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Lecture 1 

 
• Where, When and Who 
• Almagest Books 1 and 2 
• the celestial sphere 
• numbers and angles (sexagesimal base-60) 
• obliquity and latitude and the related instruments 
• plane geometry and trigonometry, the chord tables 
• spherical trigonometry, circles on the celestial sphere 

 



the Where: Ptolemy’s World A.D. 150



The world as our story begins. The East



and the West



the Greek’s near their peak



        Alexander the Great’s empire



Strabo’s Geography (1st-2nd century B.C.) 



 

Ptolemy’s World Map (1st century A.D.) 



 
 
 
 
 
 
 
 
 
 
 
 

Most of what we have from antiquity was preserved and 
transmitted to us by the Islamic societies of the 8th – 13th 
centuries A.D.



 
               Who and When: Ancient Astronomers 
 

Homer/Hesiod  -750  Aratus  -270 
Meton/Euctomen  -430  Timocharis -260 
Eudoxus    -380  Aristarchus -240 
Aristotle    -340  Archimedes -220 
Heraclides   -330  Eratosthenes -210 
Callippus   -330  Apollonius -200 
Autolycus/Euclid  -330  Hipparchus -130 
Aristyllus   -300  Posidonius -100 
Berosus    -300  Geminus -50 

 
     Theon of Smyrna  120 
     Ptolemy Almagest  150 
     Theon of Alexandria  350 
 
 
 



Relevant Famous People 
 
Plato      -375 philosopher 
Alexander the Great  -330   conquered Babylon 
Strabo         10    Geography 
Pliny         70    Natural History 
Plutarch      100 Concerning Nature 
         The Face in the Moon  
Marinus of Tyre    120 geography (Ptolemy’s source) 



Later Famous Astronomers 
               (and Ptolemy influenced every one of them) 
 

Hipparchus    -130 
Ptolemy Almagest    150 

 
Aryabhata (India)          500 

 
al-Sufi  (Islam)    950 
al-Tusi/Urdi/Shatir      1250 
Ulugh Beg   1420 
 
Copernicus   1540 
Tycho Brahe   1570 
Kepler    1620 
 
Newton    1680 



Almagest, Book I begins: 

and a bit later: 





 similarly (see the excerpts on the supplementary reading page): 
Theon of Smyrna (about A.D. 120) 
Strabo Geography (about A.D. 5) 
Geminus (about 50 B.C.) 
Hipparchus (about 130 B.C.) 
Autolycus (about 300 B.C.), and Euclid’s Phenomena is similar 
Eudoxus (about 320 B.C.) 
Aristotle (about 350 B.C.) 
Hesiod (about 750 B.C.) 
Homer (about 780 B.C.) 
 
It is fair to say that Ptolemy makes the best effort to give fairly cogent 
arguments, usually astronomical, to support all of these assumptions. 



For example: 





Ptolemy is probably summarizing the winning arguments in an old debate, going 
back as far as Aristarchus in about 240 B.C.: 
 

 
 
 
 
 
 
 
 
 





Celestial Sphere





The oblique circle (the ecliptic, the path of the Sun, Moon and 
planets)









Using a gnomon 

 
 

α = geographical latitude 
β = twice the obliquity of the ecliptic 



Gnomon’s are also the basis of sundials: 
 



How were these angles measured other than using a gnomon? 
Ptolemy describes two instruments: 
 

 



Expressing Numbers 
 

Even today we measure angles in degrees, 
minutes, seconds, and we also measure time 
in hours, minutes, seconds. 
 
In both cases there are 60 minutes per 
degree or hour, and 60 seconds per minute. 
 
Apparently this began in Babylon, no later 
than early first millenium B.C. and probably 
a lot earlier, since we have many 1000’s of 
surviving clay tablets covered with such 
numbers. 
 
 
 
 
 
 
 



 
 
 

Ptolemy also used this base-60 sexagesimal number format, at least for the 
fractional part of the number. Thus he expressed the number 1 1

4 300365 −+  as 
 

 

 

15 12 14 60 12365 365 ( )60 3600 60 3600 3600
14 48365 60 3600

365;14,48

+ − = + + −

= + +

=

 

 
 



The integer part of the number was given in decimal. 
  
 
 
 
 
 
 
 
 
 
 
With a good set of multiplication and division tables, which 
everyone had, manual arithmetic was no harder for them than it is 
for us. 



Ptolemy used mostly plane geometry and trigonometry, with a 
little spherical trig when he needed it, which was not often. 
 
For plane trig he had only one construct – the chord – rather than 
our sine, cosine, tangent, etc, and this was enough.  



He also had good tables of the chord function, and was quite 
capable of interpolation, just as we (used to) do it. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ptolemy says that he will present a ‘simple and efficient’ way to compute the chords, but he doesn’t 
actually say the table was computed that way, or even that he computed it. In fact, there is good 
reason to think that it was not computed using his methods, or that he was the person who computed 
it. Unfortunately, however, we have no evidence about who did compute it. 



As we will see in Lectures 2 and 3, it is likely that Hipparchus also had a good command of 
trigonometry, both plane and spherical, but he also probably had a simpler trig table. Most people 
assume he also used the chord construct, but there is no evidence for this, and there is some reason to 
think he used instead the sine. 

Angle(degrees) Chord 
    0      0 
    7 ½    450 
  15   897 
  22 ½  1341 
  30 1780 
  37 ½  2210 
  45 2631 
  52 ½ 3041 
  60 3438 
  67 ½ 3820 
  75 4186 
  82 ½ 4533 
  90 4862 
  97 ½ 5169 
105 5455 
112 ½ 5717 
120 5954 
127 ½ 6166 
135 6352 
142 ½ 6511 
150 6641 
157 ½ 6743 
165 6817 
172 ½ 6861 
180 6875 

/360 60 21,600 3438
2 2

R
π π

′⋅
= =  

 

21600 6875D
π

=



There is also no reason to think that Hipparchus invented trignonometry and tables, either chord or 
sine. In fact, a work of Archimedes shows the explicit computation of about 2/3’s of the entries in 
Hipparchus’ (supposed) table, and computing the other entries would be straightforward. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Archimedes gets 7
81 1

4 2

66 153sin12017 4673< <  (equivalent to 7
80.03272 sin1 0.03274< < ) 

which leads to 
 10 1371 73 π< <  



 circumscribed inscribed circumscribedinscribed

Angle a c a c Base 3438 
Base 
3438 

3 6/8 153    2339 3/8 780      11926     225  225 
7 4/8 153    1172 1/8 780    5975 7/8  449  449 

11 2/8 169    866 2/8 70    358 7/8  671  670 
  15    153    591 1/8 780    3013 6/8  890  890 

18 6/8 571    1776 2/8     2911  9056 1/8 1105 1105 
22 4/8 169    441 5/8 70    182 7/8 1315 1316 
26 2/8 744    1682 3/83793 6/8 8577 3/8 1520 1520 
  30    153    306    780        1560    1719 1719 

33 6/8 408    734 3/8 169    304 2/8 1910 1909 
37 4/8 571    937 7/8     2911  4781 7/8 2093 2093 
41 2/8 1162 1/81762 3/85924 6/8 8985 6/8 2267 2267 
  45    169    239    70    99     2431 2431 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• columns 2–5 come from Archimedes, while columns 6–7 are just  
 
 3,438a

c×  

 
• notice that Archimedes is working entirely in sine and cosine, never chord 
• there is no doubt that Hipparchus was familiar with Archimedes’ work on this 
• about all we can conclude is that Archimedes, Hipparchus, or someone in between 

might have computed the first trig table this way 



We can, in fact, go even farther back into the very early history of trigonometry by considering 
Aristarchus’ On Sizes and Distances, and we shall see that a plausible case can be made that his 
paper could easily have been the inspiration for Archimedes’ paper. The problem Aristarchus posed 
was to find the ratio of the distance of the Earth to the Moon to the distance of the Earth to the Sun 
[as we will see in Lecture 4]. He solved this problem by assuming that when that the Moon is at 
quadrature, meaning it appears half-illuminated from Earth and so the angle Sun-Moon-Earth is 90°, 
the Sun-Moon elongation is 87°, and so the Earth-Moon elongation as seen from the Sun would be 
3°. Thus his problem is solved if he can estimate the ratio of opposite side to hypotenuse for a right 
triangle with an angle of 3°, or simply what we call sin 3°.  
 
Aristarchus proceeded to solve this problem is a way that is very similar to, but not as systematic as, 
the method used by Archimedes. By considering circumscribed (Fig. 2 below) and inscribed 
triangles (Fig 3 below) and assuming a bound on 2 Aristarchus effectively establishes bounds on 
sin 3° as 
 1 1

20 18sin3< <  
 
and, although he does not mention it, this also establishes bounds on π as 
 
 1

33 3π< <  
 
clearly not as good as Aristarchus got just a few years later. 
 



 
 
 
 
 





Actually, the sine (not chord!) table that we suppose was used by Hipparchus 
shows up clearly in Indian astronomical texts of the 5th and 6th centuries A.D. 
For example, Aryabhata writes in The Aryabhatiya (ca. A.D. 500) verse I.10: 
 

10. The sines reckoned in minutes of arc are 225, 224, 
222, 219, 215, 210, 205, 199, 191, 183, 174, 164, 154, 
143, 131, 119, 106, 93, 79, 65, 51, 37, 22,7. 

 
and later he explains how to compute these in verse II.12: 
 

12. By what number the second sine is less than the first 
sine, and by the quotient obtained by dividing the sum of 
the preceding sines by the first sine, by the sum of these 
quantities the following sines are less than the first sine. 

 
These are clearly not sines but rather the differences of adjacent terms in the 
table of sines. The base is 3,438, just as Hipparchus used.



Many similar examples (to be seen in coming weeks) lead to what I call the 
Neugebauer – Pingree – van der Waerden Hypothesis:  
 

The texts of ancient Indian astronomy give us a sort of wormhole through 
space-time back into an otherwise inaccessible era of Greco-Roman 
developments in astronomy. 
 

 
 



Thus the essentially universally accepted view that the astronomy we find in 
the Indian texts is pre-Ptolemaic. Summarizing the prevailing opinion, 
Neugebauer wrote in 1956: 
 

“Ptolemy’s modification of the lunar theory is of importance for the problem 
of transmission of Greek astronomy to India. The essentially Greek origin of 
the Surya-Siddhanta and related works cannot be doubted – terminology, use 
of units and computational methods, epicyclic models as well as local 
tradition – all indicate Greek origin. But it was realized at an early date in the 
investigation of Hindu astronomy that the Indian theories show no influence 
of the Ptolemaic refinements of the lunar theory. This is confirmed by the 
planetary theory, which also lacks a characteristic Ptolemaic 
construction, namely, the “punctum aequans,” to use a medieval 
terminology”. 
 

This fundamental idea will be explored much further in coming lectures. 



Ptolemy’s obliquity and latitude of Alexandria 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ptolemy uses 02 47 ;42 ,3ε = ′ ′′but in reality he should have gotten about 47°;21´. 
Now 21´ is a fairly large error for this kind of measurement, about 2/3rd the size 
of the Moon. What is not surprising is that Ptolemy made such an error, but that 
he got exactly the same values used by Eratosthenes and Hipparchus, who 
should have gotten about 47°;27´. 
 
This kind of thing occurs frequently throughout the Almagest. 



For the geographical latitude, Ptolemy writes: 
 

 
and later in Almagest 5.12: 
 
 
 
 
 

Actually, the latitude of Alexandria is between 31°;13´and 31°;19´,depending on 
exactly where Ptolemy worked (probably closer to the more northern limit). 
Ptolemy’s value 30°;58´follows exactly from an equinoctial shadow ratio of 5/3, 
and was probably also a value he inherited from some old tradition.



Spherical trigonometry solves problems related to circles on a sphere. 

 
A particular problem is to compute the angles between the ecliptic, the equator, 
and the horizon. Another is to compute the time required for a given segment of 
the ecliptic to rise or set above or below the horizon. Another is to compute the 
length of the longest (or shortest) day at any given geographic latitude. 



from Almagest Book 2.6, for the parallel of the Tropic of Cancer: 
 

 
 



and some parallels further north:



so Ptolemy is systematically computing what the shadow lengths will be at a 
sequence of geographical longitudes from the equator to the arctic circle.



This had been going 
on for centuries. In 
about 200 B.C. 
Eratosthenes had 
managed to determine 
the circumference of 
the Earth. 
 
Strabo, writing about 
A.D. 5, gives and 
interesting account of 
the work of both 
Eratosthenes and 
Hipparchus in this 
area (see the 
supplementary 
reading). 



Eratosthenes is said to have measured the angle as 7 1/5 degrees, and took the 
distance from Syene to Alexandria as 5,000 stades, giving  
 

 1
5

360 5,000 50 5,000 250,0007EarthC = × = × =  stades 

 

which he rounded to 252,000 stades to make it divisible by 60 (and also 360). 





Lecture 2 

 
• Almagest Book 3 
• the length of the year 
• the length of the seasons 
• the geometric models 
• the length of the day 
• the background 
• lost episodes in solar history 


