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This presentation will concentrate on the use and 
application of Support Vector Machines SVM’s 

Background on Gas Turbine Engines 

Background on SVM’s 

Results! 



We can apply SVM’s to validate acceptable turbine blade 
geometry.  But first a little background on Gas Turbine Engines 
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Why is geometry so important to designing an optimal turbine 
blade/vane? 

Things to consider when designing an  
effective turbine blade: 
• Inlet temperatures exceed 1000⁰F 
• Very high centrifugal forces 
• Corrosion major issue 
• Weight 
• Creep 
• Metal Fatigue 

 



SVM’s are a classification technique designed to 
generate optimal decision boundaries  

Decision Boundary 

Decision Boundary Optimal Decision  
Boundary aka Hyperplane 



SVM’s are a classification technique designed to 
generate optimal decision boundaries  

𝒘 ∙ 𝒙𝒊 + 𝒃 = 𝟎 

To define the Hyperplane: 

So that when we use a  
test point (𝑥𝑖) the value  
is either: 
𝒘 ∙ 𝒙𝒊 + 𝒃 < 𝟎 

or 
𝒘 ∙ 𝒙𝒊 + 𝒃 > 𝟎 

𝒘 ∙ 𝒙𝒊 + 𝒃 > 𝟏 

𝒘 ∙ 𝒙𝒊 + 𝒃 < −𝟏 

Support Vectors 
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For the linear case, we can form an optimization based on the Lagrange multipliers 

Subject to the constraints: 

𝜆𝑖 ≥ 0 

𝜆𝑖 𝑦𝑖 𝐰 ∙ 𝐱𝑖 + b − 1 = 0 

Maximize: 

LD is known as a dual problem that can  
be solved using numerical techniques  
like quadratic programming 

𝑓 𝑥 =  
1

2
𝑥𝑇𝑄𝑥 + 𝑦𝑇𝑥 

Subject to the same  
constraints as above 



But what if the data is non-linear?  We can use the 
Kernel Trick 

Common types of Kernels: 

𝑘 𝑥, 𝑦  = 𝑒𝑥𝑝 −
𝑥−𝑦 2

2𝜎2
  

Gaussian Kernel: Polynomial Kernel 

𝑘 𝑥, 𝑦  = 𝛼𝑥𝑇𝑦 + 𝑐 𝑑  

Exponential Kernel 

𝑘 𝑥, 𝑦  = 𝑒𝑥𝑝 −
𝑥−𝑦

2𝜎2
  



Examining some 2D plots shows how we can classify the 
different points in 2D space 

Linear 

Polynomial 

Radial Basis Function 

Linear 



The Polynomial and the Gaussian Radial Basis function appear 
to predict the training data the best. 

“Perfect” conditions 

Kernel Percent 
Correct 

Linear 67.86% 

Quadratic 71.43% 

Polynomial 100.00% 

Gaussian 
Radial Basis 
function 

100.00% 

RBF 

Polynomial 



Permute the initial training data to determine the sensitivity of 
our SVM 

Polynomial Radial Basis Function 

Appears that the RBF kernel is more sensitive up to  
a point but then quickly drops off! 



What about the speed of each of the different kernels? 

Polynomial Radial Basis Function 

The RBF kernel is faster by over an order of magnitude! 
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Polynomial Radial Basis Function 

The RBF kernel is faster by over an order of magnitude! 

Questions? 


