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When considering star catalogues, either modern or ancient, it is useful to distinguish 
between the date of the actual star position measurements, which might range over many 
months or even years, and the epoch of the catalogue, i.e. the date corresponding to the 
star positions quoted in the catalogue. In order to prepare a catalogue at a particular 
epoch, the catalogue’s author must adjust the star coordinates from their measured values 
using formulae appropriate to the specific coordinate system of the catalogue. In the case 
of ecliptical coordinates, Ptolemy writes in the Almagest1 
 

“For each star (taken by constellation), we give…its position in longitude 
as derived from observation, for the beginning of the reign of Antoninus     
[= 137 July 20]…its distance from the ecliptic in latitude… The latitudinal 
distances will remain always unchanged, and the positions in longitude 
can provide a ready means of determining the [corresponding] longitude 
at other points in time, if we [calculate] the distance in degrees between 
the epoch and the time in question on the basis of a motion of 1º in 100 
years, [and] subtract it from the epoch position for earlier times, but add it 
to the epoch position for later times.” 

 
The rate of precession quoted by Ptolemy is not accurate, but the general idea is 
approximately correct. Thus Ptolemy, and indeed all astronomers up to the late 1500’s, 
believed that simply adjusting the ecliptical longitudes for precession while leaving the 
latitudes invariant would change the epoch of a catalogue. Tycho Brahe was the first to 
point out that the latitudes do indeed change with time due to the change in the obliquity 
of the ecliptic2, and later Edmund Halley observed that both the latitudes and longitudes 
change due to the proper motion of the stars, i.e. the continuous change in relative 
position of the stars on the celestial sphere3. This opens the possibility, then, that by 
looking carefully at the quoted positions of stars in ancient catalogues, we might be able 
to learn something about the date of the actual star position measurements. 
 
A recent article4 in this journal by Dambis and Efremov uses the proper motions of stars 
to assign a Hipparchan epoch to the star catalogue in the Almagest. Using the 40 fastest 
moving stars in the catalogue, and considering together the ecliptical longitude and 
latitude motions, Dambis and Efremov conclude that the catalogue epoch is –89 ± 122 
and so the hypothesis of a Ptolemaic epoch of +137 is rejected at a 94% confidence level. 
This conclusion remains even if 5-10 of the fastest moving stars are omitted from the 
analysis, although the statistical significance is diminished somewhat. Dambis and 
Efremov also discuss another method of dating using proper motions, which dates 
individual stars and then averages those dates, but this method yields inconclusive results. 
 



The claim that proper motions of the stars during the approximately 265-year period 
between Hipparchus and Ptolemy constrains the epoch of the catalogue measurements is 
surprising. Table 1 shows the computed change in ecliptical latitude between the years    
–128 and +137 for the 20 fastest stars. The changes due to proper motion for ecliptical 
longitude are similar but are complicated due to precession and are not shown. We see 
that for only the very fastest stars do the changes in these coordinates exceed 10 arcmin, 
the typical binsize of the Almagest star catalogue. We shall also see that the coordinate 
changes even for the fastest stars are smaller than the estimated statistical uncertainties 
(about 23 arcmin for latitudes, see below) in the coordinate measurements in the ancient 
catalogue. Therefore the conclusion of Dambis and Efremov is problematical, and 
warrants a careful reexamination. 
 
In order to compare ancient star catalogue data with the predictions for ancient epochs 
from modern measurements and precession theory, it is useful to have computer files for 
both the coordinates in the Almagest star catalogue and the modern coordinates, 
including proper motions, of those same stars. In my case, I began with an on-line copy5 
of the Almagest star catalogue derived from the edition of Manitius, and then I edited the 
coordinates and the star identifications in that catalogue to bring them into conformance 
with the more recent edition of Toomer1. For the modern star coordinates I have used a 
subset of the NASA SKY2000 catalogue6 that corresponds to the Bright Star Catalogue7 
version 5. For the precession and proper motion calculations I have used the standard 
formulae given in Meeus8. Dambis and Efremov use similar modern data and the 
Almagest data from the book of Grasshoff9. I cannot be sure that we are all using exactly 
the same data, but it is very likely that any differences are not affecting our results 
significantly, since we are both averaging over large numbers of stars. 
 
First, let us summarize the analysis of Dambis and Efremov. The basic idea of their ‘bulk 
method’ is to consider a group of N fast stars, to consider the observed differences 
between the catalogue value of the star coordinates and their values computed for an 
assumed epoch T0 (they generally take N = 40 and T0 = 0), and then to estimate and 
eliminate the systematic error component in that difference for each star coordinate, 
thereby isolating the random statistical measurement error. Thus, considering now just 
the latitudes β, Dambis and Efremov suppose that for each star in the catalogue 
 
 βA = βc(T) + ∆βsys + ε,       (1) 
 
where βA is the value recorded in the Almagest star catalog, βc(T) is the value computed 
for the epoch T using modern star coordinates and precession theory, ∆βsys is the 
systematic error in the ancient catalogue value, and ε is the random statistical 
measurement error in the ancient catalogue value. Further, since the proper motion of 
each star is linear in velocity µβ (at least over the time spans we are considering), the time 
variation in βc may be taken as 
 
 βc(T) = βc(T0) + µβ (T – T0).      (2) 
 



Note that the time dependence of β that results from the variation of the obliquity of the 
ecliptic is omitted from Eq. (2), but it will cancel in any event in Eq. (5) below. 
Therefore, defining ∆β(T) = βA – βc(T0), for some reference epoch T0, we have: 
 

∆β(T) = µβ (T – T0) + ∆βsys + ε      (3) 
 
where the random variable ε has mean zero and variance σ2. In order to isolate the 
systematic error ∆βsys, we consider a number n of nearest neighbor stars of the target fast 
star (typically n is in the range 2 – 16) and we average ∆β over these stars, obtaining 
 
 <∆β>n = <µβ>n (T – T0) + ∆βsys + ε´      (4) 
 
where the random variable ε´ has mean zero and variance σ2/n due to the averaging. In 
fact, Dambis and Efremov compute the median of the n values rather than the mean, 
since the median is somewhat more robust but still has the 1/n effect in reducing the 
variance. I follow them in this choice, but I have checked it makes no significant 
difference in the final conclusions which choice is made. Note also that we assume that 
the systematic error term is the same for both the target star and each of the nearest 
neighbor stars, due to their locality on the celestial sphere. We then compute, for each 
star in the catalogue, the quantity 
 
 ∆2β = ∆β - <∆β>n = (µβ - <µβ>n) (T – T0) + ε΄΄    (5) 
 
where the random variable ε΄΄ has mean zero and variance (1 + 1/ n) σ2 (the 1/n term is 
actually more like 1.253/n if the median is used instead of the mean). In this way the 
systematic error term is largely removed at the cost of a small increase in the statistical 
error. Note also that, as mentioned above, the subtraction of nearest neighbors also 
eliminates the change in latitude due to the change with time of the obliquity of the 
ecliptic. 

Since Equation (5) is of the form y bx= , ordinary least squares provides a determination 
of the slope (T-T0), using (µβ - <µβ>n) as the x-values and ∆2β as the y-values in the fit. 

The entire procedure outlined above is also performed for the ecliptic longitudes λ, with 
the proviso that we always use the quantity λ cos β (and µλ cos β ) in order to 
appropriately weight the errors in λ which naturally increase with latitude. Note that the 
subtraction of the systematic error in longitude also neatly cancels the changes due to 
precession. Least squares fits10 are performed for the latitudes and longitudes alone, and 
with both coordinates together, assuming N=40, n=6, and T0=0, with the results: 

 Tβ = -81 ± 147 

 Tλ = -109 ± 226 
 
 Tλβ = -89 ± 122 

according to Dambis and Efremov, and 



 Tβ = -80 ± 121 

 Tλ = -74 ± 174 

 Tλβ = -77 ± 102 

when I repeat their analysis as closely as I can (see Figure 1). The differences in the 
various values may be due to a number of factors, such as small differences in our 
catalogues or the treatment of outliers, but the differences are nowhere significant.  

Now if we are to trust the conclusion of Dambis and Efremov that the data for both 
coordinates combined yield T = –89 ± 122, and thus exclude a Ptolemaic epoch at a 
confidence level of about 94%, i.e. a 1.85σ effect, then we need to be sure that the 
statistical procedures used are as reliable as possible.  

Dambis and Efremov are not explicit in explaining how they dealt with outliers, so I will 
explain what I did to (nearly) duplicate their results. First, consider all the catalogue stars 
and eliminate as potential neighbor candidates all those with errors more than three 
standard deviations from the mean of all the coordinate errors. This eliminates 19 stars in 
longitude and 18 stars in latitude from consideration as nearest neighbors. Among others, 
the longitude point for α Cen is omitted. 

Second, when considering the data to be fit in Figure 1, I again impose a 3σ cutoff, but 
this time σ is computed on just the 80 stars in the fit. This cutoff eliminates the latitude 
points for α Cen and β CVn. Dambis and Efremov also eliminate the longitude and 
latitude points for θ Cen, so I follow them, although these points are only about 2.5σ from 
their means. This treatment of outliers is problematical, and will be discussed in detail 
below. 

The method of Dambis and Efremov proceeds without using any direct information on 
the statistical errors in the values of ∆2β and ∆2λ cos β. They effectively use the scatter in 
the 40 or 80 points in their fits to estimate both the epoch of the measurements, i.e. the 
slope of the fit line, and the uncertainty in that slope. This method therefore both assumes 
and requires a good linear fit, but it is clear from Figure 1 that the data are not at all linear 
(the linear correlation is about –0.003, even with α Cen, θ Cen, and β CVn omitted) and 
the fit explains essentially none of the variance in the data. This is particularly critical in 
this case, because the method of Dambis and Efremov to estimate the uncertainty in the 
slope b, and hence the epoch T, effectively assumes a good quality of fit. The danger of 
proceeding under such a questionable assumption is a well-known hazard.11 

If a linear fit is still required, though, then an alternative, and greatly preferable, 
procedure is to compute the estimated sample variances in ∆2β and ∆2λ cos β for all the 
stars in the catalogue, excluding outliers, and to use these as the weights in the least 
squares fits. This does not overcome the objection that the data are not linearly correlated, 
but it does remove the need to use the scatter in 40 or 80 points to estimate the 
uncertainty in the slope. In this way we are then assuming only that the statistical error 
for the fast stars is the same as the statistical error for all the other stars in the catalogue. 
Of course, this assumption would have to be qualified if the fast stars happened by 



chance to be isolated into some corner of parameter space that was particularly well 
measured. For example, it could have been that the fast stars were accidentally clustered 
near some particularly well-measured constellation in the zodiac. However, I have 
checked all reasonable possibilities for such accidental bias, and it does not exist. The fast 
stars were measured just as well, no better and no worse, than the stars as a whole. 

The full results for the systematic and statistical errors in latitude and longitude are 
shown in Figures 2-5. Figures 2-3 show the systematic errors in longitude and latitude for 
each star for the epoch +137, excluding only those potential neighbor stars whose original 
positional errors exceed the average catalogue error by more than three standard 
deviations. For simplicity I show <∆β>n versus λ and <∆λ cos β>n versus λ for n = 6. 
These plots show the familiar systematic error in λ of about –1º (for the epoch +137), and 
also the (somewhat) periodic errors in λ and β first noticed by Peters.12 Figures 4-5 show 
the values of ∆2β versus λ and ∆2λ cos β versus λ, also for n = 6, and we see that in fact 
the systematic errors have been removed as promised. This removal is insensitive to the 
value assumed for n. The standard deviations σλ and σβ for all the data in Figures 4-5 
(1028 points in each chart) are 39 and 36 arcmin, respectively. 

Now the standard deviations σλ and σβ for the data in Figures 4-5 after removing 3σ 
outliers (19 in longitude and 18 in latitude) are 26 and 23 arcmin, respectively. 
Furthermore, these values vary only slowly for any value of n in the range 6 – 16. When I 
repeat the least-squares fits using Equation (5) and with these values as the standard 
deviations σ that determine the error in T (see the previous footnote), we obtain 

 Tβ  =  -188 ± 243 

 Tλ  =    -82 ± 317 

 Tλβ = -142 ± 195 

for the fits to the latitude, longitude, and combined data, respectively. The reason that the 
errors are now so much larger than we found earlier is that the original errors were 
essentially controlled by the standard deviations of the values of ∆2λ cos β and ∆2β for 
just the 80 fast stars, after a 3σ cutoff on just those 80 stars, and the elimination by hand 
of another two points for θ Cen as discussed above. These standard deviations are about 
16 and 13 arcmin, respectively, compared to about 26 and 23 arcmin for the full 
catalogue sample. Thus we see that when the data are analyzed using the complete 
information on the errors, the uncertainties on the estimated parameters grow large. These 
fits clearly do not exclude either a Hipparchan or a Ptolemaic epoch for the star catalogue 
measurements.  

It is highly questionable, however, whether the epochs implied by any of the fits have any 
value, since there is clearly no linear relation visible in the data shown in Figure 1, even 
if the ‘outliers’ of Dambis and Efremov are removed. If we consider each point in the 
figure as an (xi,yi) pair, then the slope (assuming a zero intercept) is given by 

2x= i i i
i i

b x y∑ ∑ .   Now each point in the plot also gives an estimate of the slope (and 



hence the epoch), simply as i i ib y x= . These individual dates are then combined in a 
weighted average, i i i

i i

b w∑b w , with individual weights = ∑ 2
iiw x= . Table 2 lists for 

each of the 40 fastest stars in longitude and latitude the coordinate pairs (xi,yi) and the 
dates implied, 60 .For any set of points, then, the fitted date is just the weighted 
average of the individual dates. It is clear that because of the absence of any linear 
relation in the data, the dates vary so widely and irregularly that no firm conclusion can 
be drawn from the average of the dates. 

i iy x×

In summary, the analysis of Dambis and Efremov errs in substantially underestimating 
the random measurement errors in their data, and hence they get a smaller confidence 
interval on the epoch implied by their fits than is really justified. When the directly 
determined estimates of the random errors are used, the confidence interval determined is 
so large that the Hipparchan and Ptolemaic epochs cannot be distinguished. It is very 
likely, however, that the method proposed by Dambis and Efremov for separating the 
systematic and statistical errors in the star coordinate measurements will be useful in 
other investigations of the star catalogue. 

The history of the star catalogue of the Almagest is long and complex, and over many 
hundreds of years numerous authors have debated when and by whom the star 
coordinates were measured. A fairly complete account of the history of the discussion up 
until about the mid-1980’s is given by Grasshoff13, and several commentaries since then 
can be found both in this journal14 and in the journal DIO15. This paper, and the paper of 
Dambis and Efremov, looks only at using proper motions to try and distinguish the epoch 
of the star coordinate measurements. Other methods, such as looking at the pattern of 
fractional endings of the coordinates16, the pattern of systematic errors in the catalogue17, 
or the correlation between a star’s magnitude and its inclusion or omission from the 
catalogue18, are all independent and must be judged on their own merits. It appears 
doubtful, however, that considerations of proper motions can shed light on the issues. 
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(a) (b) (c) (d) (e) (f)

779 1325 -2.90 -10.99 -12.81 17%
110 5340 -2.27 -10.74 -10.03 7%
723 509 1.46 7.01 6.45 8%
527 5019 -1.39 -6.92 -6.14 11%
818 2491 -1.27 -3.51 -5.61 60%
247 6401 -1.18 -7.28 -5.21 28%
265 5933 -1.16 -6.72 -5.12 24%
848 2943 -1.14 -3.06 -5.04 65%
969 5459 -1.09 -6.65 -4.81 28%
180 219 -1.08 -3.53 -4.77 35%
261 6752 -0.96 -6.40 -4.24 34%

19 3775 -0.86 -2.02 -3.80 88%
125 6623 -0.76 -5.48 -3.36 39%
146 5914 0.76 2.17 3.36 55%
783 1136 0.74 4.82 3.27 32%

32 4375 -0.71 -2.18 -3.14 44%
279 6869 -0.68 -5.14 -3.00 42%
940 5288 -0.67 -4.30 -2.96 31%
814 2035 -0.65 -0.76 -2.87 278%
360 660 -0.63 -1.47 -2.78 89%

Table 1. Column (a) is the Bailey number of the star in the Almagest catalogue. Column 
(b) is the HR number from the Bright Star Catalogue. Column (c) is the velocity  vβ (in 
arcsec/yr) in ecliptical latitude. Column (d) is the change in ecliptical latitude (in arcmin), 
computed from modern theory and due to all causes, over the time interval –128 to +137. 
Column (e) is the change in latitude estimating from multiplying the velocity in column 
(c) by the 265 year time interval. Column (f) is the absolute percentage difference 
between columns (d) and (e). This difference is due to the time dependence of the 
obliquity of the ecliptic and is not negligible, but it does largely cancel out when we use 
the method of Dambis and Efremov for eliminating the systematic errors. For 
comparison, the typical binsize in the Almagest catalogue is 10 arcmin, and the estimated 
statistical uncertainty in the Almagest measurements is about 23 arcmin (see text). 



 
  Longitude     Latitude   
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 
969 5459 -3.53 108.63 -1846 779 1325 -2.89 11.51 -239 
779 1325 -2.89 6 -125 110 5340 -2.26 -16.91 449 
57 7462 -1.86 10.99 -355 723 509 1.56 -1.01 -39 

723 509 -1.25 6.02 -289 527 5019 -1.33 8.57 -387 
196 937 1.16 11.16 577 818 2491 -1.26 -19.12 910 
360 660 0.93 5.94 383 247 6401 -1.11 17.32 -936 
784 1084 -0.97 -6.77 419 265 5933 -1.15 11.18 -583 
501 4540 0.77 -40.28 -3139 848 2943 -1.12 -20.98 1124 
37 4785 -0.78 -33.28 2560 969 5459 -1.04 83.93 -4842 
79 7957 0.7 27.24 2335 180 219 -1.06 -3.94 223 

675 8852 0.68 4.21 371 261 6752 -0.95 22.81 -1441 
19 3775 -0.6 26.05 -2605 19 3775 -0.79 12.25 -930 

265 5933 0.65 4.45 411 125 6623 -0.77 9.76 -761 
61 6927 -0.63 3.04 -290 146 5914 0.75 13.09 1047 

425 2990 -0.56 13.37 -1433 783 1136 0.7 10.95 939 
288 7557 0.58 -1.43 -148 32 4375 -0.67 21.39 -1916 
503 4825 -0.55 -0.47 51 279 6869 -0.66 7.09 -645 
527 5019 -0.56 -10.3 1104 940 5288 -0.64 -51.63 4840 
557 6241 -0.57 -0.22 23 814 2035 -0.65 5.81 -536 
279 6869 -0.6 7.91 -791 360 660 -0.5 -1.83 220 
180 219 0.56 18.06 1935 678 8969 -0.45 -0.12 16 
396 1656 0.52 4.53 523 326 8665 -0.49 3.93 -481 
129 6212 -0.5 -2.01 241 196 937 -0.46 13.09 -1707 
848 2943 -0.51 18.97 -2232 287 7602 -0.48 14.26 -1783 
328 8697 0.45 -27.42 -3656 189 21 -0.46 -8.28 1080 
921 4287 -0.39 -31.02 4772 794 1173 -0.46 -1.24 162 
108 5185 -0.44 11.79 -1608 90 5404 -0.47 16.01 -2044 
755 1543 0.46 22.28 2906 343 8961 -0.43 -14.41 2011 
168 7949 0.46 -0.92 -120 222 1708 -0.42 -18.06 2580 
818 2491 -0.42 -29.27 4181 413 1101 -0.37 35.48 -5754 
506 4910 -0.34 -2.48 438 518 5338 -0.38 -6.41 1012 
488 4534 -0.44 -12.61 1720 844 2040 0.41 21.73 3180 
247 6401 -0.39 7.43 -1143 79 7957 0.4 29.21 4382 
937 5168 -0.35 -20.86 3576 624 8322 -0.3 1.92 -384 
83 8494 0.36 2.43 405 815 1983 -0.32 10.65 -1997 

176 8130 0.36 -46.97 -7828 107 5235 -0.35 1.1 -189 
933 4775 -0.29 10.2 -2110 20 3569 -0.27 9.43 -2096 
537 5777 0.41 -6.94 -1016 557 6241 -0.3 0.41 -82 
20 3569 -0.33 -2.68 487 57 7462 -0.29 -12.63 2613 

467 4057 0.39 10.68 1643 937 5168 -0.25 -8.72 2093 
 
Table 2. Columns (a) and (f) are the Bailey numbers of the star in the Almagest. Columns (b) and (g) are 
the HR numbers of the star. Columns (c) and (h) are the x-values (in arcsec/yr), and columns (d) and (i) are 
the y-values (in arcmin) in the x-y fits as discussed in the text. Columns (e) and (j) are the dates implied for 
each individual star, which are 60 . i iy x×
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Figure 1. The analysis of Dambis and Efremov for the 80 fast stars in longitude and 
latitude. The three highest points on the chart are α Cen(β), β CVn(β), and θ Cen(λ), 
respectively. The lowest point is θ Cen(β). The linear correlation coefficient and the R2 of 
the fit are both very nearly zero, even excluding the four ‘outliers’ noted above. None of 
the points is really an outlier with respect to the full set of data (see the dashed lines in 
Figures 4-5 and the discussion in the text).
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Figure 2. The estimated systematic errors in longitude for the 1028 Almagest stars. These 
systematic errors are estimated by averaging the errors of the six nearest neighbors to the 
target star. 
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Figure 3. The estimated systematic errors in latitude for the 1028 Almagest stars. These 
systematic errors are estimated by averaging the errors of the six nearest neighbors to the 
target star. 
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Figure 4. The distribution of estimated statistical errors in longitude for the 1028 
Almagest stars. The standard deviation of all the stars is about 39 arcmin. The dashed 
lines show the 3σ cutoff points for outliers. The standard deviation for the stars after 
omitting outliers is about 26 arcmin. 
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Figure 5. The distribution of estimated statistical errors in latitude for the 1028 Almagest 
stars. The standard deviation of all the stars is about 36 arcmin. The dashed lines show 
the 3σ cutoff points for outliers. The standard deviation for the stars after omitting 
outliers is about 23 arcmin. 
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