Web Services for Visualization

Gordon Erlebacher (Florida State University)

Collaborators:
S. Pallickara, G. Fox (Indiana U.)
Dave Yuen (U. Minnesota)
State of affairs

- Size of datasets is growing exponentially fast
- Client devices are proliferating with wide range of functionality (PDA, laptop, phones, desktop, powerwalls, etc.)
- Bandwidth is increasing (Internet 3: 10 Gbit/sec), but insufficiently fast
- Increasing collaborations between geographically distributed scientists
- Complexity of systems makes them increasingly unreliable
- Clusters and Grids are becoming ubiquitous
- Promised simplicity for the user is often not delivered
Clients

HTML interface to AMIRA

Retrieve cutting planes through 3D data and switch to WDI program for displaying and analyzing.

Start and Stop Amira

Amira script file can be selected, displayed or edited here before being sent to amira.

WEB-IS

These widgets are used to control interaction between WDI and Amira.

The image shown here is from a cutting plane of 3D mantle data, which generated by WEB-IS2.

WEB-IS

Mantle convection

Clustering of earthquake events
Partial Wish List

- Redundancy of visualization, computational, storage services
- Support for data files stored redundantly
- No single point of failure (fault tolerance)
- Automatic resource discovery transparent to the users
- Decoupling of the development of client interfaces and resource services
- User interfaces are all built into the leading browsers: Internet Explorer, Konqueror, Mozilla
- Accommodate users without the latest java plug-in technology
- Scalability of the middleware component
- Clients and services can be written in any language
Message Flow with SOAP

Client specifies remote commands

Remote call is encoded in soap message

Service executes remote commands

Return values are encoded in soap message
Services

• A service is simply a task

• Instead of execution at local machine, a service may be executed remotely

• Generally: services are accessed via point-to-point access (URL/IP of end point is known)

• Service discovery: seek service in a database, which returns the URL/IP

• More generally: request access to service by name, and have system choose one for you
Services: examples

• **Visualization and graphic services**
 – Image processing
 – Scientific visualization
 – Video streaming
 – Creating of videos

• **Computation services**
 – Statistical calculations
 – Symbolic manipulation
 – Data filtering and feature extraction
 – Data transforms (e.g., wavelet)

• **Storage services**
 – File retrieval, subset selection
 – File caching
Solution: Publish/Subscribe

Prototypical Example:

a news Server
News Server: publishers

• Topics are the newsgroups labels, e.g.,
 – Topic: PC hardware
 – Topic: PC software
 – Topic: Mac hardware
 – Topic: OpenGL developers

• Anyone can publish to any topic
 – Subject to administrative restrictions
 – Can publish at any time
News Server: subscribers

- Users subscribe to particular news groups
- Updating is equivalent to retrieving all news items from all groups subscribed to
- As new items are published (i.e., posted) to the groups, they can be forwarded to all the subscribers
- User can subscribe to a non-existent news topic. If (and when) the topic is created, the subscriber will receive the news item.
NaradaBrokering (NB)
Developer: S. Pallickara, Indiana Univ.

• Distributed Messaging Infrastructure
• Messages are tagged by a *topic*
• Multiple publishers send messages to the same topic
• Multiple subscribers receive messages from a given topic
• Any client/service can subscribe or publish to multiple topics
• Messages have a lifetime
 – Transient: they disappear once any subscriber consumes it
 – Indefinite: message stays in the system until explicitly removed by some outside action
• Network of “brokers”
• Nodes can be added and removed from the network without affecting functionality
Message Flow

Origin → Standard → Destination

Publish

Narada-Brokering

Subscribe

Origin → Destination
Messaging with SOAP and NB

- Client
- Service Offscreen Render
- Client Proxy
- Service Proxy

SOAP

Wrapped SOAP

Narada-Brokering

Wrapped SOAP
Proxies

- Soap messages become body of a NB message
- Messages identified by topic
- Only proxies can publish and subscribe to NB
- Proxies shield clients and servers from any knowledge of NB
Advantages of scheme

- Asynchronous discovery of task schedulers, available resources, resource metadata, file locations
- Both task schedulers and resources accept tasks based on load
- Ability to maintain audit trails to track system usage, task execution, and task execution failures
- In the event of failures, return of partial results and the status of the computation
- Built-in collaboration mechanisms: task results can be viewed by multiple users sharing one or more task IDs.
- Task updates are published to a “Task update” topic to allow clients to keep track of task execution
- Ability to override previous task submissions in the light of changing conditions
Advantages (cont.)

• Ability to cache results to improve performance

• Built-in fault tolerance
 – NB is a cluster
 – Duplication of services

• Complete decoupling of clients and services through proxies

• Interrupts
 – Send message to “interrupt” topic
 – Unsuscribe topics based on message content
Disadvantages

• Increased number of intermediate “hops” between client and service:
 – Client to proxy client
 – Proxy client to NB
 – Multiple hops within NB cluster
 – NB to proxy server
 – Proxy server to server
 – … and the return path …
External Databases

- DB proxies subscribe and publish to NB on behalf of the DB
- Queries (SQL) are sent to DB in the guise of a message published to NB
- Query DB for topic information
Schedulers

• Take a high level task definition and break it into subtasks
• Submit these subtasks to appropriate services
• Perform dependency analysis on the subtasks
• Return results to the subscribers
Services

- Can be in any language which has interface to SOAP
- Executed via remote calls
- Therefore, defined in terms of an interface
- Interface is encoded into SOAP messages
Storage Services

- Retrieve files from storage
 - Supercomputer
 - File servers
 - Archival storage
- Process file (on one or multiple servers)
 - Extract subset
 - Filter subset
 - Transform subset
- Send processed file for computing or visualization services
Visualization Services

• Offscreen, remote visualization
• Hardware-enabled
 – using MesaOS (Mesa off-screen) and DRI (direct rendering interface)
• Cache partial results (perhaps a caching service)
• Wrap existing software
 – We already have developed interface to Amira (U. Berlin, Template Graphic Software)
 – Custom remote software
 – (hopefully) leverage work done at Stuttgart U. (Stegmaier and others)
Computation Services

• Statistical modules
• Clustering modules
 – Earthquake clustering (10^5 – 10^6 events)
• Wavelet and filtering modules
Collaboration

• Two subscribers to the same topic can receive the same information
• Subscribers may subscribe to a visualization topic asynchronously
• Issue: how does one subscriber directly communicate with another
• How can collaborators exchange information
Possible bottlenecks

• When large files are transported, it may be inefficient to encapsulate them in a message to Narada.

• Images (2D) can be sent through Narada (don’t take too much bandwidth)

• Large 3D datafiles (or subsets thereof) should perhaps be transported directly to destination via point to point
Service discovery

• A service discovery service is responsible for providing clients with information on available services

• Can be implemented using UDDI, or some other XML-based querying language
Redundancy

• All services should be redundant. These include:
 – Databases
 – Schedulers
 – Visualization, computation, or other services
 – Service discovery

• The NB is a clustered service with built-in redundancy

• Consequence: part of NB or some services may become unavailable without impacting usage
Conclusions

• We described a new middleware fabric, which,
 – Is flexible
 – Provides loose coupling between clients and services
 – Provides fault tolerance through a publish/subscribe mechanism
 – Has the potential to develop powerful, yet flexible collaborative systems
 – Through offscreen rendering, can deliver results of visualization tools to a variety of desktops through a variety of GUls suitable to a variety of devices

• Ease of use (and installation) will be one of our design goals!!