF) of the filtered and residual vorticity fields

at optimum wavelet compression using second generation wavelets of order 6 are

compared to those from a Fourier cutoff filter that retains the same number of modes

(Goldstein et al. 2000). The difference in the Gaussianity of the residual field of

the two filters can most clearly be seen in the tails. With wavelet thresholding the

PDF of the residual field is clearly more Gaussian in the tails than the one resulting

from the Fourier cutoff filter.

Numerical simulation of the coherent field evolution in an efficient manner requires

the use of a highly adaptive numerical algorithm. A recently developed dynami-

cally adaptive second generation wavelet collocation method (Vasilyev and Bowman

2000, ?) is ideally suited for the solution of such problems, since the grid adapta-

tion is based on the same criterion as in coherent structure extraction, i.e., at any

given time the computational grid consists of points corresponding to wavelets whose

coefficients are above an optimal threshold ε. With this adaptation strategy a solu-

tion is obtained on a grid G> that “tracks” the coherent structures. In actuality, we

would have to perform numerical simulations on a slightly bigger computational grid
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Fig. 5. Succession of grids used in coherent field simulations. Small filled dots (G0): wavelet

coefficients that are below numerical threshold ε0. Large open dots (G≤): wavelet coefficients

on adaptive grid that correspond to the incoherent field. Large filled dots (G>) wavelet coeffi-

cients on adaptive grid defined by wavelet coefficients above ε ≥ ε0 that correspond to coherent

structures. Grid G = G0 +G≤ +G>.

that includes wavelet coefficients whose coefficients are above a numerical threshold

ε0, a parameter which controls the accuracy of numerical simulations. The adaptive

grid structure for the coherent field simulation using wavelet collocation algorithm is

illustrated in Figure 5.

3.3 Incoherent Field Statistics

In order to simulate the evolution of coherent structures, the effect of the filtered

(unresolved) residual field on the resolved coherent field needs to be modelled. In the-

ory, if the unresolved residual field is purely incoherent, then its effect on the evolution

of the coherent structures can be modelled by a stochastic model. In developing such

models, one first has to understand the statistical properties of the residual (incoher-

ent) field. Classical statistics is based on processes that are stationary and isotropic in

the sense that the spatial structure of the flow is independent of location. However,

geological processes, such as earthquake dynamics, are inherently time-dependent

and spatially heterogeneous, as schematically shown in Figure 5. Therefore statisti-

cal modelling using wavelets can be employed to address the regimes in which there

is no stationarity nor spatial homogeneity. This motivation for using wavelets dates

back at least as far as Cohen and Jones (1969), with their representation of a spatial

field in terms of the Karhunen-Loève expansion of its covariance function, leading to

representations of the form

Z(x) =
M
∑

ν=1

aνλ
1/2
ν ψν(x) (3)
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where {ψν} are a fixed basis of orthogonal functions, {λν} are coefficients to be

estimated, and {aν} are independent standard normal random variables. Models

of this form have become very widely used in geophysical sciences (Creutin and

Obled 1982)). Nychka et al. (1999) have recently proposed models where {ψν}

are replaced by wavelet basis functions. The wavelet representation is motivated

by nonstationarity and they also emphasize the computational applicability of the

approach in very large systems. There is also the possibility of a mixture of the

two kinds of models (Nychka and Saltzman 1998, Nychka et al. 1999) based on

representations of the form

Z(x) = σ(x)

{

ρ
1/2
Z0(x) +

M
∑

ν=1

aνλ
1/2
ν ψν(x)

}

(4)

in which Z0(x) is a stationary isotropic process, ρ is a positive constant and σ(x) is

a scaling function. The idea is based on the expansion for the covariance function

C(x1, x2) = σ(x1)σ(x2)

{

ρe
−||x1−x2||/θ +

M
∑

ν=1

λνψν(x1)ψν(x2)

}

(5)

which permits the standard deviation to vary with location x according to a gen-

eral function σ(x), and a leading term that corresponds to a stationary isotropic

model of exponential covariance type. The remaining terms depend on eigenvalues

λν and eigenfunction ψν of the covariance operator and support various degrees of

nonstationarity according to the value of the index M . This wavelet approach can be

extended to non-Gaussian processes. Once understood, the statistics of the incoher-

ent residual field can be used to develop a spatial statistical model to serve as input

into the evolution equations for the coherent structures.

4 Feature extraction of thermal plumes

Similar to vortex tubes in high Reynolds number flow, thermal plumes are co-

herent features formed in high Rayleigh number convection (Zocchi et al. 1990,

Moses et al. 1991, Yuen et al. 1993) and forms one of the cornerstones for the

theory of hard turbulent convection (Castaing et al. 1989). In the Earth’s mantle,

where the inertia terms can be neglected in convection, thermal turbulence develops

by nonlinearity due to the advection term, u · gradT , in the temperature equation.

This mechanism is analogous to the Reynolds stress term in the inertial flow regime.

Figure 6 shows a snapshot of the temperature field in such a turbulent convective

scenario at a Rayleigh number of 109 in a basally heated configuration in a box with

an aspect-ration of 4 × 4 × 1. The number of grid points used was 5003. From the

figure one discerns the presence of both connected and disconnected plumes, indicat-

ing that this flow lies in the hard-turbulent regime. The extraction of plumes under

these tumultuous circumstances is a challenge for wavelets.

We have employed the second generation wavelets described above together with

the wavelet-denoising procedure to extract salient features from the temperature fields
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Fig. 6. Temperature field of 3-D mantle convection at a Rayleigh number of 109. The grid consists

of 5003 points. Finite difference and spectral methods are used in vertical and two horizontal

directions respectively. The volumetric rendering covers temperatures greater than 0.7. The

temperature at the bottom of the convection layer is set at T = 1. The top is maintained at

T = 0. The aspect-ratio is 4 × 4 × 1, with unity being the depth.

in thermal convection. We have employed a lower Rayleigh number of 106 for the

same aspect-ratio and heating configuration as in the previous figure. The number of

grid points used was 973. Figure 7 is a downward view of two-dimensional surfaces of

the three-dimensional convection layer, where we have carried out wavelet analysis.

The full reconstruction is shown at the upper left panel (Figure 7a). To its right

(Figure 7b) is the view shown with the 5% largest (in magnitude) wavelet coefficients

retained. We can still see similar features in the planform even when we have discarded

95% of the wavelet coefficients. The black dots shown in Figure 7c (the lower left

panel) are the locations of the wavelet coefficients above the threshold of 10−2 in the

middle of the convection layer. We can see that there is an extremely good correlation

between the outlines of the convective planforms and the locations of the wavelet

coefficients above the threshold value. Finally in the lower right panel (Figure 7d)

we show the small scale thermal residuals left by subtracting the coherent thermal

structure Figure 7b from the total reconstructed field (Figure 7a). The small-scale

scars left by the coherent structure are still discernable in the residual field.

Three-dimensional aspects of the wavelet filtering and denoising are illustrated

in Figure 8. The full reconstruction of the three-dimensional temperature field is

shown in Figure 8a. We display in Figure 8b the locations of the points, where the

wavelet threshold of 10−2 is exceeded, along with the thermal field constructed with

the truncated set of wavelets, about 5% of the original number. This comparison

shows the great efficiency of wavelets in compressing the data. The residual field

(constructed from 95% of the wavelets with the smallest coefficients) associated with

the incoherent thermal field is shown in Figure 8c.
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Fig. 7. Downward views of a single slice of the temperature field in 3-D convection at a Rayleigh

number of 106 in a box of aspect ratio of 4 × 4 × 1. (a) Original dataset. (b) Reconstruction

of wavelet transformed dataset with the smallest 95% of the wavelet coefficient set to zero. (c)

Same as (b) with the physical locations of the largest 5% of the wavelet coefficients displayed as

black dots. The dots encompass a vertical zone of 4 consecutive horizontal slices. (d) Residual

temperature field reconstructed from the smallest 95% of the coefficients.

5 Concluding Remarks and Perspectives

Our experience with using second generation wavelets shows that they can be em-

ployed successfully in many diverse applications in geophysics, such as the solution

of nonlinear partial differential equations (Vasilyev et al. 1997b, Vasilyev et al.

1998, Vasilyev et al. 2001, ?, ?), the extraction of coherent features in mantle con-

vection and data compression. We have set forth here the idea for a decomposition of

nonlinear processes into coherent and incoherent components and new ways to model

with wavelets the spatial-temporal evolution of the coherent components. This new

strategy will play an important role in understanding multiscale phenomena ranging

from the convoluted three-dimensional microstructures in porous media (Manwart

et al. 2002), dilatant plasticity in shear localization processes (Bercovici 1998), all
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Fig. 8. Three-dimensional volume rendered views of the temperature field in 3-D convection at a

Rayleigh number of 106 in a box of aspect ratio of 4 × 4. (a) Full dataset. (b) Reconstruction

of wavelet transformed dataset with the smallest 95% of the wavelet coefficient set to zero.

The physical locations of the non-zero wavelet coefficients are displayed as spheres colored by

temperature. These spheres follow the outlies of the hot plumes and networks of cold down-

wellings. (c) Residual temperature field reconstructed from the smallest 95% of the wavelet

coefficients. Blue: T ∈ [0.04, 0.0008], red: t ∈ [0.003, 0.02].

the way to the large-scale earthquake rupturing process in solid turbulence associ-

ated with the earthquake phenomena (Kagan 1992). Multiscale methods, such as

wavelets, are strongly needed to enhance the chances for new discoveries in the field

of earthquake research, which is full of exotic non-linear instabilities (e.g. (Saleur

et al. 1996, Ben-Zion et al. 1999)) quite different from those encountered in fluid

mechanics (e.g. (Drazin and Reid 1981)).
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