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Flow visualization is an important topic in scientific visualization and has been the subject of
active research for many years. Typically, data originates from numerical simulations, such as those
of computational fluid dynamics, and needs to be analyzed by means of visualization to gain an
understanding of the flow. With the rapid increase of computational power for simulations, the
demand for more advanced visualization methods has grown. This chapter presents an overview of
important and widely used approaches to flow visualization, along with references to more detailed
descriptions in the original scientific publications. Although the list of references covers a large body
of research, it is by no means meant to be a comprehensive collection of articles in the field.

Mathematical Description of a Flow

We start with a rather abstract definition of a vector field and its corresponding flow by making use
of concepts from differential geometry and the theory of differential equations. For more detailed
background information on these topics we refer to textbooks on differential topology and geometry
[45, 46, 66, 81]. Although this mathematical approach might seem quite abstract for many applica-
tions, it has the advantage of being a flexible and generic description that is applicable to a wide
range of problems.

We first give the definition of a vector field. Let M be a smooth m-manifold with boundary, N
be a n-D submanifold with boundary (N ⊂ M), and I ⊂ R be an open interval of real numbers. A
map

u : N × I −→ TM

is a time-dependent vector field provided that

u(x, t) ∈ TxM .

An element t ∈ I serves as a description for time, x ∈ N as a position in space. TM is a tangent
bundle—the collection of all tangent vectors, along with the information of the point of tangency.
Finally, TxM is the tangent space associated with x. The vector field maps a position in space
and time, (x, t), to a tangent vector located at the same reference point x. For a tangential time-
dependent vector field, the mapping remains in the tangent bundle TN and therefore does not
contain a normal component, i.e.,

u : N × I −→ TN .

For a non-tangential vector field, a related tangential vector field can be computed by projection
from TxM to TxN , i.e., by removing the normal parts from the tangent vectors.

Integral curves are directly related to vector fields. Let u : N × I → TN be a continuous
(tangential) vector field. Let x0 be a point in N and J ⊂ I be an open interval that contains t0.
The C1 map

ξx0,t0 : J −→ N

with

ξx0,t0(t0) = x0 and
dξx0,t0(t)

dt
= u (ξx0,t0(t), t)

1



is an integral curve for the vector field with initial condition x = x0 at t = t0. The subscripts in the
notation of ξx0,t0 denote this initial condition. Integral curves are usually referred to as pathlines,
especially in the context of flow visualization. The collection of all possible integral curves for a
vector field constitutes the corresponding flow. If u satisfies the Lipschitz condition, the above
differential equation for ξx0,t0 has a unique solution. Therefore, a flow and a vector field are tightly
connected and both terms are used on an equal footing throughout this chapter.

In all practical applications of flow visualization, the data is given on a manifold of two or three
dimensions. To investigate a vector field on an arbitrary curved surface, the above formalism is
necessary and, for example, the issue of describing the surface by charts has to be addressed. Very
often, however, N is just a Euclidean space. This allows us to use a simpler form of the tangential
vector field given by

u : Ω × I −→ Rn , (x, t) �−→ u(x, t) .

The vector field is defined on the n-D Euclidean space Ω ⊂ Rn and depends on time t ∈ I. We
use boldface lowercase letters to denote vectors in n dimensions. The reference point x is no longer
explicitly attached to the tangent vector. In this modified notation, the integral curve is determined
by the ordinary differential equation

dxpath(t;x0, t0)
dt

= u(xpath (t;x0, t0), t) . (1)

We assume that the initial condition xpath(t0;x0, t0) = x0 is given at time t0, i.e., all integral curves
are labelled by their initial conditions (x0, t0) and parameterized by t. By construction, the tangent
to the pathline at position x and time t is precisely the velocity u(x, t). In more general terms, the
notation x(t;x0, t0) is used to describe any curve parameterized by t that contains the point x0 for
t = t0.

Particle Tracing in Time-Dependent Flow Fields

Integral curves play an important role in visualizing the associated vector field, and in understanding
the underlying physics of the flow. There exist two important additional types of characteristic
curves: streamlines and streaklines. In steady flows, pathlines, streamlines, and streaklines are
identical. When the vector field depends explicitly on time, these curves are distinct from one
another.

In a steady flow, a particle follows the streamline, which is a solution to

dxstream(t;x0, t0)
dt

= u(xstream(t;x0, t0)) .

In an unsteady context, we consider the instantaneous vector field at fixed time τ . The particle
paths associated with this artificially steady, virtually frozen field are the streamlines governed by

dxstream(t;x0, t0)
dt

= u(xstream(t;x0, t0), τ) .

Here, t and t0 are just parameters along the curve and do not have the meaning of physical time, in
contrast to the physical time τ . A third type of curve is produced by dye released into the flow. If
dye is released continuously into a flow from a fixed point x0, it traces out a streakline. For example,
smoke emanating from a lit cigarette follows a streakline.
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It is instructive to derive the explicit equations for pathlines, streamlines, and streaklines. The
solution to the ordinary differential equation (1) is obtained by formal integration, which gives the
pathline

xpath(t;x0, t0) = x0 +
∫ t

t0

u (xpath(s;x0, t0), s) ds .

Similarly, streamlines at time τ can be computed by

xstream(t;x0, t0) = x0 +
∫ t

t0

u (xstream(s;x0, t0), τ) ds .

To obtain the snapshot of a streakline at time t, a set of particles are released from x0 at times
s ∈ [tmin, t] and their positions are evaluated at time t,

xstreak(s;x0, t) = xpath(t;x0, s) .

The streakline is parameterized by s, and tmin is the first time that particles are released.

Classification of Visualization Approaches

There exists a large number of different vector field visualization techniques, which can be distin-
guished according to their properties with respect to a number of categories. The following clas-
sification should be rather considered a collection of important issues than a complete taxonomy.
These issues should be taken into account when choosing a visualization approach.

In one classification scheme, techniques are distinguished by the relationship between a vector
field and its associated visual representation. Point-based direct visualization approaches take into
account the vector field at a point and possibly its neighborhood to obtain a visual representation.
The vector field is directly mapped to graphical primitives in the sense that no sophisticated inter-
mediate processing of data is performed. Another class is based on characteristic curves obtained by
particle tracing. The third class thoroughly preprocesses data to identify important features, which
then serve as a basis for the actual visualization.

Another type of property is the density of representation: the domain can be sparsely or densely
covered by visualization objects. Density is particularly useful for subclassing particle-tracing ap-
proaches. Related to density is the distinction between local and global methods. A global technique
essentially shows the complete flow, whereas important features of the flow could possibly be missed
by a local technique.

The choice of a visualization method is also influenced by the structure of the data. The dimen-
sionality of the manifold on which the vector field is defined plays an important role. For example,
strategies that work well in 2D might be much less useful in 3D because of perception issues: the
recognition of orientation and spatial position of graphical primitives is more difficult, and important
primitives could be hidden by others. Dimensionality also affects performance; a 3D technique has to
process substantially more data. If visualization is restricted to slices or more general hypersurfaces
of a 3D flow, the projection of vectors onto the tangent spaces of the hypersurfaces has to be consid-
ered. Moreover, a distinction has to be made between time-dependent and time-independent data.
A steady flow usually is much less demanding since frame-to-frame coherence is easy to achieve and
streamlines, streaklines, and pathlines are identical. Finally, the type of grid has to be taken into
account. Data can be provided, for example, on uniform, rectilinear, curvilinear, or unstructured
grids. Grid type mainly affects the visualization algorithms with respect to data storage and access
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mechanisms or interpolation schemes. Ideally, the final visual representation does not depend on
the underlying grid.

It should be noted that there is no “ideal” technique that is best for all visualization tasks.
Therefore, it is often useful to combine different approaches for an effective overall visualization.
Nevertheless, we focus on describing the methods individually. The techniques are roughly ordered
according to their classification into: point-based direct methods, sparse representations for particle-
tracing techniques, dense representations based on particle tracing, and feature-based approaches.
The other types of properties are discussed along with the description of the individual methods.

This chapter is meant to provide an overview on flow visualization. For more detailed descrip-
tions, we refer to [18, 40, 82, 88, 99] and to the other flow visualization chapters of this book.

Point-Based Direct Flow Visualization

The traditional technique of arrow plots is a well-known example for direct flow visualization based
on glyphs. Small arrows are drawn at discrete grid points, showing the direction of the flow and
serving as local probes for the velocity field; see Figure 1 (a). In the closely related hedgehog
approach, the flow is visualized by directed line segments whose lengths represent the magnitude of
the velocity. To avoid possible distracting patterns for a uniform sampling by arrows or hedgehogs,
randomness can be introduced in their positions [29]. Arrow plots can be directly applied to time-
dependent vector fields by letting the arrows adapt to the velocity field for the current time. For 3D
representations, the following issues have to be considered: the position and orientation of an arrow
is more difficult to understand due to the projection onto the 2D image plane, and an arrow might
occlude other arrows in the background. The problem of clutter can be addressed by highlighting
arrows with orientations in a range specified by the user [9], or by selectively seeding the arrows.
Illumination and shadows serve to improve spatial perception; for example, shadowing can be applied
to hedgehog visualizations on 2D slices of a 3D flow [65].

More complex glyphs [26] can be used to provide additional information on the flow at a point
of the flow; see Figure 2. In addition to the actual velocity, information on the Jacobian of the
velocity field is revealed. The Jacobian is presented in an intuitive way by decomposing the Jacobian
matrix into meaningful components and by mapping them to icons based on easily understandable
metaphors. Typical data encoded into glyphs comprises velocity, acceleration, curvature, local
rotation, shear, or convergence. Glyphs can also be used to represent information on the uncertainty
of the vector field data [134]. Glyph-based uncertainty visualization is also covered in [69, 86], which
additionally discuss uncertainty representations for other visualization styles.

Another strategy is to map flow properties to a single value and apply techniques known from
the visualization of scalar data. Typically, the magnitude of the velocity or one of the velocity
components are used. For 2D flow visualization, a mapping to color or to isolines (contour lines)
is often applied. Volume visualization techniques have to be employed in the case of 3D data.
Direct volume rendering, which avoids occlusion problems by selective use of semi-transparency, can
be applied to single-component data derived from vector fields [30, 120]; recent developments are
specifically designed for time-dependent data [16, 36, 85].

Sparse Representations for Particle-Tracing Techniques

Another class of visualization approaches is based on the characteristic lines obtained by particle
tracing. Among these are the aforementioned pathlines, streamlines, and streaklines. In addition,
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(a) (b)

(c) (d)

Figure 1. Comparison of visualization techniques applied to the same 2D flow: (a) arrow plot, (b)
streamlets, (c) LIC, (d) topology-based (image (d) courtesy of Gerik Scheuermann).
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Figure 2. Glyph-based 3D flow visualization, combined with illuminated streamlines.

time lines, constructed from particles released at the same earlier time from different points along a
curve, can be used. All these lines are quite intuitive because they represent some kind of transport
along the flow. In this section, we discuss sparse representations, i.e., the spatial domain is not
densely covered.

A traditional particle-based approach computes characteristic curves and draws them as thin
lines. Since many researchers handle time-independent vector fields, the notion of streamlines is
used frequently. The visualization concepts can often be generalized to pathlines, streaklines, or
time lines, even if not explicitly mentioned. Streamlines just serve as a role model for the other
characteristic lines. Particles traced for a very short time generate short streamlines or streamlets.

Streamlines and streamlets can be used in 2D space, on 2D hypersurfaces of an underlying 3D
flow, and for 3D flows. Hypersurfaces typically are sectional slices through the volume or curved
surfaces such as boundaries or other characteristic surfaces. It is important to note that the use of
particle traces for vector fields projected onto slices may be misleading, even within a steady flow:
a streamline on a slice may depict a closed loop, even though no particle would ever traverse the
loop. The problem is caused by the fact that flow components orthogonal to the slice are neglected
during flow integration. For 3D flows, perceptual problems might arise due to distortions resulting
from the projection onto the image plane. Moreover, issues of occlusion and clutter have to be
considered. An appropriate solution is to find selective seed positions for particle traces that still
show the important features of the flow, but do not overcrowd the volume; for example, a thread of
streamlets along characteristic structures of 3D flow can be used [71]. The method of illuminated
streamlines [136], based on illumination in diverse codimensions [1], improves the perception of
those lines, and increases depth information and addresses the problem of occlusion by making the
streamlines partially transparent. A detailed description of illuminated streamlines and a hardware-
accelerated implementation is given in Chapter ?? in this handbook. An example is shown in
Figure 2.
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In 2D, particle traces are usually represented by thin lines, although the width of a line is some-
times modified to represent further information. Figure 1 (b) shows an example with a collection of
streamlets. In 3D applications, however, the additional spatial dimension allows more information
to be encoded into the graphical representation by using geometric objects of finite extent perpen-
dicular to the particle trace. Examples for such an extension of streamlines in 3D are streamribbons
and streamtubes. A streamribbon is the area swept out by a deformable line segment along a stream-
line. The strip-like shape of a streamribbon displays the rotational behavior of a 3D flow. Figure 3
shows a visualization of a 3D fluid simulation combining streamribbons, streamlines, arrows, and
color coding [104]. An iconic streamtube [119] is a thick tube-shaped streamline whose radial ex-
tent shows the expansion of the flow. As further extensions of streamtubes, dash tubes [33] provide
animated, opacity-mapped tubes. Stream polygons [103] trace out geometries of arbitrary polygonal
cross section along a streamline and thus are closely related to streamtubes and streamribbons. The
properties of the polygons, such as the size, shape, or orientation, reflect properties of the vector
field, including strain, displacement, and rotation. Streamballs [10] use their radii to visualize diver-
gence and acceleration in a flow. Instead of spheres, other geometric objects such as tetrahedra [110]
may be used. Another extension of streamlines are stream surfaces, which are everywhere tangent
to the vector field. A stream surface can be modelled by an implicit surface [123] or approximated
by explicitly connecting a set of streamlines along time lines. Stream surfaces present challenges
related to occlusion, visual complexity, and interpretation, which can be addressed by choosing an
appropriate placement and orientation based on principal stream surfaces [15] or by user interaction
[47]. Ray casting can be used to render several stream surfaces at different depths [32]. Stream
arrows [72] cut out arrow-shaped portions from a stream surface and thus provide additional infor-
mation on the flow, such as flow direction and convergence or divergence. Stream surfaces can also
be computed and visualized based on surface particles [122], which are subject to less occlusion than
a full-bodied surface.

The generalization of the concept of particles released from single discrete points (for streamlines
or streaklines) or from several points on a 1D line (for stream surfaces) leads to flow volumes [78].
A flow volume is a region of a 3D flow domain traced out by a 2D patch over time. The resulting
volume can be visualized by volume rendering techniques. Since any flow volume can be (at least
approximately) represented by a collection of tetrahedral cells, volume rendering techniques for
unstructured grids can be applied, such as hardware-accelerated cell projection [93, 107]. Flow
volumes can be extended to unsteady flows [6], yielding the analogue of streaklines. Finally, time
surfaces extend time lines to surfaces that are built from particles released from a 2D patch. The
evolution of time surfaces can be handled by a level-set approach [131].

A fundamental issue of all particle-based techniques is an appropriate choice of initial conditions—
seed point positioning—in order to catch all relevant features of the flow. Two main strategies can
be identified: interactive or automatic placement of seed points. The interactive approach leaves
the problem to the user and, in this sense, simplifies the problem from an algorithmic point of view.
Nevertheless, the visualization system should be designed to help the user to identify appropriate
seed points. For example, the virtual wind tunnel [11] is an early virtual reality implementation of
a flow visualization system where particles can be interactively released by the user.

A useful approach for the automatic placement of seed points is to construct a uniform distri-
bution of streamlines, which can be achieved for 2D vector fields [55, 118] or for boundary surfaces
within curvilinear grids of a 3D flow [74]. The idea behind a uniform distribution of streamlines
is that such a distribution very likely will not miss important features of the flow. Therefore, this
approach can be regarded as a step towards a completely dense representation, which is discussed
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Figure 3. Combination of streamlines, streamribbons, arrows, and color coding for a 3D flow
(courtesy of BMW Group and Martin Schulz).
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in the following section. Equally spaced streamlines can be extended to multiresolution hierarchies
that support an interactive change of streamline density, while zooming in and out of the vector
field [58]. Moreover, with this technique, the density of streamlines can be determined by properties
of the flow, such as the magnitude of the velocity or the vorticity. Evenly spaced streamlines for an
unsteady flow can be realized by correlating instantaneous streamline visualizations for subsequent
time steps [57]. Seeding strategies may also be based on vector field topology; for example, flow
structures in the vicinity of critical points can be visualized by appropriately setting the initial
conditions for particle tracing [126].

Since all particle-tracing techniques are based on solving the differential equation for particle
transport, issues of numerical accuracy and speed must be addressed. Different numerical tech-
niques known from the literature can be applied for the initial value problem of ordinary differential
equations. In many applications, explicit integration schemes are used, such as non-adaptive or
adaptive Runge-Kutta methods. The required accuracy for particle tracing depends on the visual-
ization technique; for example, first order Euler integration might be acceptable for streamlets but
not for longer streamlines. A comparison of different integration schemes [111] helps to judge the
trade-off between computation time and accuracy. Besides the actual integration scheme, the grid
on which the vector field is given is very important for choosing a particle-tracing technique. Point
location and interpolation heavily depend on the grid and therefore affect the speed and accuracy
of particle tracing. Both aspects are detailed in [82], along with a comparision between C-space
(computational space) and P-space (physical space) approaches. The numerics of particle tracing
is discussed, for example, for tetrahedral decomposition of curvilinear grids [62], especially for the
decomposition of distorted cells [94], for unstructured grids [119], for analytical solutions in piece-
wise linearly interpolated tetrahedral grids [83], for stiff differential equations originating from shear
flows [111], and for sparse grids [113].

Dense Representations for Particle-Tracing Methods

Another class of visualization approaches is based on a representation of the flow by a dense coverage
through structures determined by particle tracing. Typically, dense representations are built upon
texture-based techniques, which provide images of high spatial resolution. A detailed description
of texture-based flow visualization and, in particular, its support by graphics hardware is discussed
in Chapter ?? on “Flow Textures” in this handbook. A summary of research in the field of dense
representations can be found in the survey [99].

The distinction between dense and sparse techniques should not be taken too rigidly because
both classes of techniques are closely related by the fact that they form visual structures based
on particle tracing. Therefore, dense representations also lead to the same intuitive understanding
of the flow. Often, a transition between both classes is possible [125]; for example, texture-based
techniques with only few distinct visual elements might resemble a collection of few streamlines and,
on the other hand, evenly spaced streamline seeding can be used with a high density of lines.

An early texture-synthesis technique for vector field visualization is spot noise [121], which
produces a texture by generating a set of spots on the spatial domain. Each spot represents a
particle moving over a short period of time and results in a streak in the direction of the flow at the
position of the spot. Enhanced spot noise [27] adds the visualization of the velocity magnitude and
allows for curved spots. Spot noise can also be applied on boundaries and surfaces [20, 114]. A divide-
and-conquer strategy makes possible an implementation of spot noise for interactive environments
[19]. As an example application, spot noise was applied to the visualization of turbulent flow [21].
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Line integral convolution (LIC) [14] is a widely used technique for the dense representation of
streamlines in steady vector fields. An example is shown in Figure 1 (c). LIC takes as input a
vector field and a white noise texture. The noise texture is locally smoothed along streamlines by
convolution with a filter kernel. This filtering leads to a high correlation along streamlines and
little or no correlation perpendicular to streamlines. The contrast and quality of LIC images can
be improved by postprocessing techniques, such as histogram equalization, high-pass filtering, or a
second pass of LIC [84]. Both spot noise and LIC are based on dense texture representations and
particle tracing, and are, from a more abstract point of view, tightly related to each other [22].
The original LIC technique does not show the orientation and the magnitude of the velocity field,
an issue that is addressed by variants of LIC. Periodic motion filters can be used to animate the
flow visualization, and a kernel phase shift can be applied to reveal the direction and magnitude
of the vector field [31]. Oriented Line Integral Convolution (OLIC) [128] exploits the existence of
distinguishable, separated blobs in a rather sparse texture and smears these blobs into the direction
of the local velocity field by convolution with an asymmetric filter kernel to show the orientation
of the flow. By sacrificing some accuracy, a fast version of OLIC (FROLIC) [127] is feasible. In
another approach, orientation is visualized by combining animation and adding dye advection [105].
Multi-frequency noise for LIC [64] visualizes the magnitude of the velocity by adapting the spatial
frequency of noise.

Other visualization techniques achieve LIC-like images by applying methods not directly based
on line integral convolution. For example, fur-like textures [63] can be utilized by specifying the
orientation, length, density, and color of fur filaments according to the vector field. The integrate and
draw [90] approach deposits random gray-scale values along streamlines. Pseudo LIC (PLIC) [125] is
a compromise between LIC and sparse particle-based representations and therefore allows a gradual
change between dense and sparse visualizations. PLIC uses LIC to generate a template texture in
a preprocessing step. For the actual visualization, the template is mapped onto thin or “thick”
streamlines, thus filling the domain with LIC-like structures. The idea of LIC textures applied
to thick streamlines can be extended to an error-controlled hierarchical method for a hardware-
accelerated level-of-detail approach [8].

LIC can be extended to non-uniform grids and curved surfaces, for example, to curvilinear
grids [31], 2D unstructured or triangular meshes [76, 112], and arbitrary surfaces in 3D [4]. Multi-
granularity noise as the input for LIC [75] compensates for the non-isometric mapping from texture
space to the cells of a curvilinear grid that differ in size. The projection of the normal component
of the vector field needs to be taken into account for LIC-type visualizations on hypersurfaces [100].

Unsteady Flow LIC (UFLIC) [106] or its accelerated version [68] incorporate time into the con-
volution to visualize unsteady flow. The issue of temporal coherence is addressed by successively
updating the convolution results over time. In [31], a visualization of time-dependent flows on curvi-
linear surfaces is presented. Dynamic LIC (DLIC) [109] is another extension of LIC, which allows for
time-dependent vectors fields, such as electric fields. A LIC-like image of an unsteady flow can also
be generated by an adaptive visualization method using streaklines, where the seeding of streaklines
is controlled by the vorticity [98].

Since LIC has to perform a line integral convolution for each element of a high-resolution tex-
ture, computational costs are an issue. One solution to this problem utilizes the coherence along
streamlines to speed up the visualization process [42, 108]. Parallel implementations are another
way of dealing with high computational costs [13, 137]. Finally, implementations based on graphics
hardware can enhance the performance of LIC [43].

From a conceptional point of view, an extension of LIC to 3D is straightforward. The con-
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Figure 4. 3D LIC with enhanced depth perception (courtesy of Victoria Interrante).

volution along streamlines is performed within a volume; the resulting gray-scale volume can be
represented by volume visualization techniques, such as texture-based volume rendering. However,
computational costs are even higher than in 2D and therefore interactive implementations of the
filtering process are hard to achieve. Even more importantly, possibly severe occlusion issues have
to be considered: in a dense representation, there is a good chance of hiding important features
behind other particle lines. A combination of interactive clipping and user intervention is one pos-
sible solution [89]. Alternatively, 3D LIC volumes can be represented by selectively emphasizing
important regions of interest in the flow, enhancing depth perception, and improving orientation
perception [48, 49, 50]; see Figure 4.

Another, yet related class of dense representations is based on texture advection. The basic idea
is to represent a dense collection of particles in a texture and transport that texture according to
the motion of particles [77, 80]. For example, the Lagrangian coordinates for texture transport
can be computed by a numerical scheme for convection equations [7]. The motion map [56] is
an application of the texture-advection concept for animating 2D steady flows. The motion map
contains a dense representation of the flow and the information required for animation. Lagrangian-
Eulerian advection (LEA) [54] is a scheme for visualizing unsteady flows by integrating particle
positions (i.e., the Lagrangian part) and advecting the color of the particles based on a texture
representation (i.e., the Eulerian aspect). LEA can be extended to visualizing vertical motion in
a 3D flow by means of time surfaces [38]. Texture advection is directly related to the texture-
mapping capabilities of graphics hardware and therefore makes possible efficient implementations
[7, 53, 129, 130]. Another advantage of texture advection is the fact that both noise and dye
advection can be handled in the same framework. Texture advection can also be applied to 3D flows
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[59, 130].
Image based flow visualization (IBFV) [124] is a recently developed variant of 2D texture advec-

tion. Not only is the (noise) texture transported along the flow, but additionally a second texture
is blended into the advected texture at each time step. IBFV is a flexible tool that can imitate a
wide variety of visualization styles. Another approach to the transport of a dense set of particles is
based on nonlinear diffusion [28]. An initial noise image is smoothed along integral lines of a steady
flow by diffusion, whereas the image is sharpened in the orthogonal direction. Nonlinear diffusion
can be extended to the multi-scale visualization of transport in time-dependent flows [12].

Finally, some 3D flow visualization techniques adopt the idea of splatting, originally developed
for volume rendering [132]. Even if some vector splatting techniques do not rely on particle tracing,
we have included them in this section because their visual appearance resembles dense curve-like
structures. Anisotropic “scratches” can be modelled onto texture splats that are oriented along the
flow to show the direction of the vector field [17]. Line bundles [79] use the splatting analogy to
draw each data point with a pre-computed set of rendered line segments. These semitransparent line
bundles are composited together in a back-to-front order to achieve an anisotropic volume rendering
result. For time-dependent flows, the animation of a large number of texture-mapped particles along
pathlines can be used [39]. For all splatting approaches, the density of representation depends on
the number of splats.

Feature-Based Visualization Approaches

The visualization concepts discussed so far operate directly on the vector field. Therefore, it is the
task of the user to identify the important features of the flow from such a visualization. Feature-based
visualization approaches seek to compute a more abstract representation that already contains the
important properties in a condensed form and suppresses superfluous information. In other words,
an appropriate filtering process is chosen to reduce the amount of visual data presented to the user.
Examples for this more abstract data are flow topology based on critical points, other flow features
such as vortices and shock waves, or aggregated flow data via clustering.

After features are computed, the actual visual representation has to be considered. Different
features have different attributes; to emphasize special attributes for each type of feature, suitable
representations must be used. Glyphs or icons can be employed for vortices or for critical points and
other topological features. One example are ellipses or ellipsoids to encode the rotation speed and
other attributes of vortices. A comprehensive presentation of feature extraction and visualization
techniques can be found in the survey [88].

Topology-based 2D vector field visualization [44] aims to show only the essential information
of the field. The qualitative structure of a vector field can be globally represented by portraying
its topology. The field’s critical points and separatrices completely determine the nature of the
flow. From a diagram of the topology, the complete flow can be inferred. Figure 1 (d) shows
an example of a topology-based visualization. From a numerical point of view, the interpolation
scheme is crucial for identifying critical points. Extended versions of topology-based representations
make use of higher-order singularities [101] and C1-continuous interpolation schemes [102]. Another
extension is based on the detection of closed streamlines, a global property that is not detected by
the aforementioned algorithms [133]. Topology-based visualization can also be extended to time-
dependent vector fields by topology tracking [117]. The original topology-based techniques work
well for data sets with a small number of critical points. Turbulent flows computed on a high-
resolution grid, however, may show a large number of critical points, leading to an overloaded visual
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representation. This issue is addressed by topology simplification techniques [23, 24, 25, 115, 116],
which remove some of the critical points and leave only the important features. For the visualization
of 3D topology, appropriate visual representations need to be used. For example, streamlines that
are traced from appropriate positions close to critical points connect to other critical points or the
boundary to display the topology, while glyphs can be used to visualize the various classes of critical
points [37]. Topology can also serve as a means for determining the similarity between two different
vector fields [3, 67].

Vector field clustering is another way to reduce the amount of visualization data. A large number
of vectors of the original high-resolution field are combined into fewer vectors that approximately
represent the vector field at a coarser resolution, leading to a visualization of aggregated data. An
important issue is to establish appropriate error measures to control the way vectors are combined
into clusters [70, 114]. The extension of vector field clustering to several levels of clustering leads to
hierarchical representations [34, 35, 41]. Vector field clustering can not only be applied to 2D and 3D
flows, but also on 2D slices [135]. In related approaches, segmentation [28], multi-scale visualization
[12], or topology-preserving smoothing based on level-set techniques [131] reduce the complexity of
the displayed vector fields.

An important class of feature detection algorithms is based on the identification of vortices and
their respective vortex cores. Vortices are useful for identifying significant features in a fluid flow.
One way of classifying vortex detection techniques is the distinction between point-based, local
techniques, which directly operate on the vector data set, and geometry-based, global techniques,
which examine the properties of characteristic lines around vortices [97]. Local techniques build a
measure for vortices from physical quantities of a fluid flow. An overview on these techniques is given
in [2, 91]; more recent contributions are presented in [5, 52, 61, 92]. A mathematical framework [87]
makes it possible to unify several vortex detection methods. Point-based methods are rather simple
to compute, but are more likely to miss some vortices. For example, weak vortices, which have a slow
rotational component compared to the velocity of the core, are hard to detect by these techniques.
Geometry-based, global methods [51, 95, 96] are usually associated with higher computational costs,
but allow a more robust detection or verification of vortices. A more detailed description of vortex
detection techniques can be found in Chapter ?? on “Detection and Visualization of Vortices” in
this handbook.

Shock waves are another important feature of a fluid flow because they can increase drag and
even cause structural failure. Shock waves are characterized by discontinuities in physical quantities,
such as pressure, density, and velocity. Therefore, shock detection algorithms are related to edge
detection methods known from image processing. A comparison of different techniques for shock
extraction and visualization can be found in [73]. Flow separation and attachment, which occur
when a flow abruptly moves away from, or returns to, a solid body, are another interesting feature
of a fluid flow. Attachment and separation lines on surfaces in a 3D flow can be automatically
extracted based on a local analysis of the vector field by means phase plane analysis [60].

Vortex cores, shock waves, and separation and attachment lines are examples of features that are
tightly connected to an underlying physical model and cannot be derived from a generic vector field
description. Therefore, a profound understanding of the physical problem is necessary to develop
measures for these kinds of features. Accordingly, a large body of research on feature extraction
can be found in the literature on related topics of engineering and physics. Since a comprehensive
collection of techniques and references on feature extraction is beyond the scope of this chapter, we
refer to the survey [88] for more detailed information.
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