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[ecture 3

o Almagest Books 4 — 6

e the Moon

e the problem of parallax

e the length of the various months

e the first geometric model

e the second geometric model

e sizes and distances of the Sun and Moon
e the background



the Moon and the Sun are both about the same size as viewed from Earth: they
both subtend about '2° in the sky.

the distance to the Moon is not
negligible compared to the size of
the Earth.
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best observations are times of lunar eclipses: at that time we can compute the
position of the Sun, and we then know that the Moon 1s exactly 180° away.

Anatomy of a Lunar Eclipse

A total lunar eclipse can only occur at Full Meon, when Earth blocks the
sunlight normally reflected by the Moon. Some sunlight is bent through
Earth's atmosphere, typically allowing the Moon a coppery glow. This
diagram, not to scale, looks down on the solar system from above.

SPACE.com Graphic [/ Robert Roy Britt
SOURCES: Fred Espenak, NASA; The Moon Book







by the way, a solar eclipse is similar but a bit more complicated.
http://sunearth.gsfc.nasa.gov/eclipse/SEanimate/SE2001/SE2017Aug2 1 T.GIF
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What is a ‘month’?

There are several:

(a) return to the same star on the ecliptic (sidereal).  27¢07" 43™ 12°

(b) return to the same declination ¢ (tropical). 27907" 43™ 05°
(c) return to the same speed (anomalistic). 27913 18™ 33°
(d) return to the same latitude (draconitic). 27905" 05™ 36°

(e) return to the same angle from the Sun (synodic). 299 12" 44™ (3°

The synodic month — from one new moon or full moon to the next — 1s the one
we use in daily conversation.



Sidereal Month (return to same longitude or fixed star)
Tropical Month (return to the same equinox or solstice)
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Anomalistic Month (return to same speed, e.g. fastest or slowest)
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Draconitic Month (return to the nodes)




Synodic Month (return to the Sun)
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to get an eclipse we must have the Sun-Earth-lunar nodes lines up, and the
Moon fairly near a node (with about +£7°). On average we get about two eclipses
per year, somewhere.
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Period Relations

Periodic (Saros)
6585149 =223™ =239 = 242% = 241"+ 10%° (about 18")

Exeligmos (3x Saros)
19,756% = 669™ = 717* =726 = 723" + 32° (about 54°)

Hipparchus (Babylonian)
126,007% 1" = 4267™ = 4573 = 726% = 4612' — 7%° (about 345Y)
and 5458™ = 5923¢

Note that 126007¢ 1" / 4267™ =299 12" 44™ 02° (compared to 29 12" 44™ 03°)
All of these come from centuries of eclipse records in Babylon, starting around

750 B.C. if not earlier (remember that Alexander the Great conquered Babylon
in 323 B.C.)



Ptolemy and Hipparchus found that regarding just new moon and full moon,
when the Sun and Moon are in a line with the Earth, a simple model would
work.

http://www.scs.fsu.edu/~dduke/models.htm
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http://www.scs.fsu.edu/%7Edduke/models.htm

However, in the more general case the simple model fails and Ptolemy uses a
more complicated model. http://www.scs.fsu.edu/~dduke/models.htm



http://www.scs.fsu.edu/%7Edduke/models.htm

Sizes and Distances of the Sun and Moon

Ptolemy gives an analysis which 1s extremely delicate to compute.

Sun

Meon Earth
Ptolemy takes
L T . 1 0=0;31,20°
S - L _ = .
($+1)Lsing -1 1/((a “) Sinf L) 0=23/50=1;21,20
L=64:;10

but for example ¢/0 =2 2/5 makes S <0 to get §=1210


http://en.wikipedia.org/wiki/Image:HipparchusConstruction.png

The Background

Ptolemy’s usual fudging

Luni-Solar calendars

Babylonian models



Ptolemy’s fudging

for the simple model he produces two trios of lunar eclipses:

=720 Mar 19/20 7:30 pm 133 May 6/7 11:15pm
=719 Mar 8/9 11:10 pm 134 Oct 20/21 11:00 pm
-719 Sep 1/2  8:30 pm 136 Mar 5/6  4:00 am

Analysis of both trios gives virtually identical results, and
changing any of the times by even a few minutes substantially
changes the results.

Later, in Almagest 4.11, he gives two more trios and once again
gets the very same answers. Such coincidences are very unlikely.



for the complicated model

(a) Ptolemy wants to know the maximum angle the true Moon can
differ from the average Moon. In the case of the simple model this
1s 5°. Ptolemy produces two observations which he analyzes to get
a maximum angle of 7;40° (in both cases). But he neglected
parallax, and 1f he had included 1t he would have gotten 7;31° and
7:49° for the two cases.

(b) Ptolemy needs to know the size of his new central epicycle, so he
produces two observation that both give him 10;19. In both cases
he miscomputes but still manages to get the same answer.

(¢) Ptolemy’s complicated model makes the apparent size of the Moon
vary by almost a factor two. In reality it varies by about 15%
(maximum to minimum).



for the sizes and distances Ptolemy has to very carefully analyze
eclipses from 523 B.C. and 621 B.C. (why so ancient?). In the end he

finds
_S =19

However, in about 240 B.C. Aristarchus, in a completely different kind
of analysis, also found S/L=19. He assumed only that the angle Moon-
Earth-Sun was 87° at half-moon.




In between Ptolemy and Aristarchus, Hipparchus used slightly
different parameters to get a much different answer:

Ptolemy takes Hipparchus takes
6=0;15,40° 6=0;16,37°

¢ =2 3/560=0;40,40° p=21/260=0;41,33°
L=64;10 L=67;20

to get S=1210 to get S =490, or he

assumed S =490 and
computed L = 67;20

the correct answers are about L = 60 and S = 23,000



Luni-Solar Calendars

The fact that the month is just a bit longer than 2972 days caused a lot of bother
in establishing a workable calendar that keeps months properly aligned with the
year and its seasons.

Early try: Meton and Euctomen (about 430 B.C.): the Metonic calendar

19 years = 235 months = 6940 days
=12 years of 12 months plus 7 years of 13 months

There are 125 full (30-day) months and 110 hollow (29-day) months
Resulting year 1s 365 5/19 days

Resulting month 1s 29 + 1/2 + 3/94 days



365 5/9 is longer than 365 % by 1/76 day. Hence Callippus (about 330 B.C.)
suggested a new calendar with four successive 19-year Metonic cycles but
leaving out 1 day from one of the cycles:

76 years = 940 months = 27,759 days
=4 x 235 months =4 x 6,940 days — 1 day

Resulting year 1s 365 1/4 days
Resulting month is 29 + 1/2 + 29/940 days

The fraction 29/940 1s about 1/32.4 whereas a slightly more accurate value 1s
1/33, and this was known to Geminus and hence would have been widely
known.

There may have been even older and simpler calendars. Geminus describes ones
with 8 years = 99 months and 16 years = 198 months and 160 years = 1979
months. In all of these either the month or year length 1s not good enough.



The Antikythera Mechanism

In 1900, a team of Greek sponge-divers
working off the islet of Antikythera, midway
between the Peloponnese and Crete, discov-
ered an antique shipwreck 42 metres below the
surface of the Mediterranean Sea. Among the
many objects they recovered from the wreck,
which has been dated to around 65 Bc, were
several bronze fragments. At first overlooked,
these were later associated with some sort
of astronomical machinery. But the realiza-
tion that this was the earliest-known device
involving an arrangement of gear-wheels
came only slowly. In fact, staggeringly, the
Antikythera Mechanism is the most sophi-
sticated such object yet found from the ancient
and medieval periods.
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Figure 1| Wheels within wheels. The rear side of Freeth and colleagues’ reconstruction’ of the
Antikythera Mechanism, viewed sideways on. The left gear and pointer system simulated

the Saros cycle for predicting lunar and solar eclipses; the right gears and pointers were for

the Callippic cycle that synchronizes synodic months and solar years. At the centre, mounted on

the large gear-wheel, were two pairs of identical gear-wheels, e5/e6 at the centre and k1/k2 at the

left (see also Fig. 5 on page 590). The pair k1/k2 was provided with a pin-and-slot device that induced
an irregular movement in the pointer at the front of the mechanism indicating the position of the
Moon. This system simulated a model of the Moon’s motion developed by Hipparchus of Rhodes

in the second century Bc.
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the pin-and-slot mechanism to simulate Hipparchus’ model

Geometric Proof

We now also give a geometric proof using elementary methods, and so in principle
accessible in ancient Greece, establishing that the pin-and-slot mechanism s
equivalent to Hipparchos® epicyclic lunar theorv.
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Babylonian Astronomy

During the late 1800°s some 50,000 or so clay tablets were sent to the British
Museum from Babylon and Uruk.
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About 250 of the tablets related to astronomy were studied by two Jesuit priests,

Fathers Epping and Strassmaier in the late 1800’s and followed by Father
Kugler 1n the early 1900’s.
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Babylonian numerals:

T represents 1

< represents 10

ﬁ ﬁ <<§: could mean 7 + 6/60 + 40/3600
| (le.71/90r7.1111..)
written 7;6,40

or 1t could mean 7 times 60 + 6 + 40/60

written 7,6,40



The work of the three Fathers revealed a previously unsuspected history of very
involved mathematical astronomy developed in Babylon starting about 450 B.C.

Before their work science in Babylon was generally associated with ideas like
magic, mysticism, and astrology. These people were often referred to as the
Chaldeans.

Whereas the Greek models were designed to give the position of the Sun or
Moon at any moment in time, the Babylonians were interested in predicting the
times and position of sequences of quasi-periodic events — new moon, full
moon, etc.



The Babylonians used a purely lunar calendar. The “lunar month” begins on the
evening when the lunar crescent is first visible shortly after sunset.




Such a definition has a number of intrinsic difficulties, and Babylonian lunar
theory was developed to deal with these complications.

How many days are in a “lunar month”? Each such month is either 29 or 30
days, but we need to know which in advance.

This clearly involves both the varying speed of the Moon and the varying speed
of the Sun. Remember that the Moon covers about 13° per day and the Sun
about 1° per day, but these are averages. So we must account for the departure
from average throughout each month.

There are seasonal changes due to the angle between the ecliptic and the horizon
and also changes due to the varying latitude of the Moon.



setting

western
horizon




setting

latitude
+5°

western
horizon




setting

latitude
+5°

western
horizon




The ‘astronomical diaries’ were kept for many centuries and are night-by-night
accounts of where the various celestial objects were to be found:

No. -567

Year 37 of Nebukadnezar, king of Babylon. Month I, (the 1st of which was identical
-with) the 30th (of the preceding month), the moon became visible behind the Bull
of Heaven; [sunset to moonset:}.... [....]

Saturn was in front of the Swallow. The 2nd, in the morning, a rainbow stretched
in the west. Night of the 3rd, the moon was 2 cubits in front of {... ]

it rained’. Night of the 9th (error for: 8th), beginning of the night, the moon stood
1 cubit in front of B Virginis. The 9th, the sun in the west [was surrounded] by a halo
[.... The 11th]

or 12th Jupiter's acronychal rising. On the 14th, one god was seen with the other;
sunrise to moonset: 4°. The 15th, overcast. The 16th, Venus [....]

The 20th, in the morning, the sun was surrounded by a halo. Around noon, ... ., rain
PISAN. A rainbow stretched in the east. [....]

From the 8th of month XII, to the 28th, the river level rose 3 cubits and 8 fingers,
2/3 cubits [were missing] to the high flood [....]

were killed on-order of the king. That month, a fox entered the city. Coughing and
a little risitu-disease [... ]



The result was a list of eclipses covering about six centuries, which Hipparchus
apparently had access to.

In addition, the Babylonians kept extensive records of several centuries of
observations of the times between rising/setting of the Moon and the Sun.

On the first day of the month:

(1) the time between sunset and the setting of the moon after it had become
visible for the first time after conjunction. This interval is called NA.

Around the middle of the month. four intervals relating to full moon:

(2) the time between moonset and sunrise when the moon set for the last
time before sunrise; this is called SU.

(3) the time between sunrise and moonset when the moon set for the first
time after sunrise: called NA.

(4) the time between moonrise and sunset when the moon rose for the last
time before sunset: called ME.

(5) the time between sunset and moonrise when the moon rose for the first
time after sunset; called GE,

At the end of the month:

(6) the time between moonrise and sunrise when the moon was visible for
the last time: called KUR.



The lunar theories
Each tablet 1s a set of columns of
numbers

NEUGEBAUER’s notation: T® BCEY FGJKL M
(KUGLER’s notation: ABCDEF GHIKL M)
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ACT 13 (Reverse} = Sp IT 110. Full Moons for the year 195

Col. T Col. @ Col. B Col. C
195 I 11,58 15,11, 6,40 | 9, 7,30 (8) |3,19,25
I [2 1, 1, 640 7, 15 (9) | 3,30, 54
I 12, 3,47, 2,13,20 | 522,30 (10) | 3,33, 23
IV |2, 6,32,57,46,40 | 3,30 (11) | 3,32, 52
V (2, 918,53 20 1,37,30 (12) |{3,23, 21
VI | 2,12, 4,48, 53, 20 52 (1) |3, 6, 520
VIL | 2,14, 50, 44, 26, 40 52 (2) |2,46, 5,20
VIII | 2,16, 32, 57, 46, 40 52 (3) |2 31,3912
IX 12,13,47, 2,13,20 52 4 22513, 4
X 2,11, 1, 6,40 52 (5) | 2,26, 46, 56
XI |2, 815,11, 6,40 52 6) | 2,36, 20,48
XII |2, 52915, 33,20 37,30 (7) ! 253,45
196 I |2, 243,20 28, 45 (D | 3,12,30




Col. B: Longitude of Moon in signs and degrees.

Col. C: Duration of Daylight, in large hours.

Col. E: Latitude of Moon, in ‘barleycorn’. The unit 3¢ (3¢ means barleycorn} is } of a
finger, and 1 finger is !5 of a degree, hence

1 %e = [ barleycorn = } finger = }; degree.

Col. '¥: Eclipse magnitude, in fingers.

Col. F: Daily motion of the Moon, in degrees per day.

Col. G: Duration of the preceding month. The duration is always 29 days plus a
fraction of a day. The full days are left out, and the fraction is expressed in ‘large hours’.

Col. J: Correction, to be subtracted from G.

Col. K- Difference in time of sunset from the day of the preceding New Moon (or
Full Moon) to the present day.

Col. L: Corrected duration of the month, calculated by means of the formula

L=G-J+ Kk

Col. M: Date and time of New Moon or Full Moon, the time being reckohed from
sunset and expressed in ‘large hours’.

Some texts contain two more columns P, and P;. Their meaning is

P, = Time form sunset to the setting of the moon on the evening of first visibility of
the crescent.

P, = Time from rising of the moon to sunrise on the morning of last visibility of the
moon before New Moon.



Almost all of these changes vary fairly smoothly somewhat like sine and cosine.
The Babylonian astronomers invented schemes for approximating this kind of

variation.
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Nothing survives to tell us how these schemes were created. What do survive are
a small number of ‘procedure texts’ which give the rules the scribes need to

compute each column.

Obv.1b

Hu-maf§.......... ta 13 zib]
3%¢n 27 absing . .[...]..
428,7,30 $d al 13 z[ib]

5dirig a-r4 1,4 DU ki

%13 zib tab ta 27 absin

7en 13 zib 30 tab & al

827 absin, dirig a-rd 56,15

DU ki 27 absin tab
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What follows is easy to interpret. We have two parallel rules, the first of which refers to the fast arc of the ecliptic,
the second to the slow are.

(a) From 13 > to 27 Y month by month (you shall add) 28,7,30;
anything beyond 13 3 multiply by 1,4 (and) add it to 13 .
(b) From 27 Wy to 13 )¢ you shall add 30;
anything beyond 27 Mg multiply by 56,15 (and) add it to 27 Tp.
The fast arc begins at 3¢ 13 and ends at MY 27. Suppose that a full moon falls shortly before this arc, e.g., X 7
(¢f- ephemeris No. 1 obv. II1,5). According to rule (a), the next position will be found as follows: we add to 3 7
the arc 28;7,30 w?ﬁch brings us to % 5;7,30. This point lies already inside the fast arc, namely 22;7,30° beyond
3 13. If we multiply this amount by 1;4 we obtain 23:36. This is the arc we must add to (13 in order to obtain
the next.position o 6;36 (No. 1 obv. II1,6).



[ecture 4

o Almagest Books 7—8

e the stars

e precession

e the constellations

e rising and setting and the calendar
e the background



