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Talk Abstract
We present an efficient integral equation method ap-

proach to solve the forced heat equation,ut(x) −
∆u(x) = F (x, u, t), in a two dimensional, multi-
ply connected domain, with Dirichlet boundary condi-
tions. We first discretize in time, which is known as
Rothe’s method, resulting in a non-homogeneous modi-
fied Helmholtz equation that is solved at each time step.
We formulate the solution to this equation as the sum of
a volume potential and a double layer potential. Both
potentials are solved using the Fast Multipole Method
(FMM) resulting in aO(N) method whereN is the to-
tal number of discretization points on the boundary and
in the domain. We demonstrate our approach on the heat
equation and the Allen-Cahn equation.
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Figure 1: A bounded(M + 1)-ply connected domainΩ
is embedded in the unit squareD. The outer boundary is
denoted byΓ0, the interior components byΓ1, . . . ,ΓM ,
andΓ is the union of all such curves. The unit normaln

points out ofΩ on each component of the curve.

Consider a(M + 1)-ply connected bounded domainΩ
with boundaryΓ which is comprised of individual smooth
component curvesΓk (see Figure 1). Many problems in
physics and engineering require solving the forced heat
equation

ut(x) − ∆u(x) = F (x, u, t), x ∈ Ω, (1a)

u(x, t) = f(x, t), x ∈ Γ, (1b)

u(x, 0) = u0(x), x ∈ Ω. (1c)

Possible applications include the homogeneous heat
equation (F (x, u, t) = 0), reaction-diffusion problems
such as the brusselator, or energy minimization problems
such as the Allen-Cahn equation (F (x, u, t) = u(1−u2)).

The long-term research goal is to develop a general
solver for (1). The desired features include:

• High-order temporal schemes.

• General multiply-connected geometries will be eas-
ily handled.

• Solutions will be based entirely on integral formula-
tions, resulting in a well-conditioned method.

• High-order quadrature will be used for achieving
high spatial accuracy.

• A FMM-accelerated solution procedure is used to
achieve optimal or near-optimal efficiency.

Solution Procedure
Contrary to the method of lines, Rothe’s method first

discretizes in time. In order to prevent a severe time-
step restriction, Implicit-Explicit (IMEX) methods [1] are
used to march in time. Such schemes treat the diffu-
sive term implicitly, while the remaining terms are treated
explicitly. Regardless of the choice of IMEX scheme,
the temporal discretization of (1) yields the modified
Helmholtz equation:

(1 − α2∆)uN+1 = B, x ∈ Ω, (2a)

uN+1 = f, x ∈ Γ, (2b)

u0 = u0, x ∈ Ω, (2c)

whereB = B(x, tN , . . . , tN−p+1, uN , . . . , uN−p+1) de-
pends only on thep previous time steps. The simplest
such scheme is the first-order backward Euler method

α2 = ∆t, B = uN + ∆tFN .

A second-order method is extrapolated Gear

α2 =
2

3
∆t,

B =
4

3
uN −

1

3
uN−1 +

4

3
∆tFN −

2

3
∆tFN−1.



At each time step, we represent the solution of (2) as

U(x) = Up(x) + Uh(x).

Here,UP is any solution of

(1 − α2∆)Up = B, x ∈ Ω, (3)

andUh satisfies

(1 − α2∆)Uh = 0, x ∈ Ω, (4a)

Uh = g, x ∈ Γ, (4b)

whereg(x) = f(x) − Up(x).

Volume Potential
The fundamental solution of the modified Helmholtz

equation is

G(x) =
1

2πα2
K0

(
|x|

α

)
,

whereK0 is the zeroth-order modified Bessel function of
the second kind. We can now form a solution of (3) as a
volume integral:

Up(x) =
1

2πα2

∫

Ω

B(y)K0

(
|y − x|

α

)
dAy.

A Fast Multipole Solver is discussed in [2], but it requires
the domain to be the unit squareD := [1/2, 1/2]2 . In
order to use this solver, we embedΩ into D and define

B̃(x) =

{
B(x), x ∈ Ω,
Bext(x), x ∈ Ω\D.

We then solve

Ũp(x) =
1

2πα2

∫

Ω

B̃(y)K0

(
|y − x|

α

)
dAy, (5)

and letUp be the restriction of̃Up to Ω. Different meth-
ods for definingBext(x) have been considered. The most
naive manner is to letBext(x) = 0. However, this leads
to a severe loss in accuracy ofUp. What is required is a
method to smoothly extend a function fromΩ to D. This
research is ongoing.

Layer Potential
The solution of (4) is written as the double layer poten-

tial

Uh(x) =
1

2πα2

∫

Γ

∂

∂ny

K0

(
|y − x|

α

)
σ(y)dsy,

whereσ(y) is the value of an unknown density function at
the boundary pointy, and∂/∂ny is the outward normal
derivative aty. The density functionσ is found by solv-
ing an integral equation derived to ensure the boundary
condition (4b) is satisfied.

In [3], we derive the necessary integral equation

g(x) = −
1

2α2
σ(x)+

1

2πα2

∫

Γ

∂

∂ny

K0

(
|y − x|

α

)
σ(y)dsy. (6)

The above kernel is continuous alongΓ,

lim
y→x

x,y∈Γ

∂

∂ny

K0

(
|y − x|

α

)
= −

1

2
κ(x),

whereκ(x) denotes the curvature ofΓ at the pointx. As
a note, many of the results concerning the formulations
and solutions of the integral equation (6) follow directly
from standard potential theory because of the series ex-
pansion [4]

K0(z) = p(z) log(z) + q(z),

wherep andq are polynomials.
Summarizing, the kernel of the integral equation (6)

is bounded and continuous, and the integral operator is
therefore compact. In addition, there are nontrivial ho-
mogeneous solutions. By the Fredholm alternative, (6)
has a unique solution for any integrable datag(x).

Numerical Methods
In [2], methods for rapid evaluation of (5) are dis-

cussed. Here, we only outline the method. Once a suit-
able extensioñB(x) is constructed, we construct an adap-
tive quad-tree structure in order to superimpose a hierar-
chy of refinement on the computational domain. The unit
squareD is considered to be grid level 0. Grid levell + 1
is obtained by subdividing a box (or node)s at levell into
four equal parts; these are called the children ofs ands
is called the parent. Adaptivity is achieved by allowing
different levels of refinement throughout the tree. A node
s is subdivided if the error of a third-order polynomial
interpolatingB̃ is larger than a preset tolerance.

We denote the childless boxes in the quad-tree as
Di, i = 1, . . . , P, whereP is the total number of such
nodes. We assume that we are givenB̃ on a cell-centered
4 × 4 grid for eachDi. To obtain fourth-order accuracy,



these 16 function values are used to construct the third-
order polynomial

B̃(x) ≈

10∑

j=1

ci
jpj(x − x

i), x ∈ Di

wherex
i is the center ofDi and {pj} are the standard

basis functions for polynomials of order three. Then, we
approximate (5) by

Ũp(x) ≈

P∑

i=1

∫

Di

G(y − x)

10∑

j=1

ci
jpj(y − x

i)dAy.

By precomputing convolutions of the fundamental solu-
tion against polynomials, and using the FMM,Ũp(x) is
computed withO(ND) operations whereND = 16 × P .
A direct method would requireO(N2

D) operations.
We now discuss numerical methods to solve (6). We

assume that each component curveΓk, k = 0, . . . ,M is
parameterized byyk(α), whereα ∈ [0, 2π). Similarly,
σk(α) refers to the restriction of the density functionσ to
Γk. We discretizeΓk atN points equispaced with respect
to α resulting in a total number of discretization points
NΓ = (M + 1)N . Associated with each point, denoted
by y

k
j , is the unknown density functionσk

j .
In order to approximate the integral in (6), we use

hybrid Gauss-trapezoidal quadrature rules developed by
Alpert [5] which are tailored for integrands with logarith-
mic singularities. These quadrature rules are of the or-
derhp log h. The orderp determines the weightsun and
nodesvn, n = 1, . . . , l, which are used for the quadra-
ture within the intervalα ∈ [αj − ha, αj + ha], onΓk (l
anda are also determined byp). Outside this interval, the
quadrature rule is exactly the trapezoid rule. Applying the
quadrature rule to (6) yields

−2α2g(yk
j ) = σk

j

−
h

π
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where

K(y,x) =
1

α
K1

(
|y − x|

α

)
y − x

|y − x|
· ny.

We invoke periodicity of all functions onΓk by defining
j + N = j. In the final sum, we require values ofσ
intermediate to the nodal values. These are found using
Fourier interpolation which requires performing2l Fast
Fourier Transforms.

Equation (7) is a dense linear system that is solved it-
eratively using the generalized minimum residual method
(GMRES). The bulk of the work at each iteration lies in
evaluating (7) at the current solution update. Directly, this
would requireO(N2

Γ
) operations. This evaluation can be

reduced toO(NΓ) operations by using the FMM [2], [3],
[6].

Numerical Results
The algorithms described above have been imple-

mented in Fortran. The tolerance for the residual error
in GMRES is10−11 and the FMM expansions guarantee
12 digits accuracy.
EXAMPLE 1. In this example, we solve the forced heat
equation on a domain for which an analytic solution is
known. The domainΩ is bounded betweenΓ0, a circle
of radius0.4, andΓ1, a circle of radius0.1. The forcing
term is chosen so that the exact solution is

u(x, t) = cos(20|x|)

+ e−λ2t[Y0(0.1λ)J0(λ|x|) − J0(0.1λ)Y0(λ|x|)],

whereJ0 and Y0 are the zeroth-order Bessel functions
of the first and second kind. We have chosenλ so that
the time-dependent term vanishes on both boundaries
λ ≈ 10.244. We march through time using the IMEX Eu-
ler and extrapolated Gear methods, up tot = 0.01. The
results are summarized in Table 1.

∆t Error1 Error2
2.0 × 10−3 1.37 × 10−2 1.65 × 10−3

1.0 × 10−3 7.09 × 10−3 4.74 × 10−4

5.0 × 10−4 3.59 × 10−3 1.23 × 10−4

2.5 × 10−4 1.78 × 10−4 3.25 × 10−5

Table 1:Temporal Error using IMEX Euler (Error1) and
extrapolated Gear (Error2); we achieve first and second
order convergence, respectively.

EXAMPLE 2. In this example, we demonstrate that our
methods can be applied to much more complicated equa-
tions. Here, we solve the Allen-Cahn equation

ut − ǫ∆u = u(1 − u2), x ∈ Ω,

u(x, t) = 0, x ∈ Γ,



whereǫ = 10−5. We initialize the solution with random
variables uniformly on[−1

2
, 1

2
]. The general behaviour of

solutions of the Allen-Cahn equation is well known: the
stable stationary solutions areu = 1 andu = −1 and the
solutions exhibits coarsening towards these values. The
physical boundaries can create more complex patterns as
can be seen in Figure 2.

Figure 2: The solution to the Allen-Cahn equation in a
domain with 10 interior component curves. Here,

NΓ = 2816, ND = 65, 536, 100 time steps of size one
are taken for a total CPU time of 19.5 minutes. The first
picture shows the initial conditions, and the final picture

is at t = 100.

Conclusions
We have presented a coupling of fast algorithms

with integral equation formulations for the modified
Helmholtz equation. The purpose is to develop general
solvers for the isotropic, nonlinear heat equation. We
have demonstrated the methods on a forced linear heat
equation as well as the Allen-Cahn equation.

The long-term goal is to extend this work to more com-
plicated problems including multiple variables (brussela-
tor) and higher order partial differential equations (incom-
pressible Navier-Stokes). However, the issues that must
be addressed before this can be investigated include:

• The extensioñB of B throughout the computational
domain D for general domains remains an open
problem. Under investigation are methods that use
a local interpolation and methods that solve a suit-
able integral equation inside eachΩk.

• In order to appropriately resolve solution features
that appear or disappear within the domain, it may
be necessary to dynamically generate the quad-tree
throughout the simulation.

• The integral operator of the double layer potential be-
comes singular at grid points close toΓ. Currently a
method discussed by Biros et. al. [7] is being imple-
mented.
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