
Using Support Vector Machines
to determine valid turbine blade

geometry

By: David Witman

This presentation will concentrate on the use and
application of Support Vector Machines SVM’s

Background on Gas Turbine Engines

Background on SVM’s

Results!

We can apply SVM’s to validate acceptable turbine blade
geometry. But first a little background on Gas Turbine Engines

We can apply SVM’s to validate acceptable turbine blade
geometry. But first a little background on Gas Turbine Engines

Why is geometry so important to designing an optimal turbine
blade/vane?

Things to consider when designing an
effective turbine blade:
• Inlet temperatures exceed 1000⁰F
• Very high centrifugal forces
• Corrosion major issue
• Weight
• Creep
• Metal Fatigue

SVM’s are a classification technique designed to
generate optimal decision boundaries

Decision Boundary

Decision Boundary Optimal Decision
Boundary aka Hyperplane

SVM’s are a classification technique designed to
generate optimal decision boundaries

𝒘 ∙ 𝒙𝒊 + 𝒃 = 𝟎

To define the Hyperplane:

So that when we use a
test point (𝑥𝑖) the value
is either:
𝒘 ∙ 𝒙𝒊 + 𝒃 < 𝟎

or
𝒘 ∙ 𝒙𝒊 + 𝒃 > 𝟎

𝒘 ∙ 𝒙𝒊 + 𝒃 > 𝟏

𝒘 ∙ 𝒙𝒊 + 𝒃 < −𝟏

Support Vectors

SVM’s are a classification technique designed to
generate optimal decision boundaries

𝐿𝐷 = 𝜆𝑖

𝑁

𝑖=1

−
1

2
 𝜆𝑖𝜆𝑗
𝑖,𝑗

𝑦𝑖𝑦𝑗x𝑖x𝑗

For the linear case, we can form an optimization based on the Lagrange multipliers

Subject to the constraints:

𝜆𝑖 ≥ 0

𝜆𝑖 𝑦𝑖 𝐰 ∙ 𝐱𝑖 + b − 1 = 0

Maximize:

LD is known as a dual problem that can
be solved using numerical techniques
like quadratic programming

𝑓 𝑥 =
1

2
𝑥𝑇𝑄𝑥 + 𝑦𝑇𝑥

Subject to the same
constraints as above

But what if the data is non-linear? We can use the
Kernel Trick

Common types of Kernels:

𝑘 𝑥, 𝑦 = 𝑒𝑥𝑝 −
𝑥−𝑦 2

2𝜎2

Gaussian Kernel: Polynomial Kernel

𝑘 𝑥, 𝑦 = 𝛼𝑥𝑇𝑦 + 𝑐 𝑑

Exponential Kernel

𝑘 𝑥, 𝑦 = 𝑒𝑥𝑝 −
𝑥−𝑦

2𝜎2

Examining some 2D plots shows how we can classify the
different points in 2D space

Linear

Polynomial

Radial Basis Function

Linear

The Polynomial and the Gaussian Radial Basis function appear
to predict the training data the best.

“Perfect” conditions

Kernel Percent
Correct

Linear 67.86%

Quadratic 71.43%

Polynomial 100.00%

Gaussian
Radial Basis
function

100.00%

RBF

Polynomial

Permute the initial training data to determine the sensitivity of
our SVM

Polynomial Radial Basis Function

Appears that the RBF kernel is more sensitive up to
a point but then quickly drops off!

What about the speed of each of the different kernels?

Polynomial Radial Basis Function

The RBF kernel is faster by over an order of magnitude!

What about the speed of each of the different kernels?

Polynomial Radial Basis Function

The RBF kernel is faster by over an order of magnitude!

Questions?

