Home License -- for personal use only. Not for government, academic, research, commercial, or other organizational use. 13-May-2025 15:27:11 line_fekete_rule_test(): MATLAB/Octave version 9.11.0.2358333 (R2021b) Update 7 Test line_fekete_rule(). line_fekete_bos_levenberg_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomial space of dimension M = 5 with the Chebyshev basis and weight 1/sqrt(1-x^2). Estimated Fekete points XF: -1.0000 -0.6637 -0.0070 0.6416 1.0000 Graphics saved as "line_fekete_bos_levenberg.png" line_fekete_chebyshev_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomials of degree M = 5 with the Chebyshev basis and weight 1/sqrt(1-x^2). NF = 5 Estimated Fekete points XF: -1.0000 -0.6637 -0.0070 0.6416 1.0000 Graphics saved as "line_fekete_chebyshev.png" Sum(WF) = 3.14159 line_fekete_legendre_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 5 with the Legendre basis and uniform weight. ind = 1 989 2516 4055 5001 NF = 5 Estimated Fekete points XF: -1.0000 -0.6048 0.0060 0.6216 1.0000 Graphics saved as "line_fekete_legendre.png" Sum(WF) = 2 line_fekete_monomial_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 5 using the monomial basis and uniform weight. NF = 5 Estimated Fekete points XF: -1.0000 -0.6560 0 0.6248 1.0000 Graphics saved as "line_fekete_monomial.png" Sum(WF) = 2 line_fekete_bos_levenberg_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomial space of dimension M = 11 with the Chebyshev basis and weight 1/sqrt(1-x^2). Estimated Fekete points XF: Columns 1 through 7 -1.0000 -0.9379 -0.7918 -0.5736 -0.2993 -0.0030 0.2993 Columns 8 through 11 0.5696 0.7898 0.9379 1.0000 Graphics saved as "line_fekete_bos_levenberg.png" line_fekete_chebyshev_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomials of degree M = 11 with the Chebyshev basis and weight 1/sqrt(1-x^2). NF = 11 Estimated Fekete points XF: Columns 1 through 7 -1.0000 -0.9379 -0.7918 -0.5736 -0.2993 -0.0030 0.2993 Columns 8 through 11 0.5696 0.7898 0.9379 1.0000 Graphics saved as "line_fekete_chebyshev.png" Sum(WF) = 3.14159 line_fekete_legendre_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 11 with the Legendre basis and uniform weight. ind = 1 195 654 1135 1764 2487 3200 3854 4346 4805 5001 NF = 11 Estimated Fekete points XF: Columns 1 through 7 -1.0000 -0.9224 -0.7388 -0.5464 -0.2948 -0.0056 0.2796 Columns 8 through 11 0.5412 0.7380 0.9216 1.0000 Graphics saved as "line_fekete_legendre.png" Sum(WF) = 2 line_fekete_monomial_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 11 using the monomial basis and uniform weight. NF = 11 Estimated Fekete points XF: -1.0000 -0.8996 -0.7056 -0.5676 -0.4124 -0.0460 0.3084 0.4948 0.6512 0.8868 1.0000 Graphics saved as "line_fekete_monomial.png" Sum(WF) = 2 line_fekete_bos_levenberg_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomial space of dimension M = 21 with the Chebyshev basis and weight 1/sqrt(1-x^2). Estimated Fekete points XF: Columns 1 through 7 -1.0000 -0.9840 -0.9439 -0.8819 -0.7998 -0.6997 -0.5816 Columns 8 through 14 -0.4494 -0.3073 -0.1572 -0.0010 0.1532 0.3053 0.4494 Columns 15 through 21 0.5816 0.6997 0.8018 0.8839 0.9439 0.9840 1.0000 Graphics saved as "line_fekete_bos_levenberg.png" line_fekete_chebyshev_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomials of degree M = 21 with the Chebyshev basis and weight 1/sqrt(1-x^2). NF = 21 Estimated Fekete points XF: Columns 1 through 7 -1.0000 -0.9840 -0.9439 -0.8819 -0.7998 -0.6997 -0.5816 Columns 8 through 14 -0.4494 -0.3073 -0.1572 -0.0010 0.1532 0.3053 0.4494 Columns 15 through 21 0.5816 0.6997 0.8018 0.8839 0.9439 0.9840 1.0000 Graphics saved as "line_fekete_chebyshev.png" Sum(WF) = 3.14159 line_fekete_legendre_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 21 with the Legendre basis and uniform weight. ind = 1 55 186 323 514 747 969 1486 1785 2131 2498 2866 3228 3553 3857 4079 4487 4678 4816 4947 5001 NF = 21 Estimated Fekete points XF: Columns 1 through 7 -1.0000 -0.9784 -0.9260 -0.8712 -0.7948 -0.7016 -0.6128 Columns 8 through 14 -0.4060 -0.2864 -0.1480 -0.0012 0.1460 0.2908 0.4208 Columns 15 through 21 0.5424 0.6312 0.7944 0.8708 0.9260 0.9784 1.0000 Graphics saved as "line_fekete_legendre.png" Sum(WF) = 2 line_fekete_monomial_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 21 using the monomial basis and uniform weight. NF = 21 Estimated Fekete points XF: -1.0000 -0.9816 -0.9500 -0.8932 -0.8324 -0.7228 -0.5588 -0.4528 -0.3268 -0.1552 0.0132 0.1692 0.3184 0.4524 0.5972 0.7368 0.8380 0.8968 0.9516 0.9824 1.0000 Graphics saved as "line_fekete_monomial.png" Sum(WF) = 2 line_fekete_bos_levenberg_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomial space of dimension M = 41 with the Chebyshev basis and weight 1/sqrt(1-x^2). Estimated Fekete points XF: Columns 1 through 7 -1.0000 -0.9960 -0.9860 -0.9700 -0.9479 -0.9199 -0.8879 Columns 8 through 14 -0.8498 -0.8058 -0.7578 -0.7037 -0.6476 -0.5856 -0.5215 Columns 15 through 21 -0.4535 -0.3834 -0.3093 -0.2352 -0.1572 -0.0811 -0.0010 Columns 22 through 28 0.0771 0.1572 0.2332 0.3093 0.3814 0.4535 0.5215 Columns 29 through 35 0.5856 0.6476 0.7037 0.7578 0.8058 0.8498 0.8879 Columns 36 through 41 0.9199 0.9479 0.9700 0.9860 0.9960 1.0000 Graphics saved as "line_fekete_bos_levenberg.png" line_fekete_chebyshev_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomials of degree M = 41 with the Chebyshev basis and weight 1/sqrt(1-x^2). NF = 41 Estimated Fekete points XF: Columns 1 through 7 -1.0000 -0.9960 -0.9860 -0.9700 -0.9479 -0.9199 -0.8879 Columns 8 through 14 -0.8498 -0.8058 -0.7578 -0.7037 -0.6476 -0.5856 -0.5215 Columns 15 through 21 -0.4535 -0.3834 -0.3093 -0.2352 -0.1572 -0.0811 -0.0010 Columns 22 through 28 0.0771 0.1572 0.2332 0.3093 0.3814 0.4535 0.5215 Columns 29 through 35 0.5856 0.6476 0.7037 0.7578 0.8058 0.8498 0.8879 Columns 36 through 41 0.9199 0.9479 0.9700 0.9860 0.9960 1.0000 Graphics saved as "line_fekete_chebyshev.png" Sum(WF) = 3.14159 line_fekete_legendre_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 41 with the Legendre basis and uniform weight. ind = 1 15 50 86 136 244 312 406 505 620 752 894 1035 1157 1443 1592 1770 1942 2122 2305 2478 2671 2831 3157 3303 3490 3640 3796 3960 4117 4252 4380 4496 4596 4691 4758 4866 4916 4952 4987 5001 NF = 41 Estimated Fekete points XF: Columns 1 through 7 -1.0000 -0.9944 -0.9804 -0.9660 -0.9460 -0.9028 -0.8756 Columns 8 through 14 -0.8380 -0.7984 -0.7524 -0.6996 -0.6428 -0.5864 -0.5376 Columns 15 through 21 -0.4232 -0.3636 -0.2924 -0.2236 -0.1516 -0.0784 -0.0092 Columns 22 through 28 0.0680 0.1320 0.2624 0.3208 0.3956 0.4556 0.5180 Columns 29 through 35 0.5836 0.6464 0.7004 0.7516 0.7980 0.8380 0.8760 Columns 36 through 41 0.9028 0.9460 0.9660 0.9804 0.9944 1.0000 Graphics saved as "line_fekete_legendre.png" Sum(WF) = 2 line_fekete_monomial_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 41 using the monomial basis and uniform weight. [Warning: Rank deficient, rank = 36, tol = 7.110318e-12.] [> In line_fekete_monomial (line 81) In line_fekete_monomial_test (line 46) In line_fekete_rule_test (line 31) In run (line 91) ] NF = 36 Estimated Fekete points XF: -1.0000 -0.9912 -0.9756 -0.9480 -0.9184 -0.8920 -0.8596 -0.8164 -0.7712 -0.6964 -0.5908 -0.5328 -0.4716 -0.4004 -0.3292 -0.2560 -0.1764 -0.0284 0.0372 0.1052 0.2380 0.3648 0.4256 0.4888 0.5712 0.6532 0.7344 0.7760 0.8120 0.8740 0.9176 0.9488 0.9740 0.9908 0.9968 1.0000 Graphics saved as "line_fekete_monomial.png" Sum(WF) = 2 line_fekete_rule_test(): Normal end of execution. 13-May-2025 15:27:20