Animation
Mathematical Programming with Python

https://people.sc.fsu.edu/~jburkardt/classes/math1800_2023/animation/animation.pdf

g W B P

A sequence of still images results in an animation.

” Animation”

Animation creates the illusion of action by the display of a sequence of still images;

The animation might be displayed directly to the screen;

It might be saved to a movie file and display later;

One approach uses Python to create the images, and then an external program to display them
as a sequence or combine them into a movie.

o The more ambitious approach uses matplotlib’s FuncAnimation() to create, display, and com-
bine the images in a single Python program.

1 The idea behind animation

The human eye has a refresh rate of about 3—10 of a second, so things that happen faster than that are not

perceived. Toy makers in the 1800’s created simple devices that flashed a series of still images quickly enough
that the eye perceived continuous motion. Photography and video graphics continued this development,
tricking our visual sense into perceiving moving objects.

A single graphic image. a map, a portrait, a histogram, by itself is a tremendous help to understanding. We
can see things in an image that are not obvious in a table of numbers. By adding the illusion of motion, we
gain an extra sense of how a given system behaves, changes or interacts.

Creating animations on the computer is often tedious work, but the results can be very rewarding. Even if
you don’t plan to make any animations yourself, it is a good idea to understand how they can be created,
modified, and used.

For our discussion, we will go back to the Arenstorf orbit discussed previously, which I crudely animated
by displaying images one at a time and hitting RETURN repeatedly. We want to see how to make such a
sequence of images, and how to combine them into a more professional style animation.

2 Python animations with helper applications

It is possible to create an animation from scratch using a single Python program to create the data, arrange
it into a series of plots, and combine the plots into a movie. This approach requires a lot of care and can
easily break down for beginners.

We will present animation using a less ambitious approach. We will use a multi-step process, in which the
later steps depend on accessing special helper programs.

1. The user uses matplotlib to creates a sequence of image files with numerically increasing names, such
as pic01.jpg, pic02.5pg, ..., pic99.5pg:

2. The user invokes a special program, such as Blender, FFmpeg, mencoder, MovieMaker, Photoshop,
QuickTime that combines the image files into a single animation file.

3. The user invokes a movie player such as mplayer, QuickTime, or vlc to display the animation.

The great advantage of this approach is that the user can concentrate on designing the separate image
frames using matplotlib. Once that is done, there are a number of choices for how to combine the images
and display them. Those choices can be explored separately, and might involve installing new software.
Moreover, various animation parameters such as the frames per second, image quality and so on, have to
be experimented with. It’s good to be able to worry about those things after you are sure you’ve got your
image sequence prepared.

3 Converting an existing code to make images

We will suppose that we have used solve_ivp() to compute the solution sol, containing the sequence of
times, positions, and velocities for the satellite that orbits the moon that orbits the earth. We have data at
n=71 equally spaced times, and want to create snapshots.

We create the images one at a time, using matplotlib. So we start a for() loop with index i. Our first
plot is at time 0, and uses the 0-th set of y data. So we simply do the usual plotting actions, clearing the
screen, drawing lines and markers, specifying grids and labels. When the plot is complete, we need to save
it into its own file, with a unique numbered name, before we can move on to the next time step. Commonly
used file format options include jpg, png.

Once the plotting loop is complete, we should have 71 files that form a sequence of still images of our solution.
At that point, we can look around for a suitable problem to turn them into a movie.

But now we need to look more closely at some of the details of the filename construction and how we set the
plot dimensions.

4 Framing your images

Usually, when you make a sequence of images, you don’t want the coordinate system to change as you go
along. But matplotlib doesn’t see the whole movie, only a single image at a time. If decides how to “frame”
the image, that is, the horizontal and vertical limits, based only on the current data. In order to get a stable
coordinate system, you may need to override this default behavior.

When I made the simple display of the Arenstorf orbit, the first image included the earth at the origin, and
the moon at (1,0), and nothing else. As the moon orbited the earth, matplotlib gradually realized that
there was more to show, and so the coordinate system shifted in a surprising way. But we can insist at the
beginning that all images share a common coordinate frame, by using the x1im() and ylim() commands,
which have the form:

plt.xlim (xmin, xmax)
plt.ylim (ymin, ymax)

or you can use the command

plt.axis (xmin, xmax, ymin, ymax)

For the Arenstorf orbit, it might at first seem that -1 and +1 are the appropriate limits, but recall that the
satellite goes outside the moon’s orbit several times. We could guess initially that the limits might be -1.5
and +1.5, and after making the first set of plots, tighten these limits if it seems appropriate.

Here is the difference between the first frame of the Arenstorf orbit using default limits, and the limits we
propose:

Arenstorf frame 20 Arenstorf frame 20

15

e ©
. .
4 L] ee®e
10 . oo o0 oy ° 1.04 o® ..*....
9,
. [] ° : @,
° ® [}
0.8 1 ® e
° 0.5 °
L]
L]
A ° L °
' 0.6+ *
- . N b 0.0 . s
! .
Y 0.4 LJ
. ® -0.5
®
0.2 4 .) "
° —1.04
Ld
o "
T . T : - r r T -15 - T
-075 -0.50 -0.25 0.00 025 0.50 0.75 1.00 -15 -1.0 -0.5 0.0 0.5 L0 15
< X > L X

By forcing all the frames to share a common coordinate system, your animation won’t seem to be changing
its point of view as it proceeds.

Another issue you may run into is that matplotlib by default uses a display area that is 4 units wide and
3 units high. If you want the coordinate system to use the same measurements in both directions, then you
have to adjust your axis() or x1lim(), ylim() commands. For the Arenstorf orbit, we want the moon’s
orbit to appear circular. To do that, we should make the x axis run from -2 to 2, leaving the y axis at -1.5
to 1.5.

Arenstorf frame 20

Arenstorf frame 20

15 L5
'L AN] oo %
104 o ..*0... 107 o*
° L™ ®
% %
. .
0.5 R 05 e
A ® A
.
> 0.0 . * S > 0.0 .
v v
-0.5 -0.5
-1.0 1 -1.0 1
-15 : . -15 . r T
-15 -1.0 -05 0.0 0.5 10 L5 -20 -15 -10 -05 00 05 10] 2.0
< x> < x>

Note that, as far as I can tell, you can’t use multiple axis() commands with matplotlib; it only carries
out the final one. If you use x1im() and ylim(), then you shouldn’t call axis() afterwards. If you call
axis(xmin,xmax,ymin,ymax) then you can’t afterwards also call axis(’equal’, or else matplotlib will
“forget” your previous command. This is a silly situation for which there must be a remedy, but I haven’t
found it yet.

5 How to Name a Lot of Files

To make a sequence of images, you presumably have a for() loop which increments a counter 7 as each
frame is created. We will assume the frames are to be numbered from 0 through n, and that frame i is to
be stored in a file with a common name including the frame index.

For each loop iteration i, we want to construct a correspondingly numbered filename, and then save the
current image with that filename, using the command plt.savefig(filename). If n is 101, we might create
a file sequence

frame000.png
frame0O1.png
frame002.png

frame009.png
frame010.png

frame099.png
frame100.png

Note that the extra zeros in the initial set of frame names are important. If, instead, the file sequence began
with

frame0.png
framel.png
frame2.png
frame9.png
framel0.png
frame99.png
framel00.png

then when the images are combined into a movie, they will probably be combined in the following order:

frameO.png
framel.png
framel0.png
frame100.png
frame2.png
frame9.png
frame99.png
To create names with the necessary number of leading zeros, we can use the zfi11() function. In our

example, the numeric field in the file names is 3 characters. So if our index 7 is too short, when printed as a
character, we need to left-fill the string with enough zeros to use 3 positions.

Here is a demonstration of a few sample filenames if we require a 3-digit identification field:

for i in [O, 1, 2, 99, 999]:
filename = ’frame’ + str (i).zfill(3) + ’.png’
print (filename)
plt.savefig (filename)

The resulting output is:

frame000.png
frameOO1.png
frame002.png
frame099.png
frame999.png

In other words, if the maximum frame index n uses k digits, we just have to use z£i11 (k) to make sure that
every frame index is printed out with enough leading zeros so that the file names are in proper order. That
way, the software that assembles the individual files into a movie will collect them in the proper order.

6 Converting the Arenstorf code

The code that I posted to the Canvas website for the Arenstorf orbit already had some graphics commands
in it, so that I could make that initial cheap animation for you. Let’s back up and consider what the code
looked like originally, which was to solve the ODE’s that defined the orbit, resulting in a sequence of values
for x,y,x’,y’ over the time period 0 < ¢ < 17.

def arenstorf_solve_ivp ():
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

import numpy as np

global mul, mu2

mul = 0.012277471
mu2 = 1.0 — mul
tmin = 0.0
tmax = 17.0652165601579625588917206249
n=171
tspan = np.array ([tmin, tmax |)
t = np.linspace (tmin, tmax,)
0

n
y0 = np.array ([0.994, 0.0, 0.0, —2.00158510637908252240537862224 |)

sol = solve_ivp (arenstorf_dydt, tspan, y0, t_eval =t)

Although it was not computed as part of the ODE solution process, we can define the location of the moon
as it goes around one orbit as well:

theta = np.linspace (0.0, 2.0 * np.pi, n)
moon_x = np.cos (theta)
moon_y = np.sin (theta)

Now we are ready to consider the plot loop. Recall that the z and y coordinates of the satellite at the i-th
time are stored in sol.y[0,i] and sol.y[1,i]. Since we want to indicate all the preceding locations as
well, we will be plotting sol.y[0,0:i+1] and sol.y[1,0:i+1]:

for i in range (0, n):

plt.clf ()
plt.figure (figsize = (10.0, 7.5))

plt.xlim (—2.0, 2.0)
plt.ylim (—-1.5, 1.5)

Plot the earth as a blue circle.

plt.plot (0.0, 0.0, ’bo’, markersize = 25)

R SR N N N

Plot the moon as a green circle.

#
plt.plot (moonx[0:i+1], moon_y[0:i+1], ’go’, markersize = 15)
#
Plot satellite as a red circle.
#

plt.plot (sol.y[0,0:i+41], sol.y[1,0:1i41], 'ro’, markersize = 10)

plt.grid (True)

plt.title (’Arenstorf frame ° + str (i)

filename = ’arenstorf’ + str (i).zfill(3) + ’.png’
plt.savefig (filename)

plt.close ()

7 Creating a movie file

For a proper animation, we don’t want to used the plt.show() command and have to hit return over and
over. We want a movie file that we can play, or send to friends who don’t have Python. To do that, we need
to find a convenient application that accepts a sequence of still images in files, and creates a movie.

The program I found is convert, part of the freely available ImageMagick graphics library. Information and
downloads are available at:

https://imagemagick.org/index.php

On my Linux system, my image files were called arenstorf000.png through arenstorf070.png. To create the
movie, I had to specify the delay between images, in hundreds of a second, and the desired image quality
between 0 and 100. So my command was

convert -delay 10 -quality 05 arenstorf*.png arenstorf.mpg
Once the movie file has been created, I can display it using the mplayer program:

mplayer arenstorf.mpg

