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In about 275 B.C. Aratus wrote Phenomena, a poem describing, among other things, the arrangement of the 
constellations relative to each other and relative to the principal circles on the celestial sphere: the equator, the northern 
and southern tropics, the ecliptic, and the arctic and antarctic circles.1 We know from the extensive Commentary of 
Hipparchus, ca. 130 B.C., that Aratus’ main and possibly exclusive source was Eudoxus, who in about 370 B.C. wrote 
two books, Phenomena and Mirror, giving essentially the same descriptions that we find in Aratus, plus some 
additional material – principally lists of constellations on the colures and arctic circles – that we know only through 
Hipparchus.2

 
We therefore know that Eudoxus had a fully developed conception of the celestial sphere. He understood the 
importance of the celestial poles and the celestial equator, and that the path of the Sun – the ecliptic – is a circle 
inclined to the equator. He understood the tropics as the circles parallel to the equator that touch the ecliptic at its most 
northern and southern points – the solstices, and when the Sun was at a solsticial point, he knew the fraction of the 
circumference of a tropic above and below the horizon. He understood the colures as circles through the celestial poles 
and the solsticial points, and through the celestial poles and the equinoctial points, the points where the equator and 
ecliptic intersect. He understood that the solsticial and equinoctial points are precisely a quadrant apart on both the 
equator and the ecliptic, and that the two colure circles intersect at right angles at the poles. He understood that stars 
above the arctic circle are always above the horizon, and hence always visible on any night, and that stars below the 
antarctic circle are never above the horizon. Eudoxus describes the zodiac as a band bisected by the ecliptic, and he 
names the sequence of twelve zodiacal constellations that we still use today. Furthermore, he names constellations, and 
usually specific parts of constellations, that lie on the major celestial circles. Eudoxus is thus the earliest surviving 
source that describes the fully developed celestial sphere and, what is most important for our considerations, the 
relation of those circles to the constellations. 
 
We may also infer, with at least some level of confidence, what Eudoxus did not know, or saw no reason to mention. It 
seems unlikely that he gave values for the height of the celestial north pole above the horizon or for his geographical 
latitude (which would be the same numbers, of course). Likewise, it is unlikely that he gave any information about the 
size of the arctic or antarctic circles. It also seems unlikely that he gave a value for the obliquity of the ecliptic, even a 
round number such as 24° or 1/15th of a full circle. It seems equally unlikely that he gave any actual numbers 
characterizing the position of constellations or stars relative to the principal celestial circles, or that he imagined any 
coordinate system of any kind beyond the circles already mentioned. Indeed, it seems unlikely that he gave any direct 
measures of position whatsoever, since while Hipparchus left us plenty of his own numbers in his Commentary, he does 
not mention any position numbers from Eudoxus. 
 
Instead, what seems to have concerned Eudoxus more than quantitative spatial measurements are temporal relations, 
both daily and annual. For example, he gives two ratios for the length of longest day to shortest day (5/3 and 12/7). 
While Hipparchus knew that these can be used to specify geographical latitude, it is not clear that Eudoxus knew that. 
Eudoxus gives the constellations that rise and set simultaneously with the rising of each zodiacal constellation for the 
stated purpose of knowing when to expect sunrise. We know from the Geminus parapegma that Eudoxus tabulated the 
dates of heliacal rising and setting for several bright stars, and he gives the dates in that calendar for autumn equinox 
and winter solstice.3 Indeed, it seems most likely that Eudoxus’ interest in the tropics and equator was prompted mostly 
from observation of the annual north-south excursion of the rising and setting points of the Sun on an arc along the 
eastern and western horizons. 
 
What we may know even less about is when and where Eudoxus’ model of the celestial sphere was developed, and who 
developed it. Presumably some astronomical observations were made that underlie the information in Eudoxus’ books, 
and if we could somehow assign a reliable date, or even a range of dates, to those observations, we would at least know 
that the celestial sphere was developed no earlier than the observation dates. It is therefore of some interest to use the 
information from Eudoxus to try and assign dates and possibly locations to the underlying observations. 
 

                                                 
1 D. Kidd, Aratus Phenomena, (Cambridge, 1997). 
2 I am using the English translation of Roger MacFarlane (private communication) with the assistance of Paul Mills. Until this is 
published, the interested reader must use Hipparchus, In Arati et Eudoxi phaenomena commentariorium, ed. and transl. by K. Manitius 
(Leipzig, 1894), which has an edited Greek text and an accompanying German translation. 
 
3 G. Aujac, Geminus Introduction to the Phenomena (Paris, 1975). 



 
Dating a Star catalog 
 
Before we perform a statistical analysis to date the phenomena of Eudoxus, it will be useful to review a simpler 
problem: the statistical analysis required to date a star catalog. For simplicity, let’s assume we have a catalog listing a 
set of ecliptic longitudes and latitudes for known stars. Since the longitudes change with time due to precession, we can 
attempt to date the catalog by comparing the catalog longitudes Li with the theoretically computed longitudes λi(t). 
Assuming that the errors in the catalog longitudes,4

 
 ( )i iL t iλ ε− =  
 
are normally distributed with variance σ2 and mean zero, i.e. N(0,σ2), then we can find the best fit time tmin by 
minimizing 
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Naively, and as we shall see incorrectly, the uncertainty σt in the determination of tmin can be determined from 
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where p is the precession constant (about 1.4° per century). It is clear that the size of σt can be made smaller and 
smaller by using more stars N. 
 
There is another easy, and equally naïve and incorrect, way to determine the uncertainty σt, and that is to use a Monte 
Carlo simulation. Having determined tmin as above, we simply construct a large number of new pseudo-catalogs, 
perhaps 1,000 or more, 
  
 min{ ( ) , 1...i i iL t i N}λ ε′ ′= + =  
 
where the iε ′ are N(0,σ2). Then for each set we minimize χ2 and determine mint′ . The standard deviation of these 

values will be an estimate of σmint′ t. 
 
Two final notes: 

(a) All of the above analyses assume that the errors are uncorrelated, i.e. while 2
i

2ε σ< > = , we must also have 

0i jε ε< > =  (where <..> is the usual statistical expectation value).  
(b) In the Monte Carlo it is essential that each of the pseudo-catalogs be possible sets of observations, even 

though none is the same as the observed catalog. Another way of saying this is that each set of errors could 
have been the set given by the author, and has the same statistical distribution as the set the author did give. 

 
As it happens, and as discussed below, both of these conditions lead to severe problems when computing the 
uncertainty in the date naively. 
 
 
The Effect of Calibration Errors in the Star Catalog 
 
Now let us suppose that the original observer had a calibration error in his measurements, i.e. he misplaced his zero-
point in longitude with respect to the theoretically correct point that we are using for the λi’s. In practice, such an error 
is guaranteed to happen, of course. Thus we would have 
 

                                                 
4 In practice, it is necessary to weight the errors by the cosine of the latitude of each star. 



 ( )i i iL tλ ε η− = +  
 
where we can assume that η is 2(0, )cN σ , but uncorrelated with the εi, so <εiη> = 0. Now σc is the uncertainty in the 
observer’s determination of the zero point in longitude, which for all practical purposes is equivalent to how well he 
knows the position of the Sun relative to the stars on the day of some cardinal event, i.e. an equinox or solstice. Since 
σ2 is the variance in the positioning of the stars themselves, then it seems the most reasonable assumption is that σc 
should be at least as big as σ. In any event, it is clear that in the presence of a calibration error the errors in ( )i iL tλ−  
are correlated, and the analyses outlined above must be done differently. 
 
We first compute the covariance matrix of the errors. The diagonal terms in this matrix are just  
 2 2( )( )ii i i cV ε η ε η σ σ= < + + > = +  
 
while the off-diagonal terms, which are of course zero in the case of uncorrelated errors, are  
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which clearly reduces to the familiar case when V is diagonal. The uncertainty σt in the determination of tmin can still be 
estimated from 
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and is now approximately  
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Contrary to what we found assuming uncorrelated errors, it is clear that now σt cannot be smaller than σc/p, and so can 
no longer be made arbitrarily small by using more stars N. In fact, if σc is about the same size as σ, then the final 
uncertainty in pσt cannot be smaller than the uncertainty in the longitude of a single star. 
 
 
Dating the Phenomena of Eudoxus  
 
Now let us now suppose that instead of a star catalog, which of course gives in one way or another the author’s 
determination of the positions of a collection of stars, we have the statements of Eudoxus, which have come down to us 
in two ways: first, through the collection of what are apparently direct quotes from Eudoxus by Hipparchus in his 
Commentary to Aratus and Eudoxus, and second, through the poem of Aratus, which according to Hipparchus is a 
fairly accurate paraphrase of Eudoxus’ works. The relevant quotations from Eudoxus are given in the Appendix. 
 
Instead of fitting ecliptic longitudes, it is just as easy to fit right ascensions and declinations, especially if we are using 
the first analysis outlined above, which treats the phenomena as if they are from a star catalog and ignores calibration 
errors. Indeed, one finds 
 

for the colure data   1150 ≤ 130 B.C.  
for the equator data    950 ≤ 230 B.C.  
for the northern tropic data  1120 ≤ 280 B.C. 
for the southern tropic data  1170 ≤ 300 B.C. 
for all declination data  1070 ≤ 160 B.C. 
for all the data   1130 ≤   90 B.C.  

 
in good agreement with previous results.5 Note that the date 1130 B.C. is about 8σ away from Eudoxus’ date 370 B.C. 

                                                 
5 B. E. Schaefer, “The Latitude and Epoch for the Origin of the astronomical Lore of Eudoxus”, Journal for the History of Astronomy, 
xxxv (2004) 161– 223, and references therein. 
 



 
It is the case, however, that the phenomena of Eudoxus should not be analyzed as if they come from a star catalog. In 
order to see this, let us initially consider the data for the solsticial colure. This is a line of constant ecliptic longitude (as 
well as constant right ascension). Thus the ‘measured values’ Li are all either 90° or 270°, and we compute the various 
λi(t) as before. For the moment let us ignore the calibration error, and consider just the statistical errors 
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We might minimize χ2 and determine tmin using 
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and proceed as described above, determining σt from 2 2

min min( ) ( )tt tχ σ χ± − =

}

, and adjusting σ in each fit so that 
the χ2 per degree of freedom is about unity. 
  
On the other hand, we might try instead to use a Monte Carlo simulation to determine σt. 
The first task is to generate a new set of errors  
 
 min{ ( ) , 1...i i iL t i Nλ ε′ ′= + =  
 
Suppose that the first star is supposed to be on the 90° colure. We can generate the first error, 1ε ′ , but then we must 
have that  
 
 1 min 190 ( )tλ ε ′− =  
 
Note, however, that once we know the error in the position of the first star with respect to the supposed solsticial 
colure, we automatically know the value of t: it is the time 1t ′when the true colure at time 1t ′ is a distance (in longitude) 

1ε ′ from the position of the star at time tmin. Suppose we try to generate the error in position for the second star, also 
said by Eudoxus to be on the 90° colure. Picking a random ε from N(0,σ2), we would get 
  
 2 min 290 ( )tλ ε ′− =  
 
and from this a  as before. However, it is in general statistically impossible that 2t′ 1t t2′ ′= , and so this set of errors is 
not a physically realizable set, and cannot be used in a valid Monte Carlo simulation. 
 
In fact, it is easy to see in this case that once we know the error in the first star, which is after all just the distance from 
a specified circle of constant longitude, we can use the theoretically known position of the second, and all subsequent, 
stars to compute their positions relative to that same circle, and hence their errors must all be computed and not 
generated as random variables. 
 
It is furthermore clear that this analysis generalizes to circles of constant right ascension and declination. Once we 
know the distance of the first star from such a circle, we can find the unique time 1t ′when that error would be realized, 
and we must use exactly that same time to compute the positions of all the other stars, and hence their distances from 
any circle. To do otherwise would be to create a set of errors and star positions that is not physically possible, and 
would not be acceptable in a Monte Carlo simulation. 
 
In practice, this all means that the uncertainty in the determination of the time is proportional to the uncertainty in 
position of a single star, so 
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In the presence of a calibration error (which, of course, should not be ignored in any event) we then get  
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Thus if σc is about the same size as σ, then the total uncertainty in pσt is about 2σ . For σ = 5°, which is the correct 
average value for all the data, the uncertainty in t is then about σt = 500 y, and so the difference in the dates 1130 B.C. 
and 370 B.C. is about an 8σ effect when computed naively, but only a 1.5σ effect when computed correctly. 
 
There is another consideration that should be taken into account in any statistical analysis of historical data that span 
many centuries. One justification for minimum χ2 analyses comes from consideration of likelihood. In this case, there is 
only one model parameter to be determined, the time t, and the likelihood assumption is that at any time t, if the errors 

are independently distributed according to some probability density ( )i i iLε λ= − t ( ; )if tε , then the likelihood of 

observing the values at that time t is  { , 1,..., }i iε ε= = N
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and the most likely value of t is that which maximizes the likelihood. If ( ; )if tε  is the normal distribution, 
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then χ2 is, up to irrelevant constants, just 2 ln ( | )L tε− , so clearly the maximum likelihood occurs at the same value of 

t that minimizes 2χ . 
 
More generally, however, we can ask what is the probability density ( | )p t ε  of t given the observed error set 

{ , 1,..., }i i Nε ε= = . That is given by Bayes’ theorem as 
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where L(e| t) is the likelihood defined above, and π(t) is the prior probability density of t, reflecting whatever 
knowledge we might have of t before we consider the data set e.6

Note that if we have no prior information on t then π(t) is simply a constant, corresponding to a uniform probability 
distribution, and Bayes’ theorem reduces to conventional maximum likelihood or minimum 2χ . In practice, of course, 
we must obviously admit that π(t) can be constant only over some appropriate interval of time, so, for example, no one 
would accept an analysis indicating that Eudoxus’ data was measured in, say, 4000 B.C. or A.D. 2000. What we learn 
from this is that if the only information we have about t in the case of Eudoxus’ on-circle data is the data itself, then it 
is correct to perform a conventional minimum 2χ  analysis as we did above. But if we have any other independent 
information on t, then we should include it according to Bayes’ theorem.  

In fact, one thing we do know is that Eudoxus’ lore is given in the context of a fully developed model of the celestial 
sphere. Thus, when Eudoxus says that a constellation is on a colure, he obviously must know what a colure is, and 
where it is located with respect to the visible stars. If we conclude that the lore date to a time much earlier than 
Eudoxus, then it must be the case that the celestial sphere was fully developed at that earlier time. So if we say that π(t) 
is a constant over some interval of time, one of the things we are implicitly saying is that the knowledge of the celestial 
sphere and its associated cosmology was constant over that same interval. For the specific case of the on-circle data, we 
would be saying that the model of the celestial sphere known to Eudoxus in, say, 370 B.C., was equally well known in, 
say, 1120 B.C. 

Now I strongly doubt that many historians would agree with that last statement. In disputing it, they would point out 
that, setting aside the on-circle data of Eudoxus, no evidence has come down to us suggesting that any culture prior to 

                                                 
6 this is all very standard material that is discussed in many places. See, e.g., Glen Cowan, Statistical Data Analysis, (Oxford, 1998) 
93-94. 



Eudoxus’ time understood the cosmology of the celestial sphere. For example, the stories from Homer and Hesiod 
mention a few astronomical facts, but nothing approaching the celestial sphere. The same is true for all known 
sources earlier than Eudoxus.

Greek 

phenomena of Eudoxus and which probably dates to late second millennium B.C., gives no hint of a celestial sphere.8  

 
 

udoxus, but we should most certainly not be assuming a uniform prior for 
the millennium or more predating Eudoxus.  

s 

 the time interval τ, and is strictly zero for times later than t0. One 
such probability distribution is the truncated normal, 

 

7 The cuneiform texts from Babylon and Uruk give no hint that the Babylonians 
understood the celestial sphere. Furthermore, the information in MUL.APIN, which is similar in some respects to the 

Considering all of these cases together, it strains credulity to the breaking point that each and every source we know
from the time before Eudoxus might have known about the celestial sphere in all its details, but either chose not to
write anything about it, or if they did, it has not reached us, even indirectly through intermediate sources such as 
Hipparchus. Therefore, it appears that if we invoke the knowledge we have independent of Eudoxus, we might tolerate 
a uniform prior for perhaps a century before E

The implementation of the prior knowledge of t in a statistical analysis is unavoidably somewhat subjective, but we can 
easily imagine reasonable approaches to the issue. One simple way to proceed is to assume that the celestial sphere wa
developed no later than some time t0 and over some time interval τ, and use a function that approaches zero for times 
earlier than t0, with the rate of approach controlled by
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For the case of the cosmology of the celestial sphere, the choices 0 400 B.C.t =  and τ = 50 y e appropriate, 

although there is no way to know these parameters with any certainty. Adding to χ

rs might b
2 the term 2 ln ( )tπ− and minimizing 

the resulting sum leads to an estimated date of 550 ≤ 50 B.C. Clearly, this estimate is effectively determined entirely b
the assumed values of t

y 

 
 of the concept of the celestial sphere is uniformly likely at 

y time over the millennium preceding 370 B.C. 

stead that Eudoxus, or some near contemporary, made errors sufficiently large 
 account for the observations he used.9

sis provides no significant evidence that the phenomena of Eudoxus 
ere not originated sometime near to 370 B.C. 

ppendix 

ave 
es 

o not want to use that information when 
ttempting to date the observations underlying Eudoxus’ statements. 

he Solsticial Colure 
 

                                                

0 and τ, and so there is some truth in saying that we have essentially assumed the answer. In 
reality, though, what has been done is to simply enforce in the statistical analysis the very strong belief, founded on 
substantial historical data, that the celestial sphere did not precede Eudoxus by very long. Similarly, to omit the prior is
to effectively assert an equally strong belief that invention
an
  
Of course, a more direct and for all practical purposes equivalent strategy is to go ahead and perform a standard χ2 
analysis ignoring the prior information, and if the result is found to conflict with the prior information, we simply 
discard the result as unreliable and say in
to
 
Altogether, we must conclude that statistical analy
w
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Hipparchus’ quotations from Eudoxus list which constellations are on the colures, the equator, and the two tropics 
(omitting for now the two arctic circles).10 For the equator and tropics Aratus gives similar lists, but whenever we h
the direct quotations from Eudoxus, there is no reason to use the information from Aratus. There are several cas
where it appears that Aratus is correcting Eudoxus, but we certainly d
a
 
T

 
7 See, e.g. David Dicks, Early Greek Astronomy to Aristotle, (Ithaca, 1970). 
8 Herman Hunger and David Pingree, Astral Sciences in Mesopotamia, (Leiden, 1999); James Evans, The History and Practice of 
Ancient Astronomy, (Oxford, 1998) 5-8. 
9 A. Gelman et al., Bayesian Data Analysis, (Boca Raton, 2000) 259-262. It is perhaps interesting that this was exactly the conclusion 
of the discussion by Dicks (see ref. 7, p 162-3 and p 250, n 265) of R. Böker, ‘Die Enstehung der Sternsphaere Arats’,  Berichte über 
die Verhandlungen der sächsischen Akademie der Wissenschaften zu Leipzig, 99 (1952) 3-68. Böker’s statistical analysis puts the 
epoch of Eudoxus’ phenomena as 1000 ± 30–40 B.C. and the latitude of the observer as between 32°30´ and 33°40´. 
 
10 The following quotations are all from the translation of Roger MacFarlane (ref. 2). 



1.11.9 Further, Eudoxus treats also the stars which lie upon the so-called colures, and says that the Great Bear’s 
middle lies upon one of them, and also the Crab’s middle, the Water-snake’s neck, and the part of Argo b
the prow and the mast; then it is drawn after the invisible pole through the tail of the Southern Fish, the 
Capricorn’s middle, and the middle of Arrow; then through the Bird’s neck, its

etween 

 right wing, and through Cepheus’ 
left hand; and through the bend of the Snake and beside the Small Bear’s tail. 

iddle bet

the Hya

prow and the mast 

ish g 1
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row 

 1

6

eside the Small Bear’s tail zet Umi 4

he Equinoctial Colure 
 

Sea-monster’s head and the back of the Ram, 
taken breadth-wise, and the head of Perseus and his right hand. 

eadth-wise 

entaur 

g

 taken breadth-wise 

e right hand of Perseus CG869 191

he Equator 

st of the constellations, Hipparchus does not quote explicitly from Eudoxus, but from Aratus, who wrote [511-
24]: 

 
e 

 
 
Solsticial Colure DD PK

the Great Bear’s m  Uma 25

the Crab’s middle M44 449

the Water-snake’s neck 900

the part of Argo between the 880

the tail of the Southern F am Gru 022

the Capricorn’s middl eta Cap 618

the middle of Ar del Sge 283

the Bird’s neck eta Cyg 161

the Bird’s right wing kap Cyg 67

Cepheus’ left hand the Cep 80

the bend of the Snake chi Dra 1

b
 
T

1.11.17 In the other colure, he says that there lie first the left hand of Arctophylax and his middle, taken 
lengthwise; then the middle of the Claws, taken breadth-wise, and the right hand of the Centaur and his front 
knees; then after the invisible pole the bend of the River and the 

 
Equinoctial Colure DD PK

the left hand of Arctophylax kap Boo 88

the middle of Arctophylax, taken lengthwise alp Boo 110

the middle of the Claws, taken br alp Lib 529

the right hand of the Centaur kap Cen 951

the front knee's of the C alp Cen 969

the bend of the River  rho Eri 786

the Sea-monster’s head am Cet 714

the back of the Ram, alp Ari 375

the head of Perseus the Per 194

th
 
 
T
 
For mo
5

As a guide the Ram and the knees of the Bull lie on it, the Ram as drawn lengthwise along the circle, but of th
Bull only the widely visible bend of the legs. On it is the belt of the radiant Orion and the coil of the blazing 
Hydra, on it too are the faint Bowl, on it the Raven, on it the not very numerous stars of the Claws, and on it the 



knees of Ophiuchus ride. It is certainly not bereft of the Eagle: it has the great messenger of Zeus flying near by; 
and along it the Horse’s head and neck move round. 

ipparchus then adds that Eudoxus gives the flowing additional information: 
 

 the equator, and that 
e left wing of the Eagle, the rump of the Horse, and also the northern of the Fishes do also. 

widely visible bend of the legs 

Hydra a

g

le 

g

e northern of the Fishes eta Psc 695

he Summer Tropic 
 

pon the summer and winter tropics, and also upon the equator, 

 left 
shin, and also the Charioteer’s knees and the Twins’ heads. It then concludes near the middle of the Crab. 

he Lion 

aiden 

e 

hand 

 

g e

ndromeda's] feet g

t

Perseus’ left shin xi Per 214

 
H

1.10.22 Eudoxus expressed the rest similarly; but, he says that the middle of the Claws lies on
th
 

Equator DD PK

the Ram as drawn lengthwise alp Ari 375

the Bull, only the mu Tau 386

the belt of Orion eps Ori 760

the coil of lp Hya 905

the Bowl del Crt 923

the Raven am Crv 931

the Claws alp Lib 529

the knees of Ophiuchus zet Oph 252

the left wing of the Eag alp Aql 288

the rump of the Horse am Peg 316

the Horse’s head (Aratus) eps Peg 331

the Horse’s neck (Aratus) zet Peg 325

th
 
 
T

1.2.18 Concerning the stars which are borne u
Eudoxus says this about the summer tropic:  
Upon it are: the middle of the Crab, the parts lengthwise through the middle of the Lion, the area a little above the 
Maiden, the neck of the held Snake, Engonasin’s right hand, Ophiuchus’ head, the Bird’s neck and its left wing, 
the Horse’s feet, but also Andromeda’s right hand and the part between her feet, Perseus’ left shoulder and

 

Summer Tropic DD PK

the middle of the Crab M44 449

lengthwise through the middle of t eta Leo 468

the area a little above the M eps Vir 509

the neck of the held Snak del Ser 269

Engonasin’s right kap Her 122

Ophiuchus’ head alp Oph 234

the Bird’s neck eta Cyg 161

the Bird's left win ps Cyg 168

the Horse’s feet pi Peg 332

Andromeda’s right hand  rho And 340

the part between her [A am And 349

Perseus’ left shoulder he Per 194



the Charioteer’s knees chi Aur 231

the Twins’ heads bet Gem 425
 
 
The Winter Tropic 
 

1.2.20 About the winter tropic, Eudoxus says this:  
Upon it are: the middle of the Capricorn, the feet of the Water-pourer, the Sea-monster’s tail, the River’s Bend, the 
Hare, the Dog’s feet and tail, the Argo’s prow and mast, the Centaur’s back and chest, the Beast, and the 
Scorpion’s stinger. Then proceeding through the Archer it concludes at the middle of the Capricorn. 

 
Winter Tropic DD PK

the middle of the Capricorn eta Cap 618

he feet of the Water-pourer del Aqr 646

the Sea-monster’s tail iot Cet 732

the River’s Bend rho Eri 786

the Hare alp Lep 812

 the Dog’s feet zet Cma 834

 the Dog’s tail eta Cma 835

the Argo’s prow 879

the Argo’s mast alp Pyx 876

the Centaur’s back nu Cen 946

the Centaur’s chest 

the Beast del Lup 974

the Scorpion’s stinger lam Sco 565

the bow of the Archer (Aratus) del Sgr 571
 
 
Hipparchus also writes: 

 
2.1.20 Eudoxus makes it clear in the following statement that he places the tropic points at the middles of the 
zodiacal signs: “There is a second circle [the northern tropic], on which the summer solstices occur; and on this is 
the middle (parts) of the Crab.” Again he says, “There is a third circle [the equator] on which the equinoxes occur; 
and on this are both the middle (parts) of the Ram and the Claws. And there is a fourth [the southern tropic] on 
which the winter solstices occur; on it is the middle (parts) of the Capricorn.” He states it yet more conspicuously 
in the following, for the so-called colures, which are drawn through the poles and the solstices and the equinoxes, 
he says: “There are two other circles through the poles of the cosmos, which cut one another in half, and at right 
angles. The constellations upon these lines are the following: first the ever-visible pole of the cosmos, then the 
middle of the Bear, reckoned breadth-wise, and the middle of the Crab.” Then a little later he says, “Both the tail 
of the Southern Fish and the middle of the Capricorn.” In later passages he says that in the other of the circles 
through the poles lie among others, which he enumerates, the middle (parts) of the Claws, reckoned breadth-wise, 
and the back (parts) of the Ram, reckoned breadth-wise. 

 
The precise meaning of these passages is connected with how Eudoxus is treating the relationship of the zodiacal 
constellations and the zodiacal signs.11 Hipparchus clearly thinks that when Eudoxus says ‘the middle (parts) of the 
Claws” he is referring to the middle of the zodiacal sign. We know this because Hipparchus repeatedly tells us that 
Eudoxus has arranged his signs so that the solstices and equinoxes occur at the middle of the signs. 
 

                                                 
11 The question of just what Eudoxus meant, as opposed to what Hipparchus says he meant, is dealt with in detail by Bowen, A.C., & 
Goldstein, B.R. "Hipparchus' Treatment of Early Greek Astronomy: The case of Eudoxus and the length of daytime". Proceedings of 
the American Philosophical Society 1991, 135: 233-254. 



However, as discussed in detail by Bowen and Goldstein, it is not at all clear that Eudoxus was, as Hipparchus thought, 
referring to the signs of the zodiac when he mentions the middle of the Crab, the Claws, the Ram, and the Capricorn. 
Instead, by analogy with his coincident statements that the colure also goes through, e.g. the Great Bear’s middle, 
Eudoxus might well have been referring not to the signs but to the constellations. Of course, it is also possible that 
Eudoxus was considering the zodiacal signs and constellations as equivalent in some sense. 
 
In addition, it is also not at all clear that Eudoxus was referring to anything as specific as the midpoint of either the sign 
or the constellation, since his use of the plural (τά μέσα) implies simply ‘in the interior’, and nothing as specific as a 
central position. 
 
Therefore, for our purposes we can safely assume that Eudoxus understood that 
 

(a) the colures are great circles that intersect at right angles at the north celestial pole, so that one colure goes 
through the two solsticial points, the other through the two equinoctial points; 

(b) the ecliptic and the tropics touch at the solstices, the ecliptic and the equator cross at the equinoxes, and 
neighboring cardinal points are exactly one quadrant apart on both the equator and the ecliptic; 

(c) the solsticial colure goes through the middle parts of the Crab and the Capricorn, while the equinoctial colure 
goes through the middle parts of the Ram and the Claws 

(d) the solsticial and equinoctial points mark a location where Eudoxus thought the Sun was on a particular day 
of the year, but he specifies the location no more precisely than the middle parts of the Crab on summer 
solstice, the middle parts of the Claws on autumn equinox, etc. 

(e) various other specified constellations and constellation parts lie on or nearby the circles which define the 
celestial sphere. 

 
So while we may be relatively sure that Eudoxus knew the date of, say, summer solstice, to an accuracy of a few days, 
perhaps by looking for the turnings of the Sun on the eastern and western horizons in summer and winter, we have no 
specific information about how he might have determined the sidereal location of the Sun on those dates, or on the 
equinoxes. One plausible explanation is that he observed the date of summer solstice by observing the most northerly 
setting of the Sun on the western horizon, and then observed which constellations rose at sunrise on nearby mornings.  
 


