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3 How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?  

 

Peter Beerli 

 

 Population genetic analyses often require the estimation of parameters such as population size and 

migration rates. In the 1960s, enzyme electrophoresis was developed; it was the first method to gather 

co-dominant data from many individuals in many populations relatively easily. Summary statistics 

methods, such as allele-frequency based F-statistics (Wright 1951), were used to estimate population 

genetics parameters from these data sets. These methods matured and expanded into many variants that 

were enthusiastically accepted by many researchers. F-statistics are still a hallmark of any population 

genetic study, especially in conservation genetics, although over the years, limitations have become 

evident (Neigel 2002). Many of these methods use restrictive assumptions, for example, disallowing 

mutation. F-statistics, such as FST methods, are often employed on pairs of populations; this can lead to 

biased parameter estimates (cf. Beerli 2004; Slatkin 2005) and the reuse of data in these pairwise 

methods is undesirable from a statistical viewpoint.  

 In 1982, Sir John Kingman developed the coalescence theory (Kingman 1982a, b). His overview of 

the developments of this theory (Kingman 2000) gives an interesting insight into the development of 

new ideas. This new development opened the door to methods in population genetics that go beyond 

the F-statistics methods and have led to several theoretical breakthroughs (Hein et al. 2005; although 

inferences based on coalescence theory were not practicable until about 1995 because of computational 

constraints). In recent years, computer-intensive programs that can estimate parameters using genetic 

data under various coalescent models have been developed; for example, programs that estimate gene 

flow (Beerli and Felsenstein 1999, 2001; Beerli 2006; Bahlo and Griffiths 2000; De Iorio and Griffiths 

2004; Ewing and Rodrigo 2006; Hey and Nielsen 2004; Kuhner 2006; Wilson et al. 2003). These 

programs use different models and different approaches, but in all of them, the quantities of interest are 

difficult to calculate. Very generally, the goal of these applications is to calculate the probability of the 

parameters of the chosen model given the data. Population genetics methods often use the relationship 

among the sampled individuals to get accurate estimates of population size, migration rate, or other 



parameters. These relationships, called genealogies, are typically unknown. Therefore, an optimal 

approach is to look at all genealogies and weight them using the data. Such approaches can be 

expressed as integrals over all possible relationships. Unfortunately, there are too many possible 

genealogies and such an integral cannot be solved exactly. Several numerical integration methods have 

been developed over the centuries, but only recently Metropolis et al. (1953) developed a general 

approach allowing the integration of complicated multidimensional functions and named this approach 

the ‘Markov chain Monte Carlo method’. Their original algorithm, the Metropolis algorithm, was 

extended by Hastings (1970) and Green (1995). Many coalescence-based programs use the Metropolis-

Hastings or the Metropolis-Hastings-Green algorithm to approximate this integral over all possible 

genealogies. In the following explanations, I will focus on the program MIGRATE (Beerli and 

Felsenstein 1999, 2001; Beerli 2006) but all discussions of Markov chain Monte Carlo approximations 

and most, if not all, problems are shared with the other programs that use such an approximation.  

 

WHAT IS ‘MARKOV CHAIN MONTE CARLO’?  

The Markov chain Monte Carlo (MCMC) method is an integration technique for problems that have no 

simple analytical solution. Instead of exploring the function to integrate in a systematic manner, as in 

standard numerical integration techniques, MCMC is an autocorrelated method, where each step or 

sample depends on the last one, but it also has no memory because no step prior to the last one is 

remembered and thus, cannot influence the choice of the next step. Requirements for the method to 

work are  

• It must be possible to calculate the integration-function up to a constant. We can often reduce the 

function of interest to two functions: one that we can calculate and another one that we cannot 

solve analytically but can hold constant throughout the analysis. Replacing this constant with 1 

typically does not change the relationship among the steps or the steepness of the function but 

only the height of the function.  

• Each point on the probability-landscape must be reachable from any other point, if necessary in 

multiple steps.  

• Moves from an old point to a new point on this probability-landscape are reversible and equally 

likely; if not, this directional bias needs to be corrected.  

 

An almost too simple example  

 Integration takes a central role for calculating the expectation of a probability distribution. It is 

standard procedure to calculate the integral analytically or to solve it piecewise, most often by 

discretizing the continuous distributions. The only requirement for such an approach is that we must be 



able to calculate the function at any point. With many discrete pieces this function can be integrated 

with high accuracy. Unfortunately, with many parameters (many dimensions) this approach does not 

work very well. Often, the function cannot be calculated on an absolute scale but only relative to an 

arbitrary quantity; therefore, all evaluations using this unscaled function will be off by a constant. 

When we compare function-values within the same analysis, the differences of these unscaled function-

evaluations are the same as those using the correctly scaled function, which we typically cannot 

calculate easily. This new unscaled function can, however, be used in an MCMC context. The 

algorithm works like this  

 

Step 1.1: Start with a random assignment of parameters (for example migration rates, population 

sizes, and genealogy)  

Step 1.2: Evaluate the function for this first step (Lold)  

Step 2.1: Change the parameters (or a single parameter at a time)  

Step 2.2: Evaluate the function for this step (Lnew)  

Step 3.1: Evaluate the ratio R = Lnew / Lold 

Step 3.2: Draw a random number r from a uniform distribution between 0 and 1.  

Step 3.3: If r < R then accept the parameter change and record the new state; otherwise stay at the 

old state, and record it.  

Step 4: Go to 2.1 and repeat many, many times.  

 

For a simple illustration of the steps above, I used a convolution of two Normal distributions: in this 

case the absolute probability density function is known and can be calculated (smooth curve in Fig. 

3.1). The histograms were built up using a very simple MCMC procedure that was optimized for this 

problem. Fig. 3.1 shows an MCMC run for a single parameter after 3 steps, 300 steps, 300 000 steps, 

and 3 000 000 steps. Improvement of the approximation to the area under the curve of the function is 

obvious. Fig. 3.1 clearly shows that without running many steps, the approximation is very crude. 

However, the problem is that there are no clear stopping rules; for example if we are only interested in 

the maxima of the function, a sample of 300 000 steps would be fine, but the area under the curve is 

still not approximated very well. If we do not know the function well enough, we would still not know 

whether there are more than two peaks. This example is very simple and it is important to remember 

that any integration in the context of multiple parameter estimation will almost certainly be more 

difficult and less accurate.  



 

3 steps 300 steps

300,000 steps 3,000,000 steps

 

Figure 3.1. Approximation of the area under a curve using MCMC: The curve is the exact function, the 
gray area is the approximation using MCMC. The black dot marks the starting point of the run, the 
white dots in the top-left panel show the three sampled states that make up the histogram.  
 

MIGRATE – A PROGRAM FOR INFERRING POPULATION GENETIC PARAMETERS  

 I will use my program MIGRATE to explain some general difficulties of using software that employs 

MCMC, and will also give some ideas on how to analyze data using such software.  

 MIGRATE uses two frameworks: (1) coalescence theory to model population genetics forces, such as 

population sizes and migration rates, and (2) mutation models that explain the change of alleles or 

nucleotides at sites over time. Both models are simplistic, but for many reasons, no better alternatives 

are available. It certainly is a strong assumption that Kingman’s population genetic model fits all 

natural populations, but comparisons with other statistics, for example FST (Beerli 1998), have shown 

that coalescence theory recovers population scenarios at least as well as or better than some of the other 

methods. The mutation models are borrowed from phylogenetics (cf. Swofford et al. 1996; Felsenstein 

2004) or ‘old-fashioned’ population genetics (Kimura and Crow 1964; Kimura and Ohta 1978a; Ohta 

and Kimura 1973). In phylogenetics, the distinction of the terms substitution and mutation is important, 

but, within this population genetics framework, we assume that mutations are neutral or nearly neutral, 

and therefore, substitution and mutation are equivalent.  

 



Coalescence theory  

 Kingman (1982a, b) extended Sewall Wright’s observation (1951) that it takes two randomly chosen 

chromosomes in a population of size N about 2N generations until they meet in their most recent 

common ancestor. Kingman showed that it is possible to calculate the probability of a genealogy of any 

number of individuals. His findings allowed the use of a random sample of individuals to infer 

parameters for the whole population. Hudson (1991) popularized Kingman’s n-coalescent among 

biologists and today, many extensions of the basic n-coalescent exist; for example, models on 

recombination (Hudson and Kaplan 1988), gene flow (Hudson et al. 1992; Notohara 1990; Wilkinson-

Herbots 1998), speciation (Nielsen 1998), selection (Kaplan et al. 1988; Neuhauser and Krone 1997; 

Felsenstein 2004) and many more. The coalescent was derived using a rather general population model, 

the Cannings model, which is a generalization of the Wright-Fisher population model. The Cannings 

model allows for variance in the offspring function, whereas the Wright-Fisher model fixes this 

variance at 1 (Ewens 2004). The coalescent fits simulated data that were generated using a time-

forward process almost perfectly when the population model is the Wright-Fisher model. Although the 

coalescent is robust, caution is needed because it is a diffusion approximation and holds in principle 

only when the population size is much larger than the sample size, because with either large sample 

size or very small population size, we expect an increased probability of multiple coalescence per 

generation, which Kingman’s n-coalescent ignores. The effects of multiple coalescences in a generation 

and effects of sample numbers were explored by several authors. Additions to the coalescence theory 

by Pitman (1999), Möhle (2000), Schweinsberg (2000), Möhle and Sagitov (2003) and Fu (2006) allow 

for situations in which more than two lineages merge in the same generation and therefore, for a less 

restrictive ratio of sample size and population size. Fu (2006) compared the standard coalescent with 

his multiple-merger coalescent and found that the standard coalescent works astonishingly well even 

with small populations and large sample sizes; this corroborates the finding of Wakeley and Takahashi 

(2003) that the standard coalescence is robust as long as the sample size is smaller than the effective 

population size. If the reproductive success is very uneven among individuals, the concept of effective 

population size could, in principle, become meaningless, for example, if one individual produces all the 

offspring for the next generation (Eldon and Wakeley 2006). Such a ‘neutral sweep’ would be 

indistinguishable from a selective sweep. The risk for such a sweep decreases as the size of the 

population increases. It is perhaps most pronounced in species that can have small population sizes and 

produce millions of gametes per individual, as is the case for many fish species.  

 



Mutation models  

 Readers familiar with phylogenetics know that many studies are preoccupied with using the best 

substitution model. In population genetics, the problem of misspecification of the mutation model is 

less severe because the gene trees (genealogies) typically occupy a much shorter time period than 

phylogenetic trees. MIGRATE accommodates only a few nucleotide mutation models; the default is the 

Felsenstein 84 model (F84; Hasegawa et al. 1985). This model is similar to the Hasegawa-Kishino-

Yano (HKY) model: both allow for different nucleotide frequencies and uneven transition rates 

between purines and pyrimidines (cf. Swofford et al. 1996). Restricting the F84 model, for example by 

setting all base frequencies equal, to 0.25 makes it equivalent to simpler models. This model is not very 

sophisticated, but it incorporates important features of sequence evolution without many additional 

parameters. Population genetic inference uses a much more recent time window than phylogenetics and 

more sophisticated models are warranted only for very rapidly evolving microbes. Researchers in 

population genetics often accept much simpler models for sequence data, such as the infinite sites 

model or no-mutation models. MIGRATE does not estimate mutation model parameters, such as 

transition-transversion ratio and site rate-variation parameters. To get good results, it is better to input 

specifics about the mutation model and whether rate variation among sites should be assumed. Such 

parameters can be derived using other programs such as PAUP* (Swofford 2003) or MODELTEST 

(Posada and Crandall 1998). Recently, single nucleotide polymorphism data were used to investigate 

population genetics features in humans (Wakeley et al. 2001). Programs like MIGRATE and LAMARC 

(Kuhner 2006) can adjust for the fact that only variable sites are used in the analysis. This is important 

because, without correction, population genetics parameters would be overestimated (Kuhner et al. 

2000; Nielsen 2000; Nielsen and Signorovitch 2003; Clark et al. 2005).  

 The models for electrophoretic markers and microsatellite markers are even less sophisticated than 

the sequence models, although a large number of possible models is known (Calabrese and Sainudiin 

2005). Most of these more sophisticated models are difficult to apply many millions of times during a 

single run: each might need a separate MCMC run to estimate a single branch length. MIGRATE allows 

the use of mutation models for allozyme data (Kimura and Crow 1964) and for microsatellites (single-

step mutation model; Ohta and Kimura 1973; Kimura and Ohta 1978b) and a Brownian motion model 

that approximates the single-step mutation model (Beerli 1997; Blum et al. 2004). DNA or RNA 

sequence data often contain more information about the history of mutations in the sample and 

therefore, usually allow for better inferences than other types of data. Nevertheless, these other data 

types (allozymes, microsatellites) still contain useful information about the population genetics 

processes. The genealogies generated with such data may look uninformative but, as the example in 

this section shows, allow us to make inferences that go beyond FST -based analyses.  



 

How are these pieces combined?  

 MIGRATE infers parameters either by (1) maximum likelihood or (2) Bayesian inference. A central 

probability in MIGRATE is the probability of the parameters for a specific data set and a specific 

genealogy. This probability is calculated as the product of the probability of the data given the 

parameter and the probability of a genealogy for a given parameter value. Finally, the likelihood is the 

sum over all genealogies (topologies and branch lengths) of this weight:  

 
Likelihood of the parameters X

Sum of all different labeled histories
Integral over all different branch lengths

Probability of the genealogy given the parameters

Likelihood of the genealogy

 
 

Bayesian inference uses an arbitrary prior distribution for each parameter and the coalescent as a prior 

distribution for the genealogy, but it also needs the likelihood machinery to sum over all genealogies. 

Details were given by Beerli and Felsenstein (1999, 2001) and Beerli (2006). This sum over all 

genealogies is approximated using MCMC and the likelihood is scaled by an unknown constant: it is a 

relative likelihood. It is important to recognize that a specific log-likelihood value is uninformative, and 

that the likelihoods of different independent runs with MIGRATE typically cannot be compared. This 

topic is discussed in the section Likelihood ratio tests and related test statistics. 

  

Running in Maximum Likelihood Mode  

 Maximum likelihood analysis (ML) and Bayesian inference (BI) use different schemes to estimate 

parameters. The likelihood method starts with arbitrary values for parameters and genealogy. A new set 

of genealogies is found with these arbitrary parameter settings using MCMC (these parameter are 

called the driving parameters because they drive the MCMC). Maximum-likelihood estimates of the 

parameters are then found using this new set of genealogies. These maximum likelihood estimates are 

probably quite different from the driving parameter values because the data are pushing the likelihood 

function (and thus the parameter values) towards values that are compatible. A second MCMC-chain 

uses these new parameter values as driving parameters and samples a new set of genealogies after 

which a new set of parameter values is estimated. This iterative procedure inches towards parameter 

values that are compatible with the data. By trial and error we (Mary Kuhner, Jon Yamato, Joseph 



Felsenstein, and Peter Beerli, unpubl.) found that several chains that are relatively short allow the 

exploration of the parameter space. It typically takes about five to ten chains to find sufficiently good 

driving values, as marked by small changes of parameters between consecutive chains; then two or 

three very long chains are run and the last chain is used to report the maximum likelihood estimates. 

Approximate confidence intervals are calculated using profile likelihoods. 

  

Running in Bayes inference mode  

 For Bayesian inference, it seems most profitable to run one single long chain with a prior-

distribution for each parameter or combinations of parameters. Parameters and genealogy are updated 

randomly using a user-specified frequency of genealogy-changes. For likelihood, the driving values 

needs adjusting, whereas in a Bayesian framework the prior distribution of the parameters provides a 

mechanism for exploring different parameter values to change the genealogy during the MCMC run. 

The parameter values recorded during the run of this single long chain are then used to generate a 

posterior probability density for each parameter. MIGRATE displays these posterior distributions as 

histograms and also tabulates quantiles, mode, median, and mean. The most important features are the 

mode of the posterior distribution (i.e. the maximum posterior estimate), and the 2.5% and the 97.5% 

quantile, the borders of the 95% credibility interval.  

 In ML, the success of run depends on the length and number of short and long chains, whereas in BI 

the choice of the prior distribution is critical. This prior distribution is often a simple distribution that 

reflects our knowledge of the parameters before the analysis. Researchers often apply uninformative 

prior distributions, such as the uniform distribution, perhaps hoping not to bias the posterior 

distribution. However several Bayesian statisticians suggest using prior information and advocate the 

use of informative prior distributions. Informative data will overpower any reasonable prior 

distribution, but informative priors will influence the result when the data is weak. Effects of choices of 

prior boundaries are discussed using an example in a later section. In MIGRATE, several prior 

distribution are implemented: a uniform distribution with lower and upper bounds that need to be 

chosen more extreme than any parameter compatible with the data, and two types of exponential 

distributions that put more emphasis on small values dependent on the mean of the distribution.  

 

A short explanation of what MIGRATE does and does not do  

 MIGRATE, like other population genetic model-based methods, is based on several assumptions. It 

shares almost all of these assumptions with other programs that infer population sizes or magnitude of 

gene flow. These assumptions are: 

 



• Population sizes are constant through time or are randomly fluctuating around an average 

population size. This assumption is very common for many population genetics analyses, especially 

FST -based analyses. Only a few programs that estimate gene flow relax this assumption, for 

example LAMARC (Kuhner 2006), and IM (Hey 2005). The program BEAST (Drummond et al. 2005) 

estimates varying population sizes through time for a single locus and a singe population. 

Additionally, some tests are now available for detecting whether a drastic decrease in population 

size occurred in the past (for example Cornuet and Luikart 1996); however, many loci are needed 

and the effects of the population bottleneck must be severe for it to be recognized. Such tests often 

ignore gene flow among populations or other population genetic forces.  

 

• Individuals within a population are randomly mating, and each individual has the same potential to 

have offspring. Therefore, it is assumed that no selection is acting on the loci under study. The 

creation of programs for the inference of selection coefficients with a coalescence-based framework 

is underway.  

 

• Mutation rate is constant through time and is the same in all parts of the genealogy. Although 

MIGRATE assumes rate constancy on the genealogy, it allows using of site rate variation among 

nucleotide sites and mutation rate differences among loci. Only phylogenetic methods, for example 

r8s (Sanderson 2002), and the program BEAST (Drummond et al. 2005) allow for different rates on 

different branches, but these programs either do not account for population parameters at all or only 

population sizes.  

 

• Immigration rate is constant through time, but can differ among populations. All programs that 

allow for the estimation of migration rates force rate constancy through time or some segments of 

time (for example IM: Hey and Nielsen 2004); in addition, FST -based analyses also impose 

symmetric rates or symmetric numbers of migrants.  

 

• Populations exchange genetic material only through migrants, so no population divergence is 

allowed. If the time of the most recent common ancestor is younger than the divergence time then 

MIGRATE is a perfect tool. If you have a data set with two populations that have split only very 

recently you might want to compare your MIGRATE results with the results from IM (Hey and 

Nielsen 2004). In contrast to IM, MIGRATE can analyze one, two, or more than two populations; 

using only population pairs can lead to overestimations of parameters (Beerli 2004; Slatkin 2005).  

 



What happens when the population history violates the assumptions?  

 One of the most frequent comments from of users of MIGRATE is that it is not applicable because the 

population history of their species violates the assumptions of MIGRATE. However, it is important to 

remember that no program will be able to relax all assumptions, and practitioners need to assess 

whether an assumption violation will harm their conclusions. Fig. 3.2 highlights the direction in which 

the program will err when assumptions are violated. Several population scenarios that deviate from the 

assumption that the population size is constant through time were simulated (see Appendix for the 

simulation and run details). With growing or shrinking populations, MIGRATE will under-or over-

estimate the effective population size, respectively (Fig. 3.2a, b). The results show that the estimates 

are mainly influenced by the situation close to the sampling date. On a genealogy with concurrent tips, 

most lineages are present close to the tip date and will contribute more to the final estimate. With 

randomly fluctuating population sizes (Fig. 3.2c), the estimate will roughly track the average size. 

Interestingly, before this experiment, I had expected this estimate to be the harmonic mean, which is 

believed to track the long-term population size; however, the most recent fluctuations contribute more 

to the estimate and so many replicates might show an average at the harmonic mean. Short bottlenecks 

in the past have little effect on the estimate (Fig. 3.2e), whereas recent bottlenecks might mimic a 

smaller population size (Fig. 3.2f). If the population decline to moderate numbers is very sudden and 

very recent, MIGRATE is strongly influenced by the bottleneck (Fig. 3.2d). These outcomes need to be 

explored in more depth, and more simulations with different number of sampled individuals need to be 

done (Beerli, in prep.). In any case, it is already possible to say that MIGRATE is influenced by recent 

changes in population size despite the fact that it delivers long-term estimates. 

  

Example data set  

 As an example a data set, I will us the one for water frogs from my Ph. D. thesis (Beerli 1994). The 

data are listed in the Appendix and include five populations and 31 electrophoretic marker loci; Beerli 

et al. (1996) and Beerli (1994) provide details about the different loci. Today, electrophoretic marker 

data may seem outdated, but it has only recently become easy to sample more than 30 anonymous 

sequence loci (Brumfield et al. 2003), or microsatellites for most species groups. A complete analysis 

is difficult because of uneven sampling, uneven distribution of alleles, and (perhaps even worse) lots of 

missing data. The localities are mapped in Fig. 3.3. This data set is interesting because additional 

information about the geological history of this area is available. After the last glaciation period (Würm 

period) ended, the water level rose about 120 m and so isolated the island Samos from the mainland 

around 10 000 years ago (R. A. Rohde at http://globalwarmingart.com/wiki/Image:Post-

Glacial_Sea_Level_png based on Fleming et al. 1998; Fleming 2000; Milne et al. 2005). The salt water 



barrier between Samos and Anatolia is shallow. However, the sea between Samos and Ikaria is rather 

deep and the two islands were probably only connected during the most severe of the more recent 

glaciation periods (Mindel period) about 200 000 years ago. 

  

Analysis using MIGRATE  

 I will now analyze the frog data set to estimate the gene flow pattern to and from the mainland 

(Selçuk) and islands Samos and Ikaria. We will assume that more gene flow occurs from the mainland 

to the islands than from the islands to the mainland, and in the following sections we will explore this 

hypothesis. The analysis in this chapter is incomplete, but reveals both difficulties and successes.  

 

Basic analysis – getting familiar with MCMC based software and data  

 MIGRATE version 2.0 and newer (Beerli 2006) has the capability of inferring the parameters using 

either maximum likelihood (ML) or Bayesian inference (BI). For a first analysis, BI is preferred over 

ML because simulations have shown that, with non-informative data, results using MCMC-based ML 

analyses are more error-prone (Beerli 2006). This chapter will give a sketch of a possible way to 

analyze any data and gain confidence that the results are correct. In a first encounter with the program 

and the data set, I suggest experimenting with the program using the default values for the run 

conditions. Once you are convinced that the data has been read correctly and the program runs to 

completion, run the program with the default values. Be aware that default values are chosen so that the 

program can finish in a reasonable time frame for small to moderate data sets. Depending on the 

number of parameters to explore, such defaults can be inappropriate and should only be considered as 

the roughest guide. The number of populations in the example data set is five, so there are 5 

population-size and 20 migration parameters. The default values, and so the first default ML or BI-run, 

will not be very trustworthy because these defaults were set for much smaller data sets. With 25 

parameters, the MCMC runs will be ‘too short’. The MCMC procedure adds variance to the variance 

introduced by the data, and only multiple runs of different lengths will help to evaluate the magnitude 

of this variance.  
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Figure 3.2. Estimation of population size under different population histories. The X-axis shows time scaled by 
mutation rate: Past to the left, today is at 0. The Y-axis shows the mutation scaled population size Q that is 4 * 
effective population size * mutation rate per site. Thin lines show the true population size through time; the 
dashed line was calculated from the true population sizes using a harmonic mean to estimate the average long-
term population size; the gray area is the 95%-credibility interval and the thick line is the value at the mode of 
the posterior distribution evaluated by MIGRATE using simulated data sampled at time 0 (1 population with 50 
individuals sampled; 10 loci each 10 000 base pairs long; details in Appendix). 
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Figure 3.3. Map of water frog sampling locations on Anatolia, Samos, and Ikaria. 

 

 

 One of the common mistakes of such analyses is that researchers want to do it right on the first try; 

they will run all the data on very long chains and are disappointed when the program fails or the 

reported end of that single run is in the following month. A better practice is to use several trial runs to 

see how the software behaves (this is true for any program that uses MCMC). For BI, change the 

settings in the Strategy menu of MIGRATE and make sure to visit all submenus, especially the menu 

entries on the prior distributions. For a first run, choose one ‘long’ chain to explore around a million 

steps and save around 100 000 steps. On small data sets with few loci and few populations this will 

take minutes, but might take a couple of hours on data sets with more than 4 populations and a single 

locus. Fig. 3.4 gives a rough comparison of runtime of different population scenarios and number of 

loci compared to a single population-run. With 10 populations and 10 loci, the runtime is about 3 times 

longer than with a single population when the amount of data is the same for all scenarios. In reality, 

researchers will have 10 times more data from 10 populations than from one population, therefore, 

runtime will be probably about 30 times longer.  
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Figure 3.4. Comparison of the runtime of simulated data sets with 1, 2, 5, and 10 populations and 1 to 
10 loci. The y-axis shows the runtime ratio of the multi-population parameter estimation compared 
with the single population. The effort for each run was the same: each run used a total of 100 sampled 
individuals with a total of 10 000 base pairs each. For example the last data point for the five-
population setting uses 20 individuals per population and 10 loci, each 1000 base pairs long.  

 

 

  We can think of this first run with the default values as a baseline run. We expect that the resulting 

posterior distribution will not be smooth, and it is quite possible that some parameters will show 

strange posterior distributions (Fig. 3.5a). For example, if your data suggest a population size of 0.1, 

but your prior distribution is uniform on the interval 0 to 100, then most proposals will be rejected 

because most of the suggested population sizes are incompatible with the data. In such cases, we need 

to shrink the upper bounds of the uniform prior, increase the number of samples considerably, or use 

another prior, for example, an exponential prior. Fig. 3.5 gives examples of what could go wrong with 

prior specification. Once we get an idea how long to run the MCMC chains, set up an even longer 

chain and use this to report results. For ML analyses, a similar iterative approach is useful. The default 

settings will often work for two-population data sets that are moderately or highly variable. The 

example data set needs longer runs than the defaults and the sampled chains for the short and long 

chains should be large. ML uses an iterative scheme of several short and long chains because it does 

not change the parameter values that drive the MCMC. If these driving parameters are too small, 

convergence to good estimates is very slow. An iterative improvement of the driving values with 

several shorter chains moves these driving values towards the ‘true’ values (Wilson et al. 2000). When 

the driving values are sufficiently close to the ‘true’ values the ML approach delivers good estimates. 



ML estimates are very useful for establishing a likelihood ratio test framework (as discussed in the 

section Likelihood ratio test and related test statistics).  
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Figure 3.5. Effect of miss-specification of prior distribution on the posterior distribution. A sample of 
the prior distribution is shown with thin lines; Histograms are posterior distributions: shading marks 
approximate 50% (black), 95% (dark gray) credibility sets. (a) A uniform prior in the range between 
0.0 and 10.0, which is too diffuse combined with too few samples from the MCMC, does not lead to an 
informative posterior distribution; (b) A prior distribution that has too slow an upper limit (0.02) cuts 
off the posterior distribution at that upper limit; (c) Uniform prior distribution that facilitates fast 
convergence without truncation for this data set (upper limit 0.1, many more steps saved). Detailed run 
condition in Appendix.  
 

Comparison of effect of gene flow using the Bayesian framework  

In contrast to a DNA sequence locus, an individual allozyme locus is not very informative because the 

history of the sampled mutations cannot be inferred; but with many loci there is a good chance that we 

can recover directionality in gene flow. Fig. 6 shows such an analysis. MCMC run-conditions are 

specified in the Appendix. The migration rates were calculated assuming that migration (gene flow) is 

only possible between nearest neighbors and geographic distance is also taken into account. A user can 

supply a geographic distance matrix between the localities and these distances will scale the migration 

rate. If migration rates are only a function of distance then all values should be similar. For frogs, salt 

water is a barrier; therefore, we expect lower migration rates than over land. Hence, I expected lower 

migration rates between Samos and Seluçk, and Samos and Ikaria, compared to migration rates 

between mainland locations. In fact, the migration rate between Samos and Ikaria should be the 

smallest because the sea strait separating Ikaria persisted for the longest time. The migration rates from 

the mainland (Selçuk) to the islands is much larger than from the islands to the mainland; for example 

the rate from Samos to Selçuk is about half of the rate from Selçuk to Samos (Fig. 3.6). The difference 

in geographic distance between Samos and Ikaria is larger than between Samos and the mainland, so 

we would expect a difference in gene flow; in this case, however, the difference seems smaller than 

expected.  
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Figure 3.6. Posterior probability distributions of the mutation-scaled migration rate Mji = mji/µ where m 
is the immigration rate per generation into a population i from j and µ is the mutation rate. All six 
pairwise migrations between the mainland (Selçuk) and the island of Samos (close to the mainland) and 
between Samos and Ikaria are shown. 
 

Comparison of Bayesian inference and maximum likelihood  

 It is difficult to make a fair comparison between BI and ML, because each program use slightly 

different models and programs. Recently, the programs MIGRATE (Beerli 2006) and LAMARC (Kuhner 

2006) were improved and can run both BI and ML. Only the portions of the program that constitute the 

individual statistics are different. ML works well with very variable data (Beerli 2006; Kuhner and 

Smith 2006), but has problems with low-variability data (Beerli 2006; Kuhner and Smith did not 

evaluate low-variability cases). When the data do not contain many variable sites the ML approach has 

difficulties in converging and needs very long MCMC chains. Often with such data, the ML approach 

does not give good guidance whether the data can support or reject a population model. In contrast, BI 

calculates posterior distributions that are similar to the prior distribution, thus alerting the user that the 



data may not support a complicated population model. In a Bayesian context, it is possible to use the 

distribution similar to that of the prior distribution to assess whether the data are overfitted with too 

complicated a model. When the posterior is identical to the prior then the data do not contribute to the 

result. In fact, programmers use this no-data case as one test to check whether the programs run 

correctly. In the ML analysis this is somewhat trickier: in current implementations, the MCMC 

algorithms describe a Brownian motion walk because the data have no influence. Running from the 

same starting point many times will produce results that are ‘normally’ distributed around the starting 

value.  

 Runs using BI and ML of the water frog data set reveal some differences, but the overall picture is 

about the same. A comparison of Figs. 3.6 and 3.7 shows that the two approaches agree that the gene 

flow to islands is higher than from the islands to the mainland. 
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 Figure 3.7. Log profile likelihood (Ln L) of mutation-scaled migration rates Mji = mji/µ where m is the 
immigration rate per generation into a population i from j. The two curves closer to zero are for gene 
flow towards the mainland.  
 

How long to run  

 MCMC runs of complicated models need much longer to converge than simple models. The 

convergence rate is dependent on the data: when the true branching pattern and the mutation events are 

well distributed, convergence is fast; with low variability or very long terminal branches, the 

convergence is typically slow. The example data set needs longer chains than the default in MIGRATE. 

Although the program calculates the Gelman-Rubin convergence diagnostic (Brooks 1998), the best 

test is longer and longer trial runs. For example, increase the run-length by a factor of 10, until different 

runs return similar, consistent, results. This exercise is also useful because you become more familiar 



with the output file format and the program in general. Convergence diagnostics can show successful 

convergence, but the results may still be very different among runs when too few samples are taken. In 

a two-population scenario with simulated data from 10 loci (Fig. 3.8), BI seems to converge faster than 

ML when judged by the convergence diagnostic, but the estimates of ML converge faster to the true 

value than BI. This is only a single, very simple example, but still it needs to run for at least 105 steps. 

For most data sets, simple MCMC runs do not achieve good results because the chain does not explore 

the possible solutions very easily and improvements of the MCMC strategy are needed.  
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Figure 3.8. (a) Gelman-Rubin statistic of the Bayesian and ML schemes when run for different 
numbers of sampled steps in the last chain. Values below the dashed line show convergence. (b) Values 
of Θ estimates using the same runs as in (a). The dashed line in (b) is the population size used to 
simulate the datasets. Large dots are averages of 10 independent runs (small dots). The data were 
modeled using two populations; only the size of population 1 was reported. 
 
 
Replication and Heating  

 Geyer (1991; Geyer and Thompson 1992) developed a replication scheme that allows combining 

different MCMC chains for ML estimation. This scheme calculates relative weights for each chain and 

so adjusts the contribution of each chain to the final ML. This replication scheme is used in MIGRATE 

and LAMARC (cf. Wilson et al. 2000).  

 Geyer and Thompson (1995) and others developed a method that uses several chains run with 

different acceptance ratios powered by the inverse of a ‘temperature’ (Metropolis-coupled MCMC or 

MCMCMC). With a temperature of 1.0, standard acceptance ratios are used; with a temperature of ∞, 

all changes in the MCMC are accepted. This powering up of the acceptance ratio essentially flattens the 

solution space and so makes it easier to cross deep valleys and descend from very steep peaks. After 

each chain has made a step, a random pair of temperatures is compared using a Metropolis algorithm-

based acceptance ratio and, if the move is accepted the chains running at different temperatures swap 

parameter states.  



 With more than two populations, I suggest exploring heating very early in the experimental runs 

because you do not know what the solution space looks like. It might be jagged and then you need 

chains that can jump between peaks. MCMCMC is a possible solution to such problems. MIGRATE 

allows to set arbitrary temperatures, and a static or an adaptive heating scheme. The adaptive heating 

scheme takes the start temperatures and decreases the temperature difference by 10% between chains 

that do not swap for a preset number of trials. If the chains swap more than once in the preset number 

of trials, the temperature difference increase by 10%. Adaptive heating with a fixed number of heated 

chains is not the cure-it-all for difficult mixing problems; a system that allows insertion or deletion of 

chains would be superior over simply increasing or shrinking the temperature difference of existing 

chains.  

 

How long to wait  

 Runtime on a single CPU machine depends on the number of loci and the number of replicates. As a 

simple rule of thumb you can expect that time to increase linearly with the number of loci; for example, 

if one locus takes a couple of hours then with 31 loci, expect a run of several days on a single CPU 

machine. The run-length is highly dependent on the number of populations: the time to evaluate 

genealogies depends on the number of possible events on the genealogies. With n populations there are 

n different coalescent events, and with the default connection matrix among populations there are n(n − 

1) possible migration events. Increasing the population number by 1 increases the possible number of 

events by a factor of 2n − 1 (Fig. 3.4). This increase is typically accompanied by an increase of the total 

number of individuals, which results in an additional slow-down.  

 For data sets with many populations, many loci are needed to get accurate estimates. Figures 

provided by Beerli and Felsenstein (1999) and Beerli (2006) show the reduction of the variance when 

using more than one locus. Estimates based on many loci take a long time and for such data sets, it is 

often more convenient to run them on a computer cluster. MIGRATE can run on a large number of 

computer systems. Difficulties arise when users have a large data set with many loci and want to run it 

on their laptop or desktop computer. Runs as outlined in this chapter will often take much too long and 

either the machines are needed for some other tasks or the power goes out.  

 The program can use symmetric multiprocessing (multiple threads) for running parallel chains with 

different temperatures. The use of a threaded program is not different from a non-threaded program. 

This is an efficient use of many high-end desktop machines with two CPUs or, very recently, with 

dual-core CPUs that can be found even in laptops. Typical gain in speed over non-thread runs is about 

1.6 for Bayesian runs, and a little less than that for ML runs because the calculations for the 

approximate confidence intervals are not threaded.  



 The fastest way to run MIGRATE is to compile it for use on a computer cluster. The program can take 

advantage of large clusters running multiple loci and replicates on different CPUs. It uses the message 

passing interface (MPI; Gropp et al. 1999a, b). Several free programs, such as OPENMPI (Gabriel et al. 

2004), LAM-MPI (Burns et al. 1994; Squyres and Lumsdaine 2003) and MPICH2 (http://www-

unix.mcs.anl.gov/mpi/mpich/index.htm) are available to set up a virtual cluster on top of the real 

computer cluster. This real computer cluster can be a single machine or a network of idle lab 

computers, or a dedicated set of machines connected with a very fast network. Once the virtual cluster 

is functional, it is only a matter of compiling MIGRATE for such a cluster and running it. The MIGRATE 

manual gives details of installing and running MIGRATE on such machines. The speed gain depends on 

the number of loci, number of replicates, and how many real CPUs are available. I typically run 

MIGRATE on a small cluster of 15 computers with 30 single core 2 GHz AMD Opteron CPUs. The 

runtime difference is remarkable: the default run of the example data set took about 1 hour and 17 

minutes whereas an Intel Core Duo (dual core) 2.16 Ghz machine took about 15 hours. For a researcher 

with some computer administration knowledge it is rather simple to establish an ad hoc cluster using 

desktop computers if they run some form of the UNIX operating system (for example LINUX or 

MacOS X); Windows might be trickier.  

 

Can we trust the support intervals in a MCMC-assisted maximum likelihood analysis?  

 The support or approximate confidence interval of the maximum likelihood estimate is evaluated 

using profile likelihoods. In contrast to maximum likelihood, which finds the set of parameters with the 

highest likelihood, profile likelihood fixes one parameter at an arbitrary value and then finds the set of 

other parameters that maximize the likelihood. Often, we assume that the likelihood function 

approximates a Chi-square distribution. Significance levels of this Chi-square distribution then allow 

specifying quantiles and, thus, support intervals. With short MCMC runs the landscape of genealogies 

is not well explored and, therefore, the uncertainty of the parameters might be underestimated. This is 

somewhat disturbing because it means we will be overconfident in our results. With informative data, 

very long runs often allow a good approximation of the support intervals. Recently, Abdo et al. (2004) 

claimed that the profile likelihood tables of MIGRATE are inadequate. Their simulation study used the 

program defaults and ignored guidelines in the manual about how long to run MIGRATE. They showed 

that the 95% support interval in MIGRATE is often too narrow. In simple scenarios, such as the one they 

tested, it should be possible to achieve appropriate confidence limits with informative data. Beerli 

(2006) showed in a much more complicated four-population scenario that, with certain parameter 

configurations, the data do not contain enough information to estimate migration rates with confidence. 

Such data sets typically do not produce consistent results when run several times using ML in 



MIGRATE, and therefore fail to deliver consistent support intervals. Using BI, we can recognize that the 

posterior distribution is similar to the prior distribution. The example data set does not contain much 

information per locus, but the 31 loci produce consistent results using BI. ML produces somewhat 

more variable results but the directionality and magnitude are the same (compare the modes of Figs. 3.6 

and 3.7).  

 

Likelihood ratio tests and related test statistics  

 Often, we might want to test one migration scenario against another. The MCMC approximations 

makes this rather cumbersome because only relative likelihoods are calculated, and in normal (default) 

runs there is no control about the driving values that define the denominator of the relative likelihood. 

MIGRATE allows estimating an approximate likelihood ratio test (LRT) by using the sampled trees to 

test nested migration models. For example, using the ML scheme, many genealogies are sampled using 

the default connection matrix among populations: all can connect directly. By supplying an alternative 

to the most general model, we can test whether the power of the more restricted model to explain the 

migration scenario is similar to that of the full model. Accepting a parsimony criterion, we would 

choose the model with fewer parameters.  

 

Comparison of two different migration models  

 Can we exclude migration from the islands to the mainland (Fig. 3.9)? Running MIGRATE using the 

likelihood ratio test allows us to make a comparison, but this comparison is only approximate because 

the full (or the more complete) model is used to sample genealogies. These are then used to evaluate 

the likelihood both of the model that was used to sample the genealogies and of the model with fewer 

parameters. Such a procedure seems likely to reject the null hypothesis that there is no difference 

between the two models too often. In a first application of the built-in LRT, Miura and Edwards (2001) 

successfully compared several scenarios and could exclude some but not all alternative models.  

 



 
Figure 3.9. A possible, testable hypothesis: Is gene flow between the islands and the mainland 
bidirectional (MA) or unidirectional (MB) resulting in the null hypothesis: MA = MB and the alternative 
hypothesis MA ≠ MB. Data are from the example data set; geography as in Fig. 3.3.  
 

 I describe a different approach that seems more appropriate but is much more time consuming and 

might be prohibitive without good computing resources. Carstens et al. (2005) described an even 

better, but even more expensive method to evaluate migration models. The reported likelihood in a 

single program run is a relative likelihood: it is relative to the likelihood of the last chain times an 

unknown constant. A procedure to make the runs for both models using the same unknown constant is 

outlined here: 

  

1. Run data under model A; record parameters. This run needs to sample the MCMC chains 

appropriately and needs to be run for many steps (compare with section How long to run).  

2. Run data under model B; record parameters. This run needs to sample the MCMC chains 

appropriately and needs to be run for many steps (compare with section How long to run).  

3. Run data under model A for one very long single chain: No short chains, only one very long one, 

sampling, for example, the same number of genealogies as the total of run 1 or 2. Use the average 

parameter estimates from runs 1 and 2 for start parameters.  

4. Run data under model B for one very long single chain. Use the average parameter estimates 

from runs 1 and 2 for start parameters.  

5. Evaluate the likelihood ratio; calculate the degrees of freedom, which is the number of 

parameters that are different between the hypotheses; under some normality condition we can 

compare the LRT statistic with a Chi-square distribution with the same degree of freedom. 

MIGRATE calculates the probability of acceptance of the null hypothesis. Alternatively we can 

compare the LRT with tabulated Chi-square values for different significance levels typically 

printed in the Appendix of many introductory statistics texts. 



  

 The example data sets allow testing of whether there is only unidirectional migration from the 

mainland to Samos (the closest island) and from Samos to Ikaria. First, we set the model that allows for 

migration in both direction between mainland and the islands as the full model A (MA) in which the 

unidirectional model B (MB) is nested. Our null hypothesis specifies that there is no difference between 

the two models, and the alternative hypothesis is that the two models are different.  

 

LRT  = −2 ln (L(D|B)/ L(D|A))  

 = −2 [ln L(D|B) − log L(D|A)] 

 = −2(144.767 − 149.162) = 8.79,  (p = 0.012, df = 2) 

 

where LRT is the likelihood ratio test statistic for the two models. The probability that improvement in 

likelihood for model B is caused by chance is small. Therefore, we reject the null hypothesis that 

assumes equality of model MA and MB. Therefore, we should use the full model (having a higher 

likelihood) and not the smaller model. We used a fair number of parameters and in these cases the 

likelihood ratio test may be conservative (Burnham and Anderson 2002). In addition, the LRT assumes 

nested hypotheses, whereas other model selection criteria, such as Akaike’s information criterion (AIC, 

Akaike 1972) or Schwartz’ Information Criterion (the Bayesian information criterion: BIC, Schwartz 

1978) can be applied to nested and non-nested models. These information criteria use the number of 

parameters to penalize the likelihood ratio favoring models with fewer parameters. Burnham and 

Anderson (2002) gave an extensive discussion of LRT, AIC and other information criteria and 

suggested using a version of AIC that corrects for small sample size, the AICc (Hurvich and Tsai 1989). 

Applying AIC and AICc to the models A and B we get the following values:  

 

AIC(A) = −2 ln L(D|A)+ 2kA = −2 × 149.162 + 2 × 13 = −272.32  

AIC(B) = −2 ln L(D|B)+ 2kB = −2 × 144.767 + 2 × 11 = −267.53  

AICc
(A) = −2 ln L(D|A)+ 2kAcA = −2 × 149.162 + 2 × 13 × 31/(31-13-1) = −250.91 

AICc
(B) = −2 ln L(D|B)+ 2kBcB = −2 × 144.767 + 2 × 11 × 31/(31-13-1) = −253.639 

 

where ki is the number of parameters in the model i, nL is the number of samples, and the small sample 

correction factors cA = nL/(nL − kA − 1) and cB = nL/(nL − kB − 1). For AICc , I chose the number of loci 

in the study as samples, ignoring the number of individuals in the study. It is not clear how to specify 

nL when the samples are correlated. The different information criteria cannot be mixed for comparison. 

The model with the lowest score is the best model in the set. The example compares two models and 



using AIC we choose model MA with a score of -272.32 over the model MB with -267.32. Using AICc 

we choose model MB with -253.639 over model MB with -250.91. Burnham and Anderson (2002) 

suggested that for most cases we should use AICc because it corrects for small sample size and is 

equivalent to the original AIC with large sample sizes. For these data it might be a tough call to decide 

whether we should prefer the simpler model MB as suggested by AICc or the full model MA as 

suggested by the LRT. Given the large number of parameters in the models, the few informative loci, 

the quality of the data (many values missing), and the use of MCMC, it might be wise to explore both 

models further before concluding that there is no gene flow from the islands to the mainland.  

 The likelihoods are approximated by MCMC; it is important to show that the chains have converged 

and that one has sampled enough genealogies, either by replicated runs and/or convergence diagnostics. 

Replicated runs from random starting points (for example random genealogies and different parameter 

values) that arrive at similar estimates after long runs are most promising. Carstens et al. (2005) 

developed an even better method to estimate a more accurate likelihood ratio test than the procedure 

shown, but their method is very time intensive and requires bootstrapping the LRT because the 

commonly used assumption that the test-statistic is Chi-square distributed might be incorrect; as a 

consequence, the null hypothesis will be rejected too often. In MIGRATE, the described LRT 

comparisons and the built-in LRT-approximation are used to justify the replacement of a more 

complicated model with a simpler model. In a worst-case scenario, we would use the test with too 

narrow confidence intervals and, therefore, inflated differences of the two likelihood values caused by 

insufficient MCMC runs or lack of congruence with a Chi-square distribution. The outcome would be 

conservative because we would reject the null hypothesis that the full model and the simpler model are 

equivalent, and we would stick with the more complicated (full) model. 

  

Use of the coalescent in conservation genetics  

 In conservation genetics, most of the tools used with a single genetic sample in time are derivatives 

of the coalescence theory, and can be explained summary statistics based on the coalescent, or are 

simply derived expectations of the coalescent, for example FST -based measures (Neigel 2002; Slatkin 

1991). One of the biggest concerns in conservation biology is the long-term maintenance of variability 

in a population and, therefore, large effective population sizes, but changes in population size are 

difficult to estimate. With a single locus, positive growth in exponential growth models is often 

reported, but this result is strongly biased (Felsenstein et al. 1999). Populations that fluctuate randomly 

are often not distinguishable from estimates of populations with constant population sizes, and so an 

analysis using a model assuming constant population size will trace an average population size that is 

influenced by recent generations.  



 Programs such as MIGRATE that assume constant population sizes over time, average the population 

size over time. Even programs such as LAMARC and IM, which allow for other models than constant 

population size through time average over time: LAMARC averages out fluctuations to fit an exponential 

growth model, and IM forces constant or linear growing population sizes before and after the 

population split. Only the program BEAST allows for changes of a set of time segments with different 

population sizes in the past for a single population and a single locus. It is very versatile in the 

treatment of past population size variability, but needs to allow the use of multiple loci to achieve 

precise results. With a constant population size model, the population size is averaged over the time 

interval between the date of the most recent common ancestor and the date of the sample. The expected 

time of the most recent common (diploid) ancestor is 4Ne generations in the past. In large populations 

the average is, therefore, over a longer time than in small populations. The coalescence-based 

population genetic parameter estimates are based on the number of mutation events, and also the 

frequencies of these alleles in the populations. Therefore, very recent changes in population size or 

migration rate are not necessarily visible using genetic data. Still, these long-term estimates deliver 

baselines for further management of these populations, for example protection or (moderate) harvest. 

For example, estimates of past population sizes of humpback whales estimated from mtDNA data 

(Roman and Palumbi 2003) are very different from current population sizes and from estimates using 

whaling logbooks. If the differences are real and not an artifact of the analysis, then management of 

whale populations should increase their protection. The whale study is based on a single locus, and 

further studies using multi-locus data are urgently needed to corroborate Roman and Palumbi’s 

findings. Using the probability distribution of the most recent common ancestor (Tavareé 1984) with 

the whaling logbook value as the true populations size of humpback whales reveals a tiny probability (p 

< 10-10) for a population size value at the 2.5% quantile of Roman and Palumbi’s data. This result 

suggests that it will be difficult to justify the logbook values even with multiple loci. Still, studies based 

on a single locus are easy to criticize because different population genetic forces can deliver similar 

signatures; for example, a small population size estimate can be the result of a population bottleneck, a 

long-term small population size, or a recent selective sweep. Only studies with multiple unlinked loci 

will be able to distinguish the selective sweep from the small effective population size. Recently, the 

program BEAST (Drummond et al. 2005) working with single-locus sequence data from a single 

population is able to estimate population size changes over time using samples from different times.  

 Researchers often contrast results from census sizes (Nc) with effective population sizes (Ne) using 

the ratio of Ne/Nc. In some marine fishes these ratios are very small (for example Turner et al. 2002). 

We can interpret this result in a variety of ways, including the following: 

  



• The population size today as measured with the census size could have increased strongly in the 

last generation or two, so that there are not enough new mutations to see this same increase in the 

effective population size measured by genetic variability. Given the dire situation for most 

species this is a rather unlikely scenario, and can be excluded rather easily with a historical 

observation that does not need to be based on genetics, although randomly fluctuating population 

size over genealogical time scale could well explain the difference.  

 

• The effective population size and the census size are measured on a different population scale: 

census size is measured over a structured population and the genetic measurements came only 

from a single subpopulation. This is a highly unlikely scenario, even with unknown structure.  

 

• Very few individuals have far more offspring than others. This will result in a small effective 

population size, and if the carrying capacity is large, large numbers of closely related individuals 

could be maintained. A comparison of multiple species with known life histories should reveal 

that when this sweepstakes scenario is correct, we would expect a correlation between number of 

eggs and ratio of Ne/Nc.  

 

It will be important to explore these effects of high variance of reproduction success on the estimates of 

population sizes not only practically but also theoretically (Eldon and Wakeley 2006).  

 

SUMMARY  

 Many powerful new methods for population genetic analysis have been developed in recent years. 

Almost all of them use heuristic techniques to calculate probabilities of model parameters given the 

observed data. Researchers that use such methods not only need to explore the variability in their data, 

but need to understand the variance introduced by the heuristic strategy. In this chapter, I have tried to 

point to ways that can help to minimize the error introduced by MCMC. The most important lesson is 

that such programs need to be run for a long time. If a convergence diagnostic is supplied, use it, but 

remember that convergence diagnostics only detect the grossest errors. Sometimes the diagnostic 

shows convergence, but the parameter estimates of interest still are not optimal. Run the program 

multiple times increasing run length. If you get different results, then you either need to run longer or 

resort to use MCMCMC. Replication is only useful when you have multiple computers to distribute the 

work. If you get different results using different prior distributions, try to understand why. Possible 

sources of the problem, ordered from the least likely to the most likely, are: (a) programming error; (b) 



in BI: bounds of priors are mis-specified; in ML: driving values are not at equilibrium; (c) program has 

not been run long enough. 
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APPENDIX  

Data set  

This chapter used a data set from my thesis Beerli (1994) as an example how I would analyze such a 

dataset. The dataset is imperfect, probably like most real dataset, and simple but complex enough to 

highlight difficulties in its analysis.  
5 31 Electrophoretic loci data: Anatolian water frogs (Peter Beerli, PhD thesis 1994)  
16 SELCUK  
SELC ?1072 EE BB BB BB BB AA AA BC BB ?? ?? CD AA ?? AA CC DD DD BB BB ?? CC BB AA AA ?? EE BD ?? BC BB  
SELC ?1071 EE BB BB BB AB AA AA CJ BB ?? ?? CC AA ?? AC CC DD DD BB BB ?? CC BB AA AA ?? EE BB ?? BB BB  
SELC ?1074 EE BB BB BB AB AA AA BC BB ?? BB CC AA ?? BC CC DD DD BB BB ?? CC BB AA AA BB EE BD ?? BC BB  
SELC ?1073 EE BB BB BB AA AA AA CC BB ?? ?? CC AA ?? CC CC DD DD BB BB ?? AC BB AA AA ?? EE BB ?? BC BB  
SELC ?1068 EE BB BB BB AA AA AA CC BB ?? ?? CC AA ?? ?? CC DD DD BB BB ?? CC BB AA AA ?? EE BB ?? BC BB  
SELC ?1067 EG BB BB BB AB AA AA CJ BB ?? ?? CC AA BB BB CC CD DD BB BB ?? CC BB AA AA ?? EE DD ?? BB BB  
SELC ?1070 EE BB BB BB AB AA AA BC BB ?? BB CC AA ?? CC CC DD DD BB BB ?? CC BB AA AA BB EE DD ?? BC BB  
SELC ?1069 EE BB BB BB AB AA AA CC BB ?? ?? CC AA ?? BC CC CD DD BB BB ?? AC BB AA AA ?? EE BB ?? BB BB  
SELC ?1080 EE BB BB BB BB AA AA ?? BB ?? ?? CC AA ?? CC CC DD DD BB BB ?? AC BB AA AA ?? EE DD ?? BB BB  
SELC ?1079 EE BB BB BB AA AA AA CC BB ?? ?? DD AA ?? CC CC DD DD BB BB ?? CC BB AA AA ?? EE DD ?? BC BB  
SELC 17164 EE BB BB BB AA AA ?? CC BB ?? ?? CC AA ?? BB CC ?? ?? BB BC ?? ?? BB AA ?? ?? EE BB ?? BB BB  
SELC 17163 EE BB ?? BB BB AA ?? CC BB ?? ?? CC AA ?? CC CC ?? ?? BB BB ?? ?? BB AA ?? ?? EE BB ?? BB BB  
SELC ?1076 EE BB BB BB AA AA AA CC BB ?? ?? CD AA ?? CC CC DD DD BB BB ?? CC BB AA AA ?? EE BD ?? BC BB  
SELC ?1075 EE BB BB BB AA AA AA CC BB ?? ?? CC AA ?? CC CC DD DD BB BB ?? AC BB AA AA ?? EE BD ?? BB BB  
SELC ?1078 EE BB BB BB AB AA AA BC BB ?? ?? CC AA ?? CC CC DD DD BB BB ?? AC BB AA AA ?? EE DD ?? BB BB  
SELC ?1077 EE BB BB BB AA AA AA CC BB ?? BB CC AA ?? AC CC DD DD BB BB ?? AA BB AA AA BB EE BD ?? BB BB  
15 AKCAPINAR  
AKCA 16804 EE BB AB BB ?? AA AA CC BB ?? ?? CC AA BB BB ?? DD DD BB BB AA AC BB AA AC BB EE DD AA CC BB  
AKCA ?1065 EE BB BB BB EE AA AA CC BB ?? ?? CC AA ?? DD CC DD DD ?? BC AA AC BB AA AA BB EE DD ?? CC BB  
AKCA ?1064 EE BB BB BB AB AA AA BB BB ?? ?? CC AA ?? DD CC DD DD ?? CC AA CC BB AA AA BB EE DD ?? CC BB  
AKCA 16805 ?? ?? BB ?? ?? AA AA BC BB ?? ?? CC AA BB BB ?? DE DD BB CC AA AC BB AA AA BB EE DD AA CC BB  
AKCA 16808 ?? ?? AB ?? BE AA ?? ?? BB ?? ?? ?? ?? BB ?? ?? DD DD BB BB AA CC BB AA AA ?? ?? DD ?? CC BB  
AKCA 16807 ?? ?? ?? BB AB AA ?? ?? BB ?? ?? ?? ?? BB ?? ?? DD DD BB BC AA AC BB AA AA ?? ?? DD ?? CC BB  
AKCA 16806 EE BB BB BB ?? AA AA BJ BB ?? ?? CC AA BB BC ?? DD DD BB BB AA CC BB AA AA BB EE DD AA CC BB  
AKCA ?1063 EE BB BB BB AB AA AA BC BB ?? ?? CC AA BB DD CC DD DD BB BC AA CC BB AA AA BB EE DD ?? CC BB  
AKCA ?1058 EE BB BB BB AB AA AA ?? BB ?? BB CC AA BB CD CC ?? DD BB BC AA AA BD AA AC BB ?? DD ?? CC BB  
AKCA ?1057 EE BB AB BB BB AA AA ?? BB ?? BB CC AA BB DD CC ?? DD BB BE AA AA BB AA AJ BB ?? DD ?? CC BB  
AKCA ?1066 EE BB AB BB BB AA AA ?? BB ?? ?? CC AA ?? CD CC DD DD BB BB AA ?? BB AA ?? BB EE ?? ?? CC BB  
AKCA ?1059 EE BB AA BB AA AA AA ?? BB ?? BB CC ?? BB BC CC ?? DD BB BB AA AC BB AA AJ BB ?? DD ?? CC BB  
AKCA ?1062 EE BB AA BB AB AA AA BC BB ?? ?? CC AA BB DD CC DD DD BB BC AA CC BB AA AA ?? EE DH ?? CC BB  
AKCA ?1061 EE BB BB BB AB AA AA BC BB ?? ?? CC AA BB CC CC DD DD BB BB AA CC BB AA AA BB EE DH ?? CC BB  
AKCA ?1060 EE BB BB AB BE AA AA ?? BB ?? ?? CC ?? BB DD ?? ?? DD BB BB AA AC BB AA AC BB ?? DD ?? CC BB  
11 EZINE  
EZIN?1081 EE BB BB BB ?? AA AA CC BB ?? ?? CC AA ?? BC CC DD DD BB ?? AA CC BB AA AA BB EE BB AA BB BB  
EZIN 16782 EE BB ?? BB BB AA ?? CC BB ?? BB CC ?? ?? BB CC ?? DD BB BB ?? ?? BB AA AA BB EE BB AA ?? ??  
EZIN 16781 EE BB BB BB AA AA ?? CC BB ?? BB CC ?? BB BB CC CD DD BB BB AA AC BB AA CC BB CE BD AA BB BB  
EZIN 16783 EE BB BB ?? BB AA ?? CC BB ?? ?? CD ?? ?? BB CC DD DD BB BC AA CC BB AA AA ?? EE BD AA BB BB  
EZIN 16785 ?? BB BB ?? AB AA ?? CC BB ?? ?? CC AA ?? BB CC DD DD BB BB AA AC BB AA AC BB EE BD AA BB BB  
EZIN 16784 EE BB BB ?? ?? AA ?? CC BB ?? ?? CC AA ?? BB CC DD DD BB BC AA CC BB AA AC ?? CE BD AA BB BB  
EZIN ?1083 EE BB BB BB AB AA AA CC BB ?? ?? CC AA ?? BB CC CD DD BB BB AA CC BB AA AA BB EE BB AA BB BB  
EZIN ?1082 EE BB AB BB AA AA AA CC BB ?? ?? CC AA BB BB CC DD DD BB BB AA CC BB AA AA BB EE BB AA BB BB  
EZIN ?1084 EE BB AB BB AA AA AA CC BB ?? ?? CC AA ?? BC CC CD DD BB BB AA CC BB AA AC AB EE BB AA BB BB  
EZIN 16780 ?? BB AB ?? AB AA ?? CC BB ?? ?? CC AA BB BB CC DD DD BB BB AA AC BB AA AA BB EE BD AA BB BB  
EZIN ?1085 EE BB AB BB BB AA AA CC BB ?? ?? CC AA BB BB CC BB DD BB BB ?? CC BB AA AC BB EE BB AA BB BB  



11 IKARIA  
IKAR 17331 EE BB BB BB AA AA ?? CC BB ?? ?? CD AA BB DD ?? DD DD BB BB AA CC BB AA AJ ?? EE BB AA CC BB  
IKAR 17330 EE BB BB BB AA AA ?? CC BB BB ?? CD AA BB DD ?? DD DD BB BB AA CC BB AA AA ?? EE BB AA CC BB  
IKAR 17332 EE BB BB BB AA AA ?? CC BB BB BB CD AA BB DD ?? ?? DD BB BB AA CC BB AA AA ?? EE BD AA CC BB  
IKAR 17379 EE BB BB ?? AA AA ?? CC ?? ?? ?? CC AA ?? DD CC DD ?? ?? BB AA CC BB AA AA BB EE BD AA CC BB  
IKAR 17378 EE BB BB BB AA AA ?? CC ?? ?? BB DD AA ?? DD CC DD ?? BB BB AA CC BB AA AA BB EE BB AA CC BB  
IKAR 17329 EE BB BB BB AA AA ?? CC BB BB ?? DD AA BB DD ?? DD AD BB BB AA CC BB AA AA ?? EE DD AA CC BB  
IKAR 17325 EE BB BB BB AA AA ?? CC ?? BB ?? DD AA ?? CC ?? DD AD ?? BB AA CC BB AA AA ?? EE BB AA CC BB  
IKAR 17324 EE BB BB BB AA AA ?? CC ?? BB BB DD AA ?? DD CC DD DD BB BB AA CC BB AA AA BB EE BB AA CC BB  
IKAR 17326 EE BB BB BB AA AA ?? CC ?? BB BB DD AA ?? DD ?? DD DD ?? BB ?? CC BB AA AA ?? EE BB AA CC BB  
IKAR 17328 EE BB BB BB AA AA ?? BC BB BB ?? CD AA BB DD ?? DD DD BB BB AA CC BB AA AA ?? EE BB AA BC BB  
IKAR 17327 EE BB BB BB AA AA ?? CC ?? BB BB CD AA ?? CD CC DD DD ?? BB ?? CC BB AA AA BB EE BD AA CC BB  
4 SAMOS  
SAMO 17320 EE BB AB BB AA AA ?? CC BB ?? ?? DD AA BB BB ?? DD DD ?? BB AA AC BB AA AA BB EE DD AA BC BB  
SAMO 17321 EE BB BB BB AA AA ?? CC BB BD BB DD AA BB DD CC DD ?? ?? BB AA CC BB AA AA BB EE DD AA BC BB  
SAMO 17323 EE BB AB BB AA AA ?? CC BB BB ?? ?? AA BB BB CC DD DD BB BB AA AC BB AA AA ?? EE DD AA CE BB  
SAMO 17322 EE BB AB BB AA AA ?? ?? BB BD BB CD AA BB DD ?? DD DD ?? BB AA AA BB AA AA AA EE DD AA CC BB  
 
 

Run conditions for specific examples in this chapter  

Fig. 3.2: For each of the six panel a data set for a single population with 50 sampled individuals, each 

with 10 unlinked loci, each 10 000 bp long, was generated.  

MIGRATE was run using the Bayesian inference mode. The runs were done on a computer cluster with 

one master and 10 compute nodes. Four parallel heated chains using an adaptive heating scheme were 

run for each locus. Each chain sampled 10 000 MCMC-updates of parameters and genealogies every 

200 step, after discarding the first 100 000 updates. Only the values of the cold chains were used for the 

posterior distributions. Each run took about 10 minutes. 

  

Fig. 3.5: For each of the 3 panels MIGRATE was run twice, first with an mtDNA data set from 10 

individuals of Rana lessonae (Plötner et al. unpublished) to generate the posterior distribution, and then 

with no data (all nucleotides were replaced by ‘?’) to generate a sample from the prior distribution. Run 

condition: The runs were done on a computer cluster with one master and four compute nodes and 

combinations (replicates) of four parallel long chains, each chain sampled 10 000 MCMC-updates of 

parameters and genealogies every 200 step, after discarding the first 10 000 updates. The optimal 

strategy to run this on a single computer would have been different: one long chain, sampling 40 000 

every 200, and discarding 10 000. This would have run about four times longer. The prior distribution 

for the scaled population size Θ was uniform with bounds for (A) at 0 and 10, (B) 0 and 0.02, and (C) 0 

and 0.1. The histograms were copied from the PDF result file and combined with the program Adobe 

Illustrator. 

  

Fig. 3.6: Allozyme data set was run on a parallel computer cluster with a total of 72 compute nodes for 

about 2.5 hours. The run used a customized migration matrix that allowed gene flow only between 

geographic neighbours, the distance between neighbours was adjusted using a geographic distance file. 

One cold chain and three heated chains were used during the run: temperatures were 1.0, 1.2, 3.0, and 



6.0. Ten replicates of one long chain were used to visit 10 000 000 steps per locus and saving 50 000 

steps (50% genealogy change trials, 50% parameter change trials). The recorded parameters were then 

used to generate the posterior distributions. 

  

Fig. 3.7: Allozyme data set was run on a parallel computer cluster with a total of 72 compute nodes for 

about 1.5 hours. The run used a customized migration matrix that allowed gene flow only between 

geographic neighbours, the distance between neighbours was adjusted using a geographic distance file. 

For each locus a total of 10 short chains each visiting 10 000 genealogies and using 500 to improve the 

driving values for the next chain. Finally, 3 long chains each visiting 100 000 sampling are used. The 

last chain delivers the MLE and profile likelihood curves shown in Fig. 3.7. To improve mixing, I used 

a heating scheme with four chains with temperatures of 1.0, 1.2, 3.0 and 6.0.  

 


