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One of the most useful tools we learned when we were young is the chain rule of 
differential calculus: if ( )q α is a function of α, and α(t) is a function of t, then the rate of 
change of q with respect to t is 
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In the special case that a(t) is linear in t, so 0( ) ( )at t 0tα α ω= + − , this becomes 
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If q(α) is a complicated function of α, for example 
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then the computation of dq/dα is not necessarily easy. In this case 
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so when e/R is small we have simply 
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In cases like this a practical alternative is to tabulate q(α) at small intervals Dα and then 
estimate dq/dα as a ratio of finite differences: 
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This particular function q(α) in our example is, of course, the equation of center for the 
simple eccentric (or, equivalently, epicycle) model used by Hipparchus and later Ptolemy 
for the Sun and the Moon (at syzygy), and it connects the mean longitude λ and true 
longitude λ according to 
 



 ( )qλ λ α= +  
 
where Aα λ= − and A is the longitude of apogee. As we shall see, Ptolemy very clearly 
knew that the rate of change with time of the true longitude λ is 
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where ωt and ωa  are the mean motion of the Moon in longitude and anomaly. Actually 
proving the chain rule is straightforward enough, but not entirely trivial, although perhaps 
in this simple case it might be guessed by dimensional analysis. As is often the case, 
Ptolemy gives no hint of how he came to know it. 
 
It is, I think, not as widely appreciated as it might be that the result just given appears in 
Ptolemy’s Almagest, not once but twice, and so was known at least as early the 2nd 
century CE, and very probably was known to Hipparchus in the 2nd century BCE, 
therefore nearly two millennia before the development of differential calculus (for 
standard treatments see, e.g. Neugebauer 1975, 122-124, 190-206 or Pedersen 1974, 225-
226). 
 
The first occurrence of this result is found in Almagest VI 4. Ptolemy has just completed 
explaining how to compute the time t of some mean syzygy – a conjunction or 
opposition of the Sun and Moon in mean longitude – using their known mean motions 
and epoch positions in mean longitude and anomaly, and is ready to show how to 
estimate the time t t tδ= + of the corresponding true syzygy. Therefore let us consider 
the case of a mean conjunction at some time t , so that 
 
 ( ) ( )S Mt tλ λ=  
 
and work out what Ptolemy would do if he knew calculus.  
 
Since we know the mean anomalies ( )S tα and ( )M tα at time t we can also compute the 
equations ( ( ))Sq tα and ( ( ))Mq tα . At time t of true syzygy we have 
 
 ( ) ( ( )) ( ) ( ( ))S S S M M Mt q t t q tλ α λ α+ = +  
 
(with, of course, the addition of 180° on one side of the equation in the case of an 
opposition). Since the mean longitudes vary linearly in time we have simply 
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where ωS is the mean motion of the Sun, so that 
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Furthermore, since δt is small compared to the orbital period of the Moon, and even more 
so the Sun, we have 
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noting that for the standard solar model of Hipparchus and Ptolemy the mean motions in 
longitude and anomaly of the Sun are equal since the solar apogee is tropically fixed. 
 
Combining these and solving for δt gives 
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Ptolemy, of course, does not know how to do a Taylor expansion approximation, but the 
result he gives is uncannily similar. First he instructs us to estimate the true distance 
between the Sun and Moon at mean syzygy, which we see from the above is 
 ( ( )) ( ( ))S S M Mq t q tα α−  
 
He then says to multiply this by 13

12 and to divide that result by the Moon’s true speed, 
which he estimates as 
 
 / /0;32,56 0;32, 40 (q( +1 ) ( ))hr hr qα α− −˚ ˚ ˚  
 
where 0;13,56°/hr is the Moon’s mean motion in longitude ωt expressed in degrees per 
equinoctial hour, and similarly 0;32,40°/hr is the hourly mean motion in anomaly. Note 
also that 
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so Ptolemy has estimated dq/dα with a finite difference approximation, and furthermore 
chosen an interval Dα = 1° that, at first sight, cleverly avoids an otherwise necessary 
division operation. 
 
So in the end his estimate of the correction δt to the mean time t is, in units of 
equinoctial hours, 
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which compares very closely to the more exact result derived above, the only differences 
being that he has two approximations in the denominator: first, he gives  
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which is a good approximation to η = 0;30,8, and second he neglects the term 
proportional to dqS /dαS which is an order of magnitude smaller than the already small 
(compared to 0;32,56) derivative of the Moon’s anomalistic equation of center. 
 
Although Ptolemy’s scheme of estimating / ( 1 ) (dq d q q )α α α+ −� ˚ is certainly one 
option, it is not necessarily the best option when the task is to make the estimate using a 
table of q(α) values. For one reason, it requires two table interpolations. Yet these can be 
easily avoided if the instructions are instead to find the interval in which α lies, i.e. find αi 
and αi+1 such that 1i iα α α +≤ <  (which can be done by inspection), and then estimate 
dq/dα using 
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which, given the piecewise linearity of the table, is about the best estimate you can make 
in any case without resorting to a higher order interpolations scheme. Furthermore, the 
quotients on the right hand side of the above equation could all be precomputed and 
included in the table and would be useful for all table interpolations, but that is not done 
in the Almagest. Thus, the procedure that Ptolemy describes would make a lot more 
sense, especially in terms of computational efficiency, if the table was compiled with an 
interval of 1° in the variable α. Strabo tells us that for geography Hipparchus did compile 
length of the longest day at intervals of 1° in terrestrial latitude, so it would not be too 
surprising if Hipparchus had 1° tables for lunar, and for that matter, solar anomaly. 
 
Ptolemy goes on to estimate how close to the nodes the Moon has to be before an eclipse 
is even possible. For lunar eclipses this is straightforward, but for solar eclipses a rather 
involved calculation involving lunar parallax is required, lunar parallax having already 



been analyzed in detail in Almagest V 17–19. Ptolemy then discusses the allowed 
intervals (in months) between lunar and solar eclipses. Besides the common six month 
interval, it turns out that lunar eclipses can also occur at five month, but not seven month, 
intervals, and solar eclipses can occur at not only both five and seven month intervals, but 
also at one month intervals, provided the observers are at widely different locations, 
including being in different (north and south) hemispheres. 
 
Related to all this is a passage in Pliny’s Natural History, written ca. 70 CE, which says 
 

It was discovered two hundred years ago, by the sagacity of 
Hipparchus, that the moon is sometimes eclipsed after an interval of 
five months, and the sun after an interval of seven; also, that he 
becomes invisible, while above the horizon, twice in every thirty days, 
but that this is seen in different places at different times. 
 

For Hipparchus to know all this, and in particular the part about solar eclipses at one 
month intervals, requires that he had a significant amount of computational skill, 
including a reasonable command of lunar parallax. Indeed, Ptolemy tells us that 
Hipparchus wrote two books on parallax. Therefore it is hardly a stretch to presume, with 
Neugebauer 1975, 129 and Pedersen 1974, 204, that Hipparchus already knew the eclipse 
material reported by Ptolemy in the Almagest, including the use of the chain rule 
discussed above. 
 
The second occurrence of the use of the chain rule is in Almagest VII 2 concerning 
retrograde motion. Ptolemy begins by recalling Apollonius’ treatment (from perhaps 180 
BCE) of the simple epicycle model, in which the distance from the Earth to the epicycle 
center is constant. The ratio of a particular pair of geometric distances is, according to 
Apollonius’ theorem, equal to the ratio of the speed ωt of the epicycle center to the speed 
ωa of the planet on the epicycle, both of which are constant in the simple model. 
However, in the case of the more complicated Almagest planetary models – the equant 
for Saturn, Jupiter, Mars, and Venus and the crank mechanism for Mercury – the relevant 
ratio is between the true speeds vt and va as observed from Earth, which are not constant, 
and this once again involves using the chain rule, just as above: 
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where tω′  is ωt diminished by 1°/cy to account for the sidereally fixed apogees in the 
Almagest planetary models. In this case Ptolemy does not actually explain how to 
compute the numerical derivatives for dq/dα, but the numerical values he gives for each 
planet confirm that he was using the tables of mean anomaly in Almagest XI 11, or 
something pretty close to them. 
 



Returning now to eclipses, the natural question to wonder about is whether this careful 
estimate of the instantaneous speed is worth the effort? For example, how much 
difference would it make in eclipse predictions if in the calculations the mean speed η 
was used instead of the accurately calculated speed? In order to investigate this questions 
I have computed, using the Almagest rules, all 977 lunar eclipses from –746 to –130. 
 
The speed is used two ways. First, it is used to compute the difference in time between 
mean and true conjunction, the eclipse being taken to occur at true conjunction rather 
than at minimum distance from the shadow center. This latter approximation is a good 
one, the time difference between true conjunction and minimum distance averaging less 
than 2 minutes and never exceeding 6 minutes, no matter which speed, mean or 
instantaneous, is used. On the other hand, the estimates of the actual time of true 
conjunction vary by about 19 minutes on average, and for about 40% of lunar eclipses the 
time difference exceeds 20 minutes, with a maximum difference of about 48 minutes. 
 
Second, the speed is used to compute the duration of partial and total eclipse. Considering 
just partial eclipses, which are probably the easiest to time and show the largest effect in 
any event, the average difference in computed duration is about 12 minutes. and for about 
14% of lunar eclipses the difference of computed duration of partial eclipse time interval 
exceeds 20 minutes, with a maximum difference of about 41 minutes. The differences 
that exceed 20 minutes arise when the eclipses have low magnitude, so that a relatively 
small change in the latitude of the Moon can result in a relatively large change in the path 
length needed to cross the shadow. 
 
Altogether then, it seems reasonable to me that these differences in predicted absolute 
time and duration of lunar eclipses, while not exactly dramatic, are large enough to 
suggest a motivation for the ancient astronomer to compute the times using the 
instantaneous rather than the mean speed. 
 
All of this by no means implies that differential calculus as we know it was understood 
by ancient mathematicians, but it does show that when they needed to solve a special 
problem, such as the one above, they were in some cases able to do it. 
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