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The first part of Ptolemy’s Planetary Hypotheses (hereinafter PH),1 and the only part 
surviving in Greek, is described by Ptolemy as a succinct summary of the planetary 
models in the Almagest.2 He says his summary is arranged so that the models may be 
more easily understood by people ‘like ourselves’, presumably people knowledgeable in 
theoretical astronomy, and by people who build mechanical models.  
 
If this was all we learned from the PH then it would hardly be worth writing about, since 
we have the Almagest and it explains the planetary models in great detail. But what 
makes this part of the PH interesting is that while Ptolemy generally follows the 
Almagest, e.g. he explains the models in the same order: Sun, Moon, Mercury, Venus, 
Mars, Jupiter, Saturn, and he uses the same model structures: an eccentre for the Sun, 
crank mechanisms plus epicycle for the Moon and Mercury, and the equant plus epicycle 
for Venus, Mars, Jupiter, and Saturn, when it comes to details we find many differences 
with respect to the Almagest.  
 
Now Ptolemy in fact remarks that he has made many corrections to his models ‘on the 
basis of more prolonged comparisons of observations’– corrections to the model 
structures, to the relative size of various model elements, and to the periodic motions. 
Indeed we do find such changes: the model for the Moon and the latitude models for the 
inner and outer planets, the radius of the crank circle for Mercury and possibly the 
eccentricity for Saturn, and all of the mean motions except those for the fixed stars and 
the Sun are different from what is found in the Almagest. 
 
In the following the technical content of the first part of the PH will be reviewed, with 
particular attention to the mean motions and the associated epoch values.3

 
 
A. Simple Periods from Almagest corrections 
 
Each of Ptolemy’s planetary models has one or more angles that increase uniformly with 
time. The rate of increase is called a mean motion, in contrast to the true motion which is 
generally not uniform. Mean motions are empirically determined by observing how long 
it takes for an angle to advance by some amount, and the accuracy of the mean motion is 
improved as the time baseline lengthens. In most cases the angles that are increasing 
uniformly are not directly observable, and much of the Almagest is devoted to explaining 
how to deduce the values of these mean angles from observations of planetary positions 
that are increasing nonuniformly due to the various anomalies and which are generally 
not at integral numbers of return in the mean angle. These deductions, however, depend 
on the values of previously determined model parameters such as the eccentricity and 
epicycle radius and the direction of the apsidal line, and changes in these values will, in 
general, lead to changes in the mean angles and hence the derived mean motions. 
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In almost all cases mean motions are summarized as period relations: statements that 
some number of returns or restitutions in some angle occur in some number of years. 
With enough accurate empirical data, it is even possible to specify small adjustments to 
the number of returns and years, so that so-called ‘corrected’ period relations more 
closely approximate the underlying empirical data. These period relations, corrected or 
not, need not necessarily lead to mean motions that agree exactly with those found from 
observations separated by long intervals of time, typically several to many centuries, and 
the question of which comes first, the long time interval determination, or successively 
refined period relations estimated from observed returns, or perhaps some iteration using 
both, is not necessarily clear in the historical records we have. 
 
Regarding the periodic restitutions, Ptolemy writes 
 

Now that these things have been outlined, next let us go on to the models 
of the planets, setting out first their simple and unmixed periods, out of 
which the particular, complex ones arise; these [simple and unmixed 
periods] were obtained by us as approximations to the restitutions 
computed from the correction. 

 
The ‘simple and unmixed’ periods that Ptolemy is referring to correspond to the mean 
motion of the fixed stars and the planetary apogees and nodes, the Sun, the planets with 
respect to the Sun (elongation for the Moon and anomaly for the five planets), plus the 
mean motions in anomaly and latitude for the Moon. 
 
Ptolemy’s numerical values are as follows: 
 
In 300y (Egyptian years of 365d) and 74d

  the sphere of the fixed stars as well as the 
apogees and nodes of the five planets make 1/120th return relative to the tropical and 
equinoctial points of the zodiac. 
 
In the same period, the Sun makes 300 returns relative to the tropical and equinoctial 
points of the zodiac. 
 
In 8523 tropical years the Moon makes 105416 returns to the Sun (synodic months), in 
3277 months it makes 3512 returns in anomaly, and in 5458 months it makes 5923 
returns in latitude. 
 
Finally, Ptolemy specifies, for each of the five planets, the number of sidereal years 
required to complete some number of returns in anomaly: 
 
 

   sidereal returns in 
                          years  anomaly  
Mercury     993    3130 
Venus  964      603 
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Mars   1010      473 
Jupiter     671      603 
Saturn     324      303 

 
Our immediate task is to understand how Ptolemy arrived at these numbers as 
‘approximations to the restitutions computed from the correction’. As a first and certainly 
most obvious assumption, let us suppose that ‘the restitutions computed from the 
correction’ are simply those given in the Almagest. 
 
Some of the PH period relations agree exactly with the corresponding parts of the 
Almagest. The statement that 300 tropical years takes 300y 74d follows exactly from the 
length of the Hipparchan solar year of 1 1

4 300365 d+ − used in all of Ptolemy’s 
astronomical works. Since 1/120th return is just 3° in 300ty, the speed of the fixed stars 
and the five apogees corresponds to a precession constant of 1° per 100ty and over even a 
millennium timescale is negligibly different from the precession constant of 1° in 100y 
that Ptolemy specifies in the Canobic Inscription and uses in the Almagest. And as 
Ptolemy helpfully remarks, it also follows that 36,000 tropical years is exactly equal to 
36,024y 120d and 35,999 sidereal years. If Ptolemy is in fact referring to ‘approximations 
to the restitutions computed from the correction’ for these motions, it is presumably the 
1/300th of a day correction to the year and the small inequality of the tropical and sidereal 
years that he is referring to. 
 
Regarding the lunar mean motions Ptolemy devotes most of Almagest IV to explaining 
and then ‘correcting’ a set of period relations for lunar motion that he says Hipparchus 
had “proved, by calculations from observations made by the Chaldeans and in his time”. 
Hipparchus’ results are that the Moon makes 
 

1) 4267 returns in elongation from the Sun in 126007d 1h, which gives a synodic 
month of approximately 29;31,50,8,20d, and which combined with Hipparchus’ 
tropical year length leads to a lunar mean motion in longitude of 
13;10,34,58,33,30,30°/d; 

 
2) 4573 returns in anomaly in 4267 months (equivalent to 269 returns in anomaly 

in 251 months), which leads to a mean motion in anomaly of 
13;3,53,56,29,38,38°/d; 

 
3) 5923 returns in latitude in 5458 months, which leads to a mean motion in 

latitude of 13;13,45,39,40,17,19°/d. 
 
Then in Almagest IV 7 and 9 Ptolemy ‘corrects’ the mean motions that result from these 
period relations by examining  pairs of eclipses separated by over 800 years. The result of 
these corrections is that the mean motion in longitude is unchanged, the mean motion in 
anomaly is reduced by 0;0,0,0,11,46,39°/d, and the mean motion in latitude is increased 
by 0;0,0,0,8,39,18°/d. In fact, in Almagest IV 9 Ptolemy is even correcting an earlier 
correction to the mean motion in latitude that he included in the Canobic Inscription.4
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Inspecting the period relations Ptolemy gives, we realize that they can all be built from 
combinations of shorter, well known relations: 
 

 

105416 448 235 136
8523 448 19 11

3512 13 269 15
3277 13 251 14

5923 7 777 2 242
5458 7 716 2 223

⋅ +
=

⋅ +

⋅ +
=

⋅ +

⋅ + ⋅
=

⋅ + ⋅

 

 
 
Thus suggests that Ptolemy might have derived the PH relations from corrected mean 
motions known earlier, using a theorem apparently well-known at the time, that if 

 a c
b d
<  

then 

 a ma nc c
b mb nd d

+
< <

+
 

 
for any positive integers m and n.5 So let us suppose that we have some corrected mean 
motion ω, and that we know upper and lower limits on ω from familiar period relations, 
i.e. 
 

 a c
b d

ω< < . 

 
It follows that we also know the errors ε and ε′ determined by 
 

 a
b

ω ε= +  

 
and 
 

 c
d

ω ε ′= −  

 

and our task is to find values of m and n that make ma nc
mb nd

+
+

 as close as possible to ω. It 

is easy to show that this is accomplished by picking m and n according to 
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It is also the case that if one constructs a continued fraction expansion of ω, and if the 

approximations a/b and c/d occur in the expansion, then the approximation ma nc
mb nd

+
+

 with 

optimal values of m and n will also occur in the expansion.  
 
Let us see how Ptolemy might have applied this to the problem of approximating the 
corrected mean motions of the moon. Using Hipparchus’ values he would find the 
number of months per tropical year as 
 

/
/1

24

4267 12;22,6,17,23
126,007 / 365;14,48

m
m ty

d d ty
ω = =  

 
corresponding to the month length 29;31,50,8,9d. He would certainly have been well 
aware of the shorter period relations, 136m in 11y and 235m in 19y, which bound this value 
of ω, and these lead to the errors 
  
  /0;0,17,12,26m tyε
and 
  /0;0,0,1,4m tyε ′
 
leading to an estimate for the optimal n/m value of about 560-562, depending on how one 
does the rounding. Using instead the System B synodic month of 29;31,50,8,20d, the only 
month actually used in the Almagest, one finds the optimal n/m value of about 525-527 
(exact arithmetic gives 525): 
 

 136 525 235 136 123511 235
11 525 19 11 9986 19

⋅ +
< =

⋅ +
<  

 
However, what Ptolemy in fact used was n/m = 448, and to get that value for n/m using 
the method we are discussing or, equivalently, to find the ratio 105416/8523 in the 
continued fraction expansion based on his month length, he would have had to start with 
a synodic month length in the range 29;31,50,8,37–29;31,50,8,52 (his ratio gives 
29;31,50,8,48). This suggests that either Ptolemy was not working in this direction at all 
and hence was using a poor approximation, or that he was working in this direction but 
was using a month length with a fourth digit in the range 37-52. 
 
Similarly, if Ptolemy was using the Almagest corrected mean motion in anomaly 
ωa = 13;3,53,56,17,51,59°/d, which leads to 1;4,18,10,1,25,28r/m

, he would have found an 
optimal n/m of about 213, whereas in fact he uses 13, which leads to 1;4,18,9,46,38,3r/m, 
and which would follow from combining the PH month6 with any ωα in the range 
13;3,53,52,58°/d – 13;3,53,53,18°/d, significantly below the corrected Almagest value. 

 - 5 - 



Moreover, since the corrected value in the Almagest is explicitly constructed by adding a 
very small increment to the value resulting from the basic 269 returns in 251 months, it is 
hard to understand why Ptolemy did not simply give 269 returns in 251 months, or the 
equivalent 4573 returns in 4267 months, as his PH approximation, since it is the starting 
value for the correction in the Almagest and leads to the value  1;4,18,10,2,23,26r/m which 
is a significantly better approximation to the corrected Almagest value than the 3512 
returns in 3277 months relation he gives. Once again this suggests that if he was making 
a good approximation, he was not starting with the corrected Almagest value. 
 
Finally, the corrected value for the mean motion in latitude in the Almagest is explicitly 
constructed by adding a very small increment to the value resulting from the Hipparchan 
5923 returns in 5458 months, and this is the PH ratio.  That he did not do the same thing in 
the parallel case of the lunar anomaly, however, suggests that we at least probe a little 
deeper. Now the Almagest corrected mean motion in latitude, ωb = 13;13,45,39,48,56,38°/d, 
may be converted into returns per month using the PH synodic month, yielding 
1;5,6,42,22,27,13r/m and the continued fraction expansion of this gives the following 
sequence of convergents: 
 
12 /11,13 /12, 38 / 35, 51/ 47, 242 / 223, 777 / 716,1796 /1655, 2573 / 2371,6942 / 6397,...  
 
that does not include 5923/5458. In fact, the error using 5923/5458 is more than twice as 
large as the error from the smaller ratio 2573/2371 that does occur in the series of 
convergents. Even if Ptolemy was using the Almagest synodic month to convert the daily 
speed into revolutions per month, 5923/5458 still does not occur in the series of 
convergents, and the error using 5923/5458 is only about 30% smaller than the error from 
the smaller ratio 2573/2371 that once again occurs in the sequence of convergents. 
 
If Ptolemy was indeed not starting from the corrected Almagest values, but was trying to 
make an accurate approximation, we can work backwards and ask what range of values 
for the mean motions will have the simple PH relations appear in their continued fraction 
expansion. The results are shown in Table 1. 
 
     Table 1 

 Lower limit Upper limit Almagest  
elongation 12;11,26,41,8,37°/d 12;11,26,41,8,52°/d 12;11,26,41,20°/d

anomaly 13;3,53,52,41 13;3,53,53,18 13;3,53,56,18 
latitude 13;13,45,39,25 13;13,45,39,31 13;13,45,39,49 

 
In each case the Almagest value lies well outside the allowed interval, which suggests 
that for the Moon Ptolemy was starting with mean motions different from those found in 
the Almagest. The modern values for these mean motions in A.D. 150, corrected for DT, 
are 12;11,26,41,20°/d, 13;3,53,55,43°/d, and 13;13,45,39,2°/d, respectively. 
 
In Almagest IX 3 the mean motions in anomaly of the five planets are derived from 
finely-tuned period relations. Ptolemy explains that Hipparchus had computed for each 
planet “the smallest period in which it makes an approximate return in both anomalies” 
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and that “These [periods] have been corrected by us, on the basis of the comparison of 
their positions which became possible after we had demonstrated their anomalies, as we 
shall explain at that point [in Almagest IX 10, X 4, X 9, XI 3, and XI 7]”. Unlike the 
cases with the Moon, however, Ptolemy does not tell us exactly what period relations 
Hipparchus used, and so we do not known what Ptolemy was ‘correcting’. In any event, 
the mean motions in anomaly that Ptolemy gives in the Almagest were ultimately derived 
as follows:7

 
/

1 1
2 4

57 20520Saturn      0;57,7, 43, 41, 43, 40
59 (1 ) 21551;18

r
d

a ty d dω = =
+ + +
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/
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/

1 1
4 20

5 1800Venus     0;36,59, 25,53,11, 28
8 (2 ) 2919;40

r
d
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/

1
30

145 52200Mercury  3;6, 24,6,59,35,50
46 (1 ) 16802;24

r
d

a ty d dω = =
+ +

 

 

In the derivations for Jupiter and Mars, /

1 1
4 300

360 0;59,8,17,13, 21,31
365

d
S dω = =

+ −
 is 

the mean motion in tropical longitude of the Sun, and although Ptolemy claims that the 
mean motions he gives follow directly from the revolutions in anomaly, as in the third 
lines, in fact they follow indirectly from the mean motions in longitude, as shown in the 
first and second lines. 
 
Just as we saw for the lunar month and anomaly, the ‘simple and unmixed’ PH period 
relations that Ptolemy uses are simple combinations of well-known shorter relations: 
 

Saturn  313 5 57 28
324 5 59 29

⋅ +
=

⋅ +
 

 - 7 - 



 

Jupiter  706 391 315
771 427 344

+
=

+
 

 

Mars  473 303 170
1010 647 363

+
=

+
 

 

Venus  603 3 152 29 5 2 4 152 5
964 3 243 29 8 3 4 243 8

⋅ + ⋅ + ⋅ −⎛ ⎞= =⎜ ⎟⋅ + ⋅ + ⋅ −⎝ ⎠
 

 

Mercury 3130 2 1223 684
993 2 388 217

⋅ +
=

⋅ +
 

 
All of the ratios on the right hand sides of the above equations occur in the continued 
fraction expansions of the corrected mean motions given in the Almagest, but only the 
PH ratios for Saturn and Mercury are optimal in the sense of continued fractions – no 
smaller fraction is a better approximation. However, for Jupiter Ptolemy’s choice of 
706/771 is actually inferior to 391/427, for Mars his choice of 473/1010 is inferior to 
303/647, and for Venus his 603/964 is inferior to 152/243. In all three cases the error for 
Ptolemy’s choice is about three times larger than the error from the shorter period relation 
he could have used. This strongly suggests that, at least for Jupiter, Mars and Venus, 
Ptolemy was finding an approximation to something other than the mean motion values 
we find in the Almagest. 
 
We can again investigate this further by working backward and asking how much we can 
tinker with the Almagest mean motions and still have the simple PH relations appear in 
the continued fraction expansion. The results are shown in Table 2. 
 
     Table 2 

 Lower limit Upper limit Almagest  
Saturn 0;57,7,43,31°/d 0;57,7,45,13°/d 0;57,7,43,41°/d

Jupiter 0;54,9,3,3 0;54,9,3,31 0;54,9,2,46 
Mars 0;27,41,40,28 0;27,41,40,44 0;27,41,40,19 
Venus 0;36,59,27,19 0;36,59,27,29 0;36,59,25,53 
Mercury 3;6,24,6,58 3;6,24,7,15 3;6,24,6,59 

 
For Jupiter, Mars, and Venus the Almagest value lies well outside the allowed interval, 
and even for Saturn and Mercury the Almagest value lies barely inside the allowed 
interval (relative to the width of that interval). 
 
Altogether then, for both the Moon and the planets, there is certainly no significant 
evidence that Ptolemy was diligently trying to find good approximations to the 
‘restitutions computed from the correction’ as we know them from the Almagest. 
Assuming that he was trying to make good approximations, we have found the intervals 
in which his underlying values must have fallen. 
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B. Complex Periods from Simple Periods 
 
After giving the simple period relations discussed above, Ptolemy proceeds to a series of 
discussions of the model for each individual planet and as part of each such  discussion 
he gives what he calls the ‘particular, complex’ period relations, which he says arise from 
the simple relations. 
 
For the Sun Ptolemy writes that the apogee is taken as tropically fixed at 1

265 , and the 
Sun makes 150 returns in 150y 37d relative to the apogee. Taken together these of course 
give the same Hipparchan value 1 1

4 300365 d+ −  that Ptolemy gave earlier with the simple 
relations as discussed above. Then later, when the inner planets Mercury and Venus are 
discussed, Ptolemy says that in 144y 37d the epicycle makes 144 revolutions plus two 
sixtieths of one degree relative to the sidereally fixed apogee of each planet, and this is, 
of course, just the sidereal motion of the Sun. 
 
The ‘simple, unmixed’ mean motions for the Moon were the motion in elongation, η, 
corresponding to the synodic month, the motion in anomaly, α, and the motion in latitude, 
ω′. From these and the motion ωS of the Sun, Ptolemy gives the ‘particular, complex’ 
motions which correspond to the movement of elements of the lunar model as he 
describes it. First, he says that the mean motion of the lunar node    
 
 N Sω ω η ω′= + −  
 
is such that in 37y 88d the lunar node makes two revolutions in retrograde (clockwise) 
relative to the zodiac (hence tropical) plus ‘a further one sixtieth of a degree in precise 
computation’. Second, he says that the motion of the center of the lunar eccentre 
 
 2Mω η ω′ ′= −  
 
is such that in 17y 348d a speed equal to twice the elongation minus the argument of 
latitude makes 203 revolutions in retrograde, minus two sixtieths of a degree.  
 
Third, he says that the motion of the lunar elongation is such that in 19y 300d the double 
elongation 2η makes 490 revolutions plus a further four sixtieths of a degree. Finally, he 
says that in 26y 99d the anomaly α makes 348 revolutions minus one sixtieth of a degree.  
 
The apogee of each planet, like the sphere of the fixed stars, is taken to move with a 
motion ωπ of 3° in 300ty, and so is sidereally fixed. Ptolemy defines a ‘particular, 
complex’ motion ωP for each planet in terms of ωπ, the solar motion ωS, and the motion 
in anomaly ωa for each planet as follows: for the outer planets 
 
 P S aπω ω ω ω= + −  
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corresponding to the motion of the center of the epicycle on the deferent relative to the 
apogee of the deferent, while for the inner planets 
 
 P S aπω ω ω ω= + +  
 
corresponding to the motion of the planet itself on the epicycle relative to the apogee of 
the deferent, so ωP is in both cases a sidereal motion. The variable ωP for the inner 
planets is seen nowhere else in Ptolemy’s work, but is seen routinely in ancient Hindu 
astronomy which for many reasons is generally considered to be pre-Ptolemaic.8

 
Thus for Mercury, in 208y 174d the planet on the epicycle makes 865 returns plus four 
sixtieths of a degree relative to the apogee. For Venus, in 35y 33d there are 57 similar 
returns plus one sixtieth of a degree. For Mars, in 95y 361d the center of the epicycle 
makes 51 returns minus three sixtieths of a degree, Jupiter’s epicycle in 213y 240d makes 
18 returns plus one sixtieth of a degree, and Saturn’s in 117y 330d makes 4 returns plus 
one sixtieth of a degree. 
 
All of these ‘complex’ period relations are in general agreement with both the corrected 
and uncorrected Almagest relations and the simple PH relations discussed above. 
However, by paying close attention to the tiny remainders that arise ‘in precise 
computation’ we can see whether Ptolemy did, as he claims in the introduction, derive 
them from the simple PH relations. While the tiny fractions of a rotation might seem at 
first glance to be the result of a very delicate calculation, and perhaps even insignificant,9 
that is in fact not the case.  
 
Let us illustrate this using Mercury as an example. The simple period relation for 
Mercury is 3130 returns in anomaly in 993 sidereal years, which yields a mean motion 

, and so one sidereal return of the planet on its epicycle takes, 
using Ptolemy’s sidereal year 

/4;5,32,18, 25, 29,56 d
Pω =

 

 993 365;15,24,31,32,27,9 87;58,12
993 3130

d d=
+

 

 
Thus in 88d Mercury makes one rotation plus the distance it moves in 0;1,48d, which is 
 

 / 1
20;1,48 4;5,32 0;7,32 7d d ′⋅ = . 

 
Ptolemy wants to find a longer period relation such that in an integral number of days 
Mercury moves an integral number of rotations ± 4′ (we may suppose, since all the 
excesses he quotes are 4′ or less, but curiously, never zero). He would know that about 
every 

 
/245;32 33;15

7;23

d
r′

′
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returns the excess will once again be small, so he has many revolution numbers to pick 
from. For example he could pick 133 returns in 32y 20d which has an excess of only 0.1′, 
or he could pick 599 returns in 144y 134d which has an excess of 4′. What he decided to 
quote was 865 returns in 208y 174d which has an excess of 3′, but which he somehow 
miscalculates and gives as 4′. As a point of comparison, if instead of using the mean 
motion resulting from 4123 returns in 993 sidereal years Ptolemy had used the Almagest 
sidereally-corrected mean motion 4;5,32,18,17,58,38°/d, then 865 returns in 208y 174d 
would have an excess of only about 0.3′. Therefore we can conclude that for Mercury 
Ptolemy was using either the simple period relation or something close to it, and not the 
Almagest period relation. 
 
Repeating this calculation for all the complex period relations Ptolemy quotes gives the 
result shown in Table 3. 
 
      Table 3 

 PH Simple 
PH 

Uncorrected 
Almagest 

Corrected 
Almagest 

ωN +1 –0.3 –0.3 +0.3 
Mω′  –2 –0.5 –0.2 –0.5 

2η +4 +5.7 +6.5 +6.5 
ωα –1 –1.3 +7.8 +7.2 

     
Sun +2 +1.1 +1.1 +1.1 

Mercury +4 +2.9  +0.3 
Venus +1 +0.3  –5.4 
Mars –3 –2.7  +1.0 

Jupiter +1 –0.7  +1.4 
Saturn +1 +2.2  +0.1 

 
 
The results for the mean motion in anomaly for the Moon confirm that Ptolemy was 
indeed using the PH synodic month and not the Almagest month to convert the period 
relation in anomaly into daily motion. For the lunar node, Jupiter, and Saturn, because the 
mean motions are so slow, about 3′/d , 2′/d and 5′/d, respectively, the excess is always 2′ or 
less for any number of rotations. Also, when Ptolemy says that Saturn makes 4 rotations 
in 117y 330d with an excess of 1′, he is disguising the fact that using his simple period 
relation 313 rotations in 324 sidereal years, 4 rotations takes 117y 329d with an excess of 
only 0.2′, so in 330d the excess grows to about 2′. In general, there is some scatter in the 
cases where the excess is only 1′–2′, sometimes to the point of having the wrong sign. 
For example, the Sun’s excess is in error by nearly 1′, but we know the model parameters 
he was using (at least according to the text we have), so there is no obvious way to 
account for a mistake. It does appear, though, that when the excess is larger, the best 
agreement with the given PH values is with the excess values derived from the simple 
PH relations or something approximating them, rather than with the Almagest relations. 
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Altogether, this confirms Ptolemy’s statement that his ‘particular, complex’ relations are 
derived from his ‘simple’ relations. 
 
 
C. PH Epoch Values 
 
In all of his astronomical works Ptolemy generally assumes an epoch date many centuries 
before his own time, so ultimately his epoch values must be calculated using both 
measurements of mean longitudes in his own time and relatively precise mean motions. If 
either or both of those quantities change then we must expect the calculated epoch values 
to also change. As we have discussed above, except for precession and the Sun, all of the 
PH mean motions have changed from their Almagest values, and for that reason alone we 
can expect the PH epoch values to be different from those computed in the Almagest. If, 
in addition, any of the structural parameters in the lunar and planetary models have 
changed, we would also expect changes in the corresponding mean longitudes in the PH 
not only at the ancient epoch but also at Ptolemy’s own time. By and large, this is exactly 
what we do see. 
 
Just as he did with the Handy Tables (hereinafter HT),10 Ptolemy chose noon on Thoth 1 
of era Phillip (–323 Nov 12, hereinafter EP) as the epoch date of the PH. This is 424y 
after the Almagest epoch date Nabonassar (–746 Feb 26, hereinafter EN) and 460y earlier 
than the nominal epoch date Antoninus 1 (137 Jul 20, hereinafter EA) of the principal 
Almagest observations. Strictly speaking, in the Almagest Ptolemy gives an epoch date 
only for the star catalog, but since all the observations he uses were made within a decade 
or so of EA, we can find the values of all mean longitudes at EA using only rough 
approximations to the mean motions, a circumstance that Ptolemy himself exploits 
several times in the Almagest derivations. 
 
The sphere of the fixed stars and the planetary apogees and nodes, apart from the Sun and 
Moon, all move with respect to the vernal equinox at the speed of precession, 1° per 
100ty, and the PH values for all of these in EP is exactly what we expect relative to the 
Almagest values. The apogee of the Sun is tropically fixed at 1

265Aλ =  and the mean 
centrum is  
 162;10S Aκ λ λ= − =  
whence 
 65;30 227;40Sλ κ= + =  
 
These values follow directly by starting with the Almagest value and adding 
the increase resulting from 424

265;15κ =
y at the daily speed implied by 360° in 1 1

4 300365 d+ − . The 
same epoch value is also found in the HT. If fact, since Ptolemy’s model for 
the Sun is exactly the same in all of his astronomical works: the Almagest, the Canobic 
Inscription, the HT, and the PH, it follows that his solar epoch values must be the same in 
the HT and the PH. Conversely, whenever his models differ, especially in the mean 

162;10κ =
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motions, we should not expect the same epoch values in the HT and the PH, even though 
they have the same epoch date.  
 
The situation for the Moon is more involved, in part because Ptolemy uses different 
primary reference variables in the Almagest, the HT, and the PH. In the Almagest 
Ptolemy tabulates the mean longitude λ , the mean anomaly α, the argument of 
latitudeω′ , and the elongation η. In the HT he uses instead the mean anomaly α, the 
double elongation 2η, the longitude of the northern limit of the deferent Nλ ω λ′= − , and 
the longitude of the apogee of the deferent 2Aλ η λ= − . In the PH he uses the same 
primary reference variables as in the HT except instead of Aλ  he uses the amount by 
which the double elongation exceeds the argument of latitude 
 

 
2M

A N

ω η ω
λ λ

′ ′= −
= −

 

 
Table 4 compares the PH epoch values in the Greek and Arabic versions with values 
computed using the HT epoch values and the values resulting from starting with the 
Almagest epoch values at EN and adding to the increases due to 424y at the corrected 
daily speeds given in the Almagest. 
 
      Table 4 

PH PH(Greek) PH(Arabic) HT HT Almagest Almagest 

Sλ η λ= +  178;26° 178;01° 2 Aλ η λ= −  178;00° 178;00° λ  
α  85;36° 85;17° α  85;17° 85;17° α  
2 Mω η ω′ ′= −

 
48;39° 48;20° 2 Mω η ω′ ′= −  48;19° 48;20° ω′  

η  310;46° 310;20° η  310;20° 310;21° η  
2η  261;32° 260;40° 2η  260;40° 260;42° 2η  

Mω′  (212;53°) 212;20° M A Nω λ λ′ = −  212;21° 212;23° 2Mω η ω′ ′= −  

Nλ  230;13° 230;19° Nλ  230;19° 230;20° Nλ ω λ′= −  

2Aλ η λ= −  83;06° 82;40° Aλ  82;40° 82;42° 2Aλ η λ= −  

 
The value for Mω′  is missing in the Greek text of the PH, but it can be reliably 
reconstructed from the other given values and the mean longitude of the Sun, since 

M S Nω η λ λ′ = − − . The values from the HT agree within 1′  with the values that follow 
from the Almagest including the equation of time (for α and Mω′ a 17′correction, for 2η a 

correction, and no change for 34′ Nλ ). The Arabic text of the PH agrees well with the HT 
values, but as discussed above, it should not, suggesting that either the Arabic text itself 
or whatever Greek text it was translated from was at some point altered. 
 
For the planets Ptolemy again uses different primary reference variables in the Almagest. 
the HT, and the PH. In the Almagest Ptolemy gives in Book IX the longitude Aλ of the 
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apogee of the deferent at EN, and tables for the mean longitudeλ of the epicycle center 
and the mean anomaly α of the planet with respect to the apogee of the epicycle. In Book 
XIII he gives the latitude models, and specifies the orientation of the deferent and 
epicycle with respect to the apogee of the deferent in terms of two angles: ν is the angle 
between the northern limit of the deferent and Aλ , while δ is the angle between the 
northern limit of the epicycle and Aλ . For the outer planets and for the inner 
planets .  

180δ ν= +

90δ ν= −
 
In the HT Ptolemy tabulates the longitude of Regulus and gives the (fixed) distance of Aλ  
from Regulus.  Instead of the mean longitude he gives the mean centrum κ which is the 
distance of the mean longitude from Aλ , so Aλ κ λ= + , and the usual mean anomaly α. 
The latitude model, which is slightly different from that found in the Almagest, is still 
specified by giving the angles ν and δ. 
 
In the PH Ptolemy first specifies the longitudes of the apogee and northern limit of the 
deferent, both of which are sidereally fixed, and the mean centrum κ.  Instead of using the 
mean anomaly α, the position of the planet on the epicycle is given in terms of the angle 
θ from the epicycle apogee to the northern limit of the epicycle, and the angle Ω from the 
northern limit of the epicycle to the planet. In terms of these variables one has 

A Nν λ λ= − , δ θ κ= − , α θ= Ω− , and Aλ κ λ= + , and inversely N Aλ λ ν= − , 
θ κ δ= + , and α θ α κ δΩ = + = + + . In addition, we have as usual for the inner planets 

Sλ λ=  and for the outer planets Sλ λ α= + . 
 
It is straightforward to verify that the planetary epoch values given in the HT are all 
consistent with the epoch values in the Almagest up to minor discrepancies of 1′–2′, 
provided that the increment to the Almagest values is computed using the mean motions 
given in Almagest IX 3. Tables 5-9 give the HT epoch values, the PH epoch values from 
the Greek and Arabic texts, and the PH values that result from a small number of 
emendations as explained below. In general, since Ptolemy used the same precession 
constant in all his works, the PH and HT values for Aλ and Nλ should and do always 
agree. Since the identical solar model is used in all his works, then for Mercury and 
Venus Aκ λ+ must equal 227;40Sλ = , which is the case if we emend κ = 52;16 to 42;16 
for Mercury and κ = 177;12 to 177;16 for Venus, and likewise for Mars, Jupiter, and 
Saturn, Aλ α κ λ θ+ = + +Ω −  must also equal 227;40Sλ = , which is the case if we 
emend λA = 110;44 to 110;54 for Mars, if we accept the Arabic text’s 231;16Ω =  for 
Jupiter, and if we accept all five epoch values for Saturn from the Arabic text, since the 
entire paragraph containing these is missing in the surviving Greek manuscripts.11 Unlike 
the values for the Moon, where the Arabic text agrees with the HT instead of the Greek 
PH, for the planets we generally find the Greek and Arabic texts in agreement, and 
differing from the HT, except for the Arabic κ = 356;07 for Mars, which agrees with the 
HT but disagrees with the Greek PH value 356;20. The Greek value must be correct since 
otherwise the relation Sλ α λ+ = would fail for Mars. 
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     Table 5 

 Mercury PH (Greek) PH (Arabic) PH (emended) HT HT 
Aλ  185;24 185;24 185;24 185;24 Aλ  

Nλ  5;24 5;24 5;24 5;24 N Aλ λ ν= −  
κ  52;16 42;16 42;16 42;16 κ  
θ  132;16 132;16 132;16 132;16 θ κ δ= +  
Ω  346;41 346;41 346;41 346;56 α θΩ = +  
A Nν λ λ= −  180 180 180 180 ν  

δ θ κ= −  80 90 90 90 δ  

Aλ κ λ= +  237;40 227;40 227;40 227;40 Aλ κ λ= +  
α θ= Ω −  214;25 214;25 214;25 214;40 α  

 
 
      Table 6 

Venus PH (Greek) PH (Arabic) PH (emended) HT HT 
Aλ  50;24 50;24 50;24 50;24 Aλ  

Nλ  50;24 50;24 50;24 50;24 N Aλ λ ν= −  
κ  177;12 177;16 177;16 177;17 κ  
θ  87;16 87;16 87;16 87;17 θ κ δ= +  
Ω  168;35 168;35 168;35 169;18 α θΩ = +  
A Nν λ λ= −  0 0 0 0 ν  

δ θ κ= −  –90;04 –90 –90 –90 δ  

Aλ κ λ= +  227;36 227;40 227;40 227;41 Aλ κ λ= +  
α θ= Ω −  81;19 81;19 81;19 82;01 α  

 
 
      Table 7 

Mars PH (Greek) PH (Arabic) PH (emended) HT HT 

Aλ  110;44 110;54 110;54 110;54 Aλ  

Nλ  110;44 110;54 110;54 110;54 N Aλ λ ν= −  
κ  356;20 356;07 356;20 356;07 κ  
θ  176;20 176;20 176;20 176;07 θ κ δ= +  
Ω  296;46 296;46 296;46 296;46 α θΩ = +  

A Nν λ λ= −  0 0 0 0 ν  
δ θ κ= −  180 180;13 180 180 δ  

Aλ κ λ= +  107;04 107;14 107;04 107;01 Aλ κ λ= +  
α θ= Ω −  120;26 120;26 120;26 120;39 α  

Sλ λ α= +  227;30 227;27 227;40 227;40 Sλ λ α= +  
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      Table 8 
Jupiter PH (Greek) PH (Arabic) PH (emended) HT HT 

Aλ  156;24 156;24 156;24 156;24 Aλ  

Nλ  176;24 176;24 176;24 176;24 N Aλ λ ν= −  
κ  292;43 292;23 292;43 292;20 κ  
θ  92;43 92;43 92;43 92;20 θ κ δ= +  
Ω  NA 231;16 231;16 231;17 α θΩ = +  

A Nν λ λ= −  –20 –20 –20 –20 ν  
δ θ κ= −  160 160 160 160 δ  

Aλ κ λ= +  89;07 89;07 89;07 88;44 Aλ κ λ= +  
α θ= Ω −  NA 138;33 138;33 138;57 α  

Sλ λ α= +  NA 227;40 227;40 227;40 Sλ λ α= +  

 
      Table 9 

Saturn PH (Greek) PH (Arabic) PH (emended) HT HT 

Aλ  NA 228;24 228;24 228;24 Aλ  

Nλ  NA 188;24 188;24 188;24 N Aλ λ ν= −  
κ  NA 210;38 210;38 211;02 κ  
θ  NA 70;38 70;38 71;02 θ κ δ= +  
Ω  NA 219;16 219;16 219;18 α θΩ = +  

A Nν λ λ= −  NA 40 40 40 ν  
δ θ κ= −  NA 220 220 220 δ  

Aλ κ λ= +  NA 79;02 79;02 79;26 Aλ κ λ= +  
α θ= Ω −  NA 148;38 148;38 148;16 α  

Sλ λ α= +  NA 227;40 227;40 227;42 Sλ λ α= +  

 
Ptolemy concludes Book 2 of the Planetary Hypotheses by describing a set of tables for 
the time dependence of various mean positions associated with each of his planetary 
models. The tables have not survived but the text defines the variables he proposes to 
tabulate as follows: 
 

for the Sun: 
1) , the Sun from the apogee of the deferent in the trailing (clockwise) direction κ
  
for the Moon: 
1) Nλ , the northern limit of the deferent from the vernal equinoctial point in the 
leading (counterclockwise) direction  
2) Mω′ , the apogee of the deferent from the northern limit in the leading direction 
3) 2η , the centre of the epicycle from the apogee of the deferent in the trailing 
direction  
4) α , the centre of the moon from the apogee of the epicycle in the leading 
direction  
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for the five planets: 
1) Aλ , the apogee of the deferent from the vernal equinoctial point the trailing 
direction  
2) , the centre of the epicycle from the apogee of the deferent in the trailing 
direction  

κ

2a (for Mercury only) the centre of the deferent from the apogee in the leading  
direction   
3) θ , the northern limit of the epicycle from the apogee of the epicycle in the 
leading direction 
4) Ω , the planet from the northern limit of the epicycle in the trailing direction  

 
As it happens there is no discussion of any of these variables elsewhere in Book 2, but in 
the first part of Book 1 (the only part surviving in Greek), following his introduction, 
Ptolemy has written two paragraphs for each planet, the first describing his model and 
giving the mean motion of each angle that he later says comprise the tables, the second 
giving the EP epoch value of each of the angles. In the text of Book 1 Ptolemy also gives 
for the planets Nλ , the northern limit of the eccentre from the vernal equinoctial point 
towards the trailing parts of the cosmos, but this is not in his tables, presumably since 
there is always a constant angle A Nν λ λ= −  between the apogee and the northern limit of 
the eccentre.  
 
The fact that Ptolemy clearly gives us both the mean motions and the epoch values of the 
variables he is tabulating would allow us to reconstruct the lost tables with some 
confidence, but that would not teach us much. What is much more instructive is to 
compute the value of each variable in Ptolemy’s time, at say epoch EA, and to compare 
those with the corresponding values computed using the Almagest. Such comparisons are 
of interest for two reasons: 

(1) any differences in the Almagest and PH values at EA will most likely come from 
changes in the contemporary observations that determine the model structural 
parameters: eccentricity e, epicycle radius r, and various mean longitudes, while 
differences in the model parameters at distant epochs such as EP are affected also 
by the changes in the mean motions, and 

(2) from the pattern of changes in the model parameters we might learn something 
about the analysis procedure that produced those changes.  

 
The mean values to consider for the Moon are: 2η , Mω′ , Nλ , and α , from which the 
mean longitude λ and the argument of latitude ω′ can be computed. For the outer planets 
the relevant variable is the mean centrum κ and for the inner planets the distance Ω of the 
planet from the northern limit of the epicycle, or alternatively the mean anomaly 
α κ δ= Ω− − . All other values should agree due to the use of the same precession 
constant and solar motion in the PH and the Almagest, and they would agree if not for the 
error of 1′ in the period relation for κ for the inner planets (as mentioned above, the text 
gives 144r + 2′ in 144y 37d, but it should give 1′). Over the 460y between EP and EA this 
gives an error of about 3′ in the mean longitude of Mercury and Venus, and to keep 
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things as clean as possible that error has been corrected in the comparisons that follow. 
The values of interest are shown in Tables 10 and 11.  
    
      Table 10 

Moon PH(EP) Alm(EP) diff. PH(EA) Alm(EA) diff. 
2η   261;32°  260;42°    0;50°  353;38°  353;46°  –0;08° 

Mω′  212;53 212;23   0;30 297;07 297;16 –0;09 

Nλ  230;13 230;20 –0;07 123;49 123;47   0;02 
α    85;36   85;17   0;10 213;57 216;02 –2;23 

Sλ η λ= +  178;26 178;00   0;26 292;41 292;42 –0;01 

2 Mω η ω′ = − ′    48;39   48;20   0;19   56;30   56;29   0;01 
 
 
      Table 11 

 PH(EP) Alm(EP) Diff. PH(EA) Alm(EA) Diff. 
Ω (Mercury) 346;41° 346;55° –0;14° 205;09° 205;15° –0;06° 
Ω (Venus) 168;35 169;16 –0;41 245;22 244;39   0;43 
α(Mercury) 214;25 214;40 –0;15 274;32 189;26 –0;06° 
α(Venus) 81;19   82;00 –0;41 189;20 273;49   0;43 
κ (Mars) 356;20 356;07   0;13 141;08 141;08   0;00 
κ (Jupiter) 292;43 292;19   0;24 204;25 203;59   0;26 
κ (Saturn) 210;38 211;00 –0;22   68;49   69;07 –0;18 

 
 
The PH and Almagest mean values for longitude and latitude of the Moon are, allowing 
for rounding errors, in agreement at EA, but the mean value of anomaly shows a 
relatively large change. Now in the Almagest an elegant geometrical analysis of a trio of 
lunar eclipses takes as empirical input the times of the three eclipses and delivers as 
output the lunar eccentricity (Ptolemy gets ), the mean longitude/ 5;15 / 6r R 0 λ , and 
the mean anomaly α. It happens, however, that the values derived in such analyses are 
very sensitive to changes in the input times, a circumstance that Ptolemy himself explains 
in detail in Almagest IV 11, and the values are strongly coupled, so that in general they 
all change. This means that the pattern of changes we see in the PH – a change in α but 
no change in r/R or λ – is quite surprising, and probably means that Ptolemy was making 
changes to the value of mean anomaly based on empirical considerations other than 
eclipse trios. Furthermore, it bears repeating that we do not know what lunar parameter 
values Ptolemy was in fact changing to get to the PH values. 
 
We find a very similar pattern in the case of Saturn and Jupiter. In both cases the 
Almagest analysis is an even more elaborate geometrical exercise, this time of trios of 
oppositions with the mean Sun.12 Once again we know that the results of the analysis  – 
in this case the eccentricity e/R, the longitude of the apogee λA, and the mean centrum κ – 
are sensitive to small changes in the input data,  and when one changes, they all change. 
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Yet when we compare the Almagest and PH parameter values, for both planets κ changes 
but λA is unchanged, while for Jupiter e/R is unchanged and for Saturn it is either 
unchanged (as in the Arabic text) or the change is very small (as in the Greek text, which 
reads 1

33  instead of the Almagest’s 1 1
3 123 ). In addition, in the Almagest the values for 

r/R are determined in a subsequent analysis based on an additional observation for each 
planet, and the result for r/R depends on the values assumed for e/R, λA, and κ, yet in both 
cases the Almagest and PH values for r/R are in agreement, even though κ has changed. 
Once again this strongly suggests that Ptolemy was basing his change in κ for Saturn and 
Jupiter on an analysis different in character from what we find in the Almagest. On the 
other hand, for Mars at epoch EA the values of e/R, λA, κ, and r/R are the same in the 
Almagest and the PH, so it appears that except for the mean motion in anomaly Ptolemy 
found no reason to change the parameters for Mars. 
 
For the inner planets the analyses in the Almagest are much simpler than we find for the 
outer planets. Ptolemy shows how to use successive pairs of observations at greatest 
elongation to find in turn λA, e1, e2, and r/R, and a final observation gives the mean 
anomaly α. The change of 6′ in α (or Ω) for Mercury might be due in part to the fact that 
in the Almagest and the HT and r = 22½, while in the PH  but 1 2 3e e= = 1 3e =

1
22 2e = and r = 22 ¼. For Venus the model structural parameters are the same in all of 

Ptolemy’s works ( 1
41 2 1e e= =  and 1

643r = ), so the  Almagest–PH change of 43′ in  α 
cannot be explained by a structural parameter change. 
 
Summary 
 
Early in his introduction Ptolemy acknowledges “the corrections that we have made in 
many places”, and indeed, apart from the sphere of the fixed stars and the Sun, he has 
changed many things. He first gives eight long period relations for the mean motions – 
longitude, anomaly, and latitude for the Moon, and anomaly for each of the five planets – 
which he says are “approximations to the restitutions computed from the correction”, and 
although he does not tell us specifically what those restitutions or the corrections are, it 
seems clear that all of them, with the possible exception of Mercury and Saturn, are not 
what we know from the Almagest.  
 
He next gives ‘particular, complex’ periods which are approximations to linear 
combinations of the eight approximations and the periods for the fixed stars and the Sun, 
and he also gives the values of the corresponding mean positions associated with each of 
these period relations. Altogether, these then provide the basis for the lost tables that he 
does not mention until the final sentences of the entire work. 
 
All of the epoch values for the Moon and the planets are different at EP, but this is in part 
a consequence of the changes in the mean motions. In Ptolemy’s time at epoch EA the 
changes are to the anomaly, but not the longitude or latitude, of the Moon, the mean 
longitude of Saturn and Jupiter, but not Mars, and the anomaly of Venus and Mercury, 
the former a large change, the latter a small one. Finally, the pattern of parameter changes 
we see suggests that the analyses that yielded the PH parameters were not the elegant trio 
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analyses of the Almagest but some sort of serial determinations of the parameters based 
on sequences of independent observations.13
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