A MULTILEVEL STOCHASTIC COLLOCATION METHOD
FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM
INPUT DATA
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Abstract. Stochastic collocation methods for approximating the solution of partial differential
equations with random input data (e.g., coefficients and forcing terms) suffer from the curse of
dimensionality whereby increases in the stochastic dimension cause an explosion of the computational
effort. We propose and analyze a multilevel version of the stochastic collocation method that, as is
the case for multilevel Monte Carlo (MLMC) methods, uses hierarchies of spatial approximations
to reduce the overall computational complexity. In addition, our proposed approach utilizes, for
approximation in stochastic space, a sequence of multi-dimensional interpolants of increasing fidelity
which can then be used for approximating statistics of the solution as well as for building high-
order surrogates featuring faster convergence rates. A rigorous convergence and computational cost
analysis of the new multilevel stochastic collocation method is provided, demonstrating its advantages
compared to standard single-level stochastic collocation approximations as well as MLMC methods.
Numerical results are provided that illustrate the theory and the effectiveness of the new multilevel
method.
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1. Introduction. Nowadays, mathematical modeling and computer simulations
are used extensively in many scientific and engineering fields, usually with the goal
of understanding or predicting the behavior of a system given its inputs such as
the computational domain, model parameter values, and source terms. However,
whether stemming from incomplete or inaccurate knowledge or from some inherent
variability in the system, often these inputs may be subject to uncertainty. In order to
correctly predict the behavior of the system, it is especially pertinent to understand
and propagate the effect of the input uncertainty to the output of the simulation, i.e.,
to the solution of the mathematical model.

In this paper, we consider systems which are modeled by elliptic partial differen-
tial equations (PDEs) with random input data. We work under the finite-dimensional
notse assumption, i.e., we assume that the random inputs are characterized by a finite-
dimensional random vector. When enough information is available to completely
characterize the randomness in the inputs, probability theory provides a natural set-
ting for quantifying uncertainties. The object of our computations is the accurate
calculation of solution of stochastic elliptic PDEs or statistics of some functional of
the solution of the PDE. For instance, in addition to the solution itself, one might be
interested in the expected value or variance of the solution in a given region of the
computational domain.
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A large number of methods have been developed for the numerical solution of
PDEs with random inputs; see, e.g., [18] and the references cited therein. The most
popular approach is the Monte Carlo (MC) methods which involves random sampling
of the input vector of random variables (also referred to as the stochastic parameter
space) and the solution of the deterministic PDE at each of the sample points. In
addition to the benefits of simple implementation and a natural decoupling of the
stochastic and spatial degrees of freedom, MC methods feature a convergence rate that
is independent of the dimension of the stochastic space. This makes it particularly
attractive for high-dimensional problems. However, the convergence is in general very
slow and, especially in case the stochastic space is only of moderate dimension and
the solution of the PDE or of a functional of interest is smooth, better convergence
rates can be achieved using more sophisticated methods.

Stochastic collocation (SC) methods [1,23,24] are similar to MC methods in the
sense that they involve only the solution of a sequence of deterministic PDEs at
given sample points in the stochastic space. However, rather than randomly chosen
samples, SC methods use a deterministic grid of points at which one then solves the
corresponding deterministic PDE, and then builds an interpolant, either using global
Lagrange-type polynomials [1,23,24] or even local hierarchical basis functions [17,22].
For problems where the solution is a smooth function of the random input variables
and the dimension of the stochastic space is moderate, SC methods have been shown
to converge much faster than MC methods.

Unfortunately, for most problems, stochastic collocation methods suffer from the
curse of dimensionality, a phrase that refers to the deterioration of the convergence
rate and the explosion of computational effort as the dimension of the stochastic space
increases. In this paper, we introduce a multilevel stochastic collocation (MLSC) ap-
proach for reducing the computational cost incurred by standard, i.e., single level,
SC methods. Drawing inspiration from multigrid solvers for linear equations, the
main idea behind multilevel methods is to utilize a hierarchical sequence of spatial
approximations to the underlying PDE model that are then combined with stochas-
tic discretizations in such a way as to minimize computational cost. Starting with
the pioneering works [20] in the field of integral equations and [14] in the field of
computational finance, the multilevel approach has been successfully applied to many
applications of MC methods; see, e.g., [2,7,11,15,16,21]. The MLSC methods we con-
sider in this paper are similar to the multilevel quadrature schemes studied in [19].
However, our focus is on the analysis of the computational complexity of the multilevel
algorithms and also includes results for functionals of the solution. In particular, we
prove new interpolation error bounds on functionals of the solution that are needed
for the analysis of the MLSC methods.

The outline of the paper is as follows. In Section 2, we introduce the mathematical
problem, the main notation used throughout, the assumptions on the parametrization
of the random inputs that are used to transform the original stochastic problem into
a deterministic parametric version, and needed assumptions about the regularity of
the solution of the PDE. A description of the spatial and stochastic approximations
as well as the formulation of the MLSC method follows in Section 3. In Section 4, we
provide a general convergence and complexity analysis for the MLSC method. As an
example of a specific single level SC approach satisfying our interpolation assumptions,
we describe, in Section 5, a generalized sparse grid stochastic collocation approach
based on global Lagrange interpolation. In Section 6, we provide numerical results
that illustrate the theoretical results and complexity estimates and also explore issues
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related to the implementation of the MLSC method.

2. Problem Setting. Consider the problem of approximating the solution of an
elliptic partial differential equation (PDE) with random input data. To this end, let
D c R4 d =1,2,3, denote a bounded, Lipschitz domain with boundary denoted by
0D and let (Q,.7,P) denote a complete probability space. Here, 2 denotes the set of
outcomes, .# C 2% the o-algebra of events, and P : .# — [0, 1] a complete probability
measure. Given random fields a(w,x), f(w,x) : @ x D — R, the model problem we
consider is stated as follows: find u(w,x) :  x D — R such that almost surely

{ —V(a(w,x) - Vu(w,x)) = f(w,x) in D

u(w,x) =0 on 0D. (2.1)

We make the following assumptions on a and f:

A1l. (Finite-dimensional noise) The random fields a and f are determined by a
finite number N of random variables, denoted by the random vector y(w) :=
[y1(w), ... yn(w)] : @ — RV,

A2. (Boundedness) The image T';, := y,(Q) of y,, is bounded for alln € {1,..., N}
and, with I' = HT]:[:I I',,, the random variables y have a joint probability
density function p(y) = Hf:f:l pyn) € L>®(T), where p(-) : [-1,1] — R
denotes the one-dimensional PDF corresponding to the probability space of
the random fields. Without loss of generality, we assume that I' = [—1, 1]V,

REMARK 2.1.  Another setting having a finite number of random variables is
that of the coefficient a and the forcing function f depending on a a finite number
of independent scalar random physical parameters, e.g., diffusivities, reaction rates,
porosities, elastic moduli, etc. In this case, each of the N parameters would have
its own PDF p,(yn), n = 1,..., N, so that the joint PDF is now given by p(y) =
ny:l pn(yn). The algorithms discussed in this work all apply equally well to this
setting.

Under assumptions A1l and A2, it follows from the Doob-Dynkin Lemma that
the solution w to (2.1) can also be characterized in terms of the random vector y(w).
The solution u(w, x) thus has a deterministic, parametric equivalent u(y, x), with the
probability space (T, B, p(y)dy) taking the place of (2, .%#,P); see, e.g., [1]. Here, B
denotes the Borel o-algebra generated by the open subsets of I'. In what follows, we
will therefore denote the solution by u(y,x) for y € T and x € D. Then we also
assume:

A3. (Ezistence and uniqueness) The coefficients a(w,x) are uniformly bounded
and coercive, i.e., there exists @,y > 0 and a4, < 00 such that

Prob [w € Q¢ amin < a(y(w),x) < amex Yx € D] =1

and f € L2(T; H-'(D)) so that the problem (2.1) admits a unique solution
u € LZ(T; Hy (D)) with realizations in Hy (D), i.e., u(y(w), ) € Hj(D) almost
surely.
Here, given a Banach space X (D) of functions on D, the weighted Bochner spaces
Li(T; X(D)) for 1 < g < oo are defined by

LT X(D)) = {v :I' - X(D) | v is measurable and /F lv(y, ~)||§((D)p(y)dy < oo}

with corresponding norm || - ||zs(r;x(p)) given by

ol e oy = [ 10 o plw)d.
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Assumption A1 is naturally satisfied by random fields that only depend on a
finite set of parameters, e.g.,

N
a(w,x) = a(y(w),x) = ag+ Y _ yn(w)an(x), {an})2; € L*(D),
n=1

and similarly for f(w,x) = f(y(w),x), where y(w) is a vector of independent random
variables. If this is not the case, approximations of a and f that satisfy assumption
A1 can be obtained by appropriately truncating a spectral expansion such as the
Karhunen-Logve expansion [13]. This introduces an additional error; see [23] for
a discussion of the effect of this error on the convergence of stochastic collocation
methods and [6,12] for bounds on the truncation error.

Assumption A2 can be weakened to include the case of unbounded random vari-
ables such as Gaussian variables. See [1] for an analysis of the interpolation error and
note that, with only minor modifications, the multilevel stochastic collocation method
introduced in this paper also applies to unbounded random variables. Furthermore,
assumption A3 can be weakened to include coefficients a that are not uniformly co-
ercive; see [7,26].

Finally, we remark that the multilevel stochastic collocation method proposed
in this paper is not specific to the model problem (2.1); it can be applied also to
higher-order PDEs and other types of boundary conditions.

3. Hierarchical multilevel stochastic collocation methods. We begin by
recalling that standard stochastic collocation (SC) methods generally build an ap-
proximation of the solution u by evaluating a spatial approximation u,(y,-) € V), at a
given set of points {y,,}_, in T, where V}, C HZ (D) is a finite-dimensional subspace.
In other words, we compute {us(Ym,-)}M_,. Then, given a basis {qu(y)}n]\ff:l for the
space Py = span {gbm(y)}n]\f:l C Lf,(lﬂ)7 we use those samples to construct the fully
discrete approximation given by the interpolant

M
w1, %) = Tufun) (4, %) = Y en(x) 6m(y), (3.1)
m=1

where the coefficients ¢, (x) are determined by the interpolating conditions Zys [up](Ym, X) =
Up(Ym,x) for m = 1,..., M. In (3.1), we label the standard SC approximation by

‘SL’ to indicate that that approximation is constructed using a single set of points

{ym }M_, in stochastic space, in contrast to the multilevel approximations considered
below that use a hierarchy of point sets; thus, we refer to (3.1) as a single level ap-
proximation. A wide range of choices for the interpolation points {y,,}}_; and basis
functions {¢,,(y)}}_, are possible. A particular example of the approximation (3.1),
namely global Lagrange interpolation on generalized sparse grids, is given in Section

5.

Convergence of the SC approximation (3.1) is often assessed in the natural L2(T'; Hj (D))-
norm, and the goal is to determine a bound on the error ||u — Zy, [Uh”Lg(r;Hg(D))- To
obtain a good approximation with SC methods, it is necessary in general to use ac-
curate spatial approximations u;, and a large number M of collocation points. To
determine the coefficients ¢,,(x) of the interpolant (3.1), the method requires the
computation of up(Ym,-) for m = 1,..., M so that, in practice, the cost can grow
quickly with increasing N. Therefore, to reduce the overall cost, we consider a mul-
tilevel version of SC methods that combines different levels of fidelity of both the
spatial and parameter approximations.



3.1. Spatial approximation. For spatial approximation, we use hierarchical
family of finite element discretizations [4,8]. As discussed in [19], the formulation of
the multilevel method does not depend on the specific spatial discretization scheme
used and the results readily hold for other choices. For k € Ny, define a hierarchy of
nested finite element spaces

Vieg C Viy C++- C Vi C -+ C Hy(D),

where each V},, consists of continuous, piecewise polynomial functions on a shape
regular triangulation 7, of D having maximum mesh spacing parameter hj. Note that
k merely serves to index the given spaces; the approximation properties of the space
Vs, is governed by hy. For simplicity, we assume that the triangulations {74, }ren,
are generated by iterative uniform subdivisions of the initial triangulation 7p; this
implies that hy = n~Fhg for some n € N, n > 1 and that indeed the corresponding
finite element spaces are nested.

REMARK 3.1.  For simplicity, we have assumed that the finite element family
of spaces is mested, and in fact, are constructed by a series of uniform subdivisions
of a parent mesh with mesh size hy. Neither of these assumptions are mecessary
for our algorithms or conclusions to hold, provided m1 < hg/hgt1 < 12 for some
0<m <me < o and all k € Ny; in such cases, the finite element spaces are not
necessarily nested.

We also let up, (y, -) denote the Galerkin projection of u(y, -) onto V4, , i.e., up, €
V4, denotes the finite element approximation. Note that up, (y, -) is still a function on
the stochastic parameter space I'. We assume the following approximation property
of the finite element spaces {Vj, }ren,:

A4. There exist positive constants o and C, independent of hg, such that for all
k € Ny,

lw = wn, [l L2 ey 0y < Cs hig-

In general, the rate a depends on the (spatial) regularity of u, which in turn depends
on the regularity of a and f as well as on the geometry of the domain D. For example,
if a, f, and D are sufficiently regular so that u € L2(T'; H*(D)), assumption A4 holds
with o = 1 and Cs dependent only on a and [|ul|2(r;n2(p))- For additional examples
and detailed analyses of finite element errors, see [26].

3.2. Stochastic interpolation. For stochastic approximation, we use interpo-
lation over I', where we assume u € C°(T'; H}(D)). The specific choice of interpolation
scheme is not crucial at this juncture. We begin by letting {IMk}ZiO denote a se-
quence of interpolation operators Zp, : C(T') — L%(F) using M, points. We assume
the following:

A5. There exist positive constants Cr, C¢, 3, and p, and a Banach space A(T; H (D)) C

L2(T; Hy(D)) containing the finite element approximations {up, }ren, such
that for all v € A(T; H3 (D)) and all k € Ny

[0 = Zanvll 2 (rimg (o)) < Crok((v)

for some function ¢ : A(T; H} (D)) — R and a decreasing sequence oy that
admit the estimates

C(uhk) < CC hg and C(uhk-u - uhk) < CC hg—o—l'
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REMARK 3.2. As in the previous section, k is merely an index; we use the
same index for the hierarchies of spatial and stochastic approximations because, in the
multilevel SC method we introduce below, these two hierarchies are closely connected.

REMARK 3.3. o0 determines the approximation properties of the interpolant.
Moreover, we allow non-unique interpolation operators in the sequence, i.e., it is
possible that, for any k = 0,...,00, Myi1 = My and therefore Iy, = Ty, and
ok+1 = 0. Thus, although the spatial approximation improves with increasing k,
i.e., hgy1 < hg, we allow for the parameter space approximation for the index k + 1
remaining the same as that for k.

In Section 5, assumption A5 is shown to hold, with o}, = M, ", for global La-
grange interpolation using generalized sparse grids. The bounds on the function ¢
in assumption A5 are shown to be the key to balancing spatial and stochastic dis-
cretizations through the multilevel formulation. Crucially, we make use of the fact
that the interpolation error is proportional to the size of the function being interpo-
lated, measured in an appropriate norm. In the case of the model problem (2.1), this
norm is usually related to the (spatial) Hi(D)-norm. The bounds in assumption A5
then arise from the fact that for any k € No, |[un, [|z2(p) is bounded by a constant,

independent of k, whereas [lup, — un, | g1(p) decays with hf for some 8 > 0. We
usually have 8 = «, where « is as in assumption A4. Note that we have chosen to
scale the bound on ((up, ) by hg to simplify calculations. Because hg is a constant,
this does not affect the nature of the assumption.

3.3. Formulation of the multilevel method. As in the previous sections,
denote by {up, }ren, and {Zps, }ren, sequences of spatial approximations and in-
terpolation operators in parameter space, respectively. Then, for any K € N, the
formulation of the multilevel method begins with the simple telescoping identity

K

Uhg = Z(uhk - uhk—l)V (32)

k=0

where, for simplicity, we set u,_, := 0.

It follows from assumption A5 that as k — oo, less accurate interpolation oper-
ators are needed in order to estimate up, —up, , to achieve a required accuracy. We
therefore define our multilevel interpolation approximation as

K K

ML SL SL

ug( )= E It [Uhy — Uy, ] = E (ugwk)_k,hk - UEWK)—k,hk—l). (3.3)
k=0 k=0

Rather than simply interpolating wup,, this approximation uses different levels of
interpolation on each difference up, — up,_, of finite element approximations. To
preserve convergence, the estimator uses the most accurate interpolation operator
Znr, on the coarsest spatial approximation wp, and the least accurate interpolation
operator Zyy, on the finest spatial approximation up, — un,_,. Note that in (3.3) a
single index k is used to select appropriate spatial and stochastic approximations and
thus these approximations are indeed closely related.

4. Analysis of the multilevel approximation. This section is devoted to
proving the convergence of the multilevel approximation defined in Section 3.3 and
analyzing its computational complexity. We first prove, in Section 4.1, a general
error bound, whereas in Sections 4.2 and 4.3 we prove a bound on the computational
complexity in the particular case of an algebraic decay of the interpolation errors.
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4.1. Convergence analysis. We consider the convergence of the multilevel ap-
L (ML) : .

proximation uy ~ to the true solution u in the natural norm || - HLg(F;Hg(D))-
First, we use the triangle inequality to split the error into the sum of a spatial

discretization error and a stochastic interpolation error, i.e.,

flu — UK ||L2(F ;HY (D ) < [lu — UhK||L2 r;Hi(D)) T s — UK || L2(T3HE (D))" (4.1)
N——— N———
(I (I1)

The aim is to prove that with the interpolation operators {Z Mk}i‘(:() chosen appropri-
ately, the stochastic interpolation error (I7) of the multilevel approximation converges
at the same rate as the spatial discretization error (I), hence resulting in a convergence
result for the total error.

For the spatial discretization error (I), it follows immediately from assumption
A4 that

(1) < Cuhg.

From (3.2), the triangle inequality, and assumption A5, we estimate the stochastic
interpolation error:

K
(1) = H Z(uhk = Uny_y) = Inage_y (U, — Un,,_,)
k=0

L3(T;Hg (D))

< Z H(uhk - uhk—l) _IMK—k(uhk - uhk—l)”L%(l";Hé(D))

K
S ZC[ CC OK_—Lk hZ
k=0

To obtain an error of the same size as (I), we choose interpolation operators such that
1,4 ;-
ox—1 < Cs (K +1)CrCe) ™ hy hy,”. (4.2)

Continuing from above,

K
<3O ((K+1)C1Ce)) " b hyPOr Cc b = O,
k=0

as required. It follows that with o) as in (4.2)

e — ul™ ||L2 ;D)) < 206 h.

4.2. Cost analysis. We now proceed to analyze the computational cost of the
MLSC method. We consider the e-cost of the estimator, denoted here by CML which is
the computational cost required to achieve a desired accuracy e. In order to quantify
this cost, we use the convergence rates of the spatial discretization error and, for
the stochastic interpolation error, the rates given by assumptions A4 and A5. In
particular, we will assume that A5 holds with o, = M, " for some p > 0.

REMARK 4.1.  The choice o, = M, " best reflects approzimations based on
SC methods that employ sparse grids. In particular, as mentioned in Section 3.2,
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algebraic decay holds for the generalized sparse grid interpolation operators considered
in Section 5; see Theorem 5.4. For other possible choices in the context of quadrature,
see [19].

In general, the MLSC method involves solving, for each k, the deterministic PDE
for each of the M, sample points from T'; in fact, according to (3.3), two solves are
needed, one for each of two spatial grid levels. Thus, we also require a bound on the
cost, which we denote by C}, of computing up, —up, , at a sample point. We assume:

A6. There exist positive constants v and C,, independent of hy, such that Cj, <
Cch,. " for all k € Ny.
If an optimal linear solver is used to solve the finite element equations for wy, , this
assumption holds with v &~ d (see, e.g., [4]), where d is the spatial dimension. Note
that the constant C. will in general depend on the refinement ratio n described in
Section 3.1.

We quantify the total computational cost of the MLSC approximation (3.3) using

the metric

K
CMY =N " My, Cy. (4.3)
k=0

We now have the following result for the e-cost of the MLSC method required to

: (ML)
achieve an accuracy ||u — uy HL%(F;H&(D)) <e.
THEOREM 4.2. Suppose assumptions A4-A6 hold with o, = M, ", and assume

that o > min(8, uy). Then, for any e < exp[—1], there exists an integer K such that

= ui™ 2oy oy < €
and
e, if B> py
ML < S ew[loge|TEif B = iy (4.4)
emn if B < py.

Proof. Asin (4.1), we consider separately the two error contributions (I) and (I7).
To achieve the desired accuracy, it is sufficient to bound both error contributions by
5. Without loss of generality, for the remainder of this proof we assume ho = 1. If

this is not the case, we simply need to rescale the constants Cy, C¢, and C..
First, we choose K large enough so that (I) < §. By assumption A4, it is

sufficient to require Csh% < 5. Because the hierarchy of meshes {hy }ren, is obtained

by uniform refinement, hy = n~¥hg = n~", and we have
€ \1/a . 1 20
< f K=|-1 . 4.
hic = (26’5) ! [a o8 ( € ) (45)

This fixes the total number of levels K.

In order to obtain the multilevel estimator with the smallest computational cost,
we now determine the {M;}5  so that the computational cost (4.3) is minimized,
subject to the requirement (/1) < 5. Treating the My as continuous variables, the
Lagrange multiplier method, together with assumptions A4 and A5, results in the

optimal choice

_kB+v)

My i = (2C1 Cc S(n, K))/F e M/mp= it (4.6)
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where

K
_L(B=n
Sn, 1) = 3 o)

k=0

Because Mg _j given by (4.6) is, in general, not an integer, we choose

e (4.7)

Mic-x = [(2C1 Ce Sty K)oy 55

Note that this choice determines the sequence { M} }X_, and consequently {Zas, }< .
Also note that, in practice, this choice may not be possible for all interpolation
schemes; see Remark 4.3.

With the number of samples Mg fixed, we now examine the complexity of the
multilevel approximation:

K K
CME) — ZMK—ka ~ Z My 0™
k=0 k=0
< zK: ( € )—ﬁn_kﬁm 77’” +2K:nlm
k=0 S, K) k=0
K B+y—~y(pr+1)
~e uS(n,K)%ank[ TES Ky
k=0 k=0
K K
me kSO K)w Yy 4y gt
k=0 k=0
K
~ e H S K)TE 4y
k=0

To bound the cost in terms of ¢, first note that because K < < log, (2C/e) + 1 by
(4.5), we have

K L

Y 2 v/

St < < MROSE e (19
1—n=" 1—n=7

k=0

Next, we need to consider different values of 8 and p. When 8 > yu, S(n, K) is
a geometric sum that converges to a limit independent of K. Because a > ~yu implies
that e~/ < e fore < exp[—1], we have CéML) < £~ % in this case.

When 8 = ypu, we find that S(n, K) = K + 1, and so, using (4.5) and « > u-,

CML) < =3 (K 4+ 1) 47~ u|loge| T
For the final case of 8 < yu, we reverse the index in the sum S(n, K) to obtain a
geometric sequence

K K
B— B— —B B—
S(nyK) = g '(](ka) ;Hjlu = niK ugl“ E 'qik(v;iarl ) 5 ga(ul‘f) .
k=0 k=0




Because a > 3, this gives

_ 1 B=op 1 _a _1_ap=p
Cs(ML) 5 € ;A,sa(u+1)(1+u) deTa e W Tan

This completes the proof. O

REMARK 4.3. Error and quadrature level. In this section, we characterized
the convergence of the interpolation errors in terms of the number of interpolation
points M. Yet when computing quadratures based on sparse grid techniques (see
Section 5), an arbitrary number of points will not in general have an associated sparse
grid. Thus, choosing an interpolant using the optimal number of points according to
(4.7) may not be possible in practice. However, in light of estimates such as [23,
Lemma 3.9], it is not unreasonable to make the assumption that given any number of

points M, there exists an interpolant using M points, with
M<M<CM° (4.9)

for some § > 1. We can think of § as measuring the inefficiency of our sparse grids in
representing higher-dimensional polynomial spaces. Using (4.9), one can proceed as in
Theorem 4.2 to derive a bound on the e-cost of the resulting multilevel approximation.

Another possibility would be to solve a discrete, constrained minimization problem
to find optimal interpolation levels, relying on convergence results for the interpolation
error in terms of the interpolation level rather than number of points; see [24, Theorem
3.4]. However, our cost metric relies on precise knowledge of the number of points,
making theoretical comparison difficult.

REMARK 4.4. Cancellations and computational cost. The cost estimate
(4.3) takes into consideration the cost of all the terms in the multilevel estimator
(3.3). However, when the same interpolation operator is used on two consecutive
levels, terms in the multilevel approzimation cancel and need in fact not be computed.
For example, if Tar ., = Iy, then

IMK—k(uhk - uhk—l) +IMK—k—1(uhk+1 - uhk) = IMK—k(uhk+1 - uhk—l)

so that the computation of the interpolants of up, is not necessary. Especially in
the context of sparse grid interpolation, in practice we choose the same interpolation
grid for several consecutive levels, leading to a significant reduction in the actual
computational cost compared to that estimated in Theorem 4.2. The effect of these
cancellations is clearly visible in some of the numerical experiments of Section 6.

4.2.1. Comparison to single level collocation methods. Under the same
assumptions as in Theorem 4.2, for any My, € Ny and hg;, the error in the standard
single-level SC approximation (3.1) can be bounded by

SL
||u B uS\45l)7hsl

ramay(p)) < Cshg + Cr¢un) M, g

sl

To make both contributions equal to /2, it suffices to choose hg ~ e/ and My ~
e~ /1 This choice determines M, and hence Z M,,- The computational cost to achieve
a total error of € is then bounded by

C’CESL) ~h "My = e A,

A comparison with the bounds on computational complexity proved in Theorem 4.2
shows clearly the superiority of the multilevel method.
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In the case B > vpu, the cost of obtaining one sample of wj, grows slowly with
respect to k, and most of the computational effort of the multilevel approximation is
at the coarsest level £ = 0. The savings in cost compared to single level SC hence
correspond to the difference in cost between obtaining samples u, on the coarse grid
ho and obtaining samples uy,,, on the fine grid h = hx used by the single-level method.
This gives a saving of (h/ho)Y = 7/*.

The case 8 = py corresponds to the computational effort being spread evenly
across the levels, and, up to a log factor, the savings in cost are again of order €7/,

In contrast, when § < ypu, the computational cost of computing one sample of uy,
grows quickly with respect to k, and most of the computational effort of the multilevel
approximation is on the finest level k = K. The benefits compared to single level SC
hence corresponds approximately to the difference between My and M. This gives
a savings of My /My ~ (h2)1V/m = eb/on,

4.3. Multilevel approximation of functionals. In applications, it is often of
interest to bound the error in the expected value of a functional ¢ of the solution u,
where ¢ : H} (D) — R. Similar to (3.1), the SC approximation of 1(u) is given by

O] = Tag, [ (un)] (4.10)

and, similar to (3.3), the multilevel interpolation approximation of t(u) is given by

K
D) =3 Toge -, (W(un,) — (un,_,)), (4.11)
k=0

where, as before, we set uy_, := 0 and we also assume, without loss of generality, that
1(0) = 0. Note that in the particular case of linear functionals 9, we in fact have

S = vy and 9] = p ™).

Analogous to Theorem 4.2, we have the following result about the e-cost for the
error |E[w(u) - wg(ML) [uH | in the expected value of the multilevel approximation of
functionals.

PROPOSITION 4.5. Suppose there exist positive constants a, 3, u,y,Cs, Cr, C¢, Ce
and a real-valued function ¢ such that o > min(8, uy) and, for all k € Ny, assume
that

F1. [E[¢(u) = ¢(un,)]| < Cs b
F2. ’E([T/J(Uhsc)) - w(uhk—l) _I]VIK—k (w(uhk) - ¢(Uhk,1))] ‘ <C Mlzlik C(¢(Uhk) -
(0 Uhy 1
F3. (6 (un,) = (un, ) < Cchy
F4. C, =C.h,".
Then, for any e < exp[—1], there exists a value K such that

E[v(u) — ™ (w)]| <.

with computational cost C’E(ML) bounded as in Theorem 4.2.

The assumptions F1-F4 are essentially the same as the assumptions A4-A6 of
Theorem 4.2, with perhaps different values for the constants Cs, Cr, C¢, and C..
Certainly, bounded linear functionals have this inheritance property. In Section 5, we
give some examples of nonlinear functionals that also have this property.
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5. Global sparse grid interpolation. In this section, we provide a specific
example of a single level SC approach, given by (3.1), that will be used to construct the
interpolation operators in our MLSC approach. As such, we briefly recall generalized
multi-dimensional (possibly sparse grid) interpolation, as well as theoretical results
related to the interpolation operator. For a more thorough description, see [1,3,23,24].

REMARK 5.1.  In this section, we again introduce a second notion of levels.
The levels here should not be confused with the levels used previously. For the latter,
‘levels’ refer to members of hierarchies of spatial and stochastic approzimations, both
of which were indexed by k. In this section, ‘levels’ refer to a sequence, indexed by 1, of
stochastic polynomial spaces and corresponding point sets used to construct a specific
sparse grid interpolant. The result of this construction, i.e., of using the levels indexed
by 1, is the interpolants used in the previous sections that were indexed by k.

5.1. Construction and convergence analysis of multi-dimensional in-

terpolants. The construction of the interpolant in the N-dimensional space I' =
N . . . . .

[[,_; T is based on sequences of one-dimensional Lagrange interpolation operators
{Z/{,’Z(l)}leN : C%Tyn) — Ppay—1(T'n), where P,(T,) denotes the space of polynomi-
als of degree p on I'j,. In particular, for each n = 1,..., N, let [ € N denote the
one-dimensional level of approximation and let {y(l) }p (ll C T',, denote a sequence
of one-dimensional interpolation points in T'y,. Here p(l) N; — Nj is such that
p(1) =1and p(I) < p(l+1) for I =2,3,..., so that p(l) strictly increases with [ and
defines the total number of collocation points at level [. For a univariate function
v € COT,), we define ut® 1

p(l
ur l) Z yg)J <pnj (yn) forl,=1,2,..., (5.1)

where @g?j € Ppy—1(I'n), 5 = 1,...,p(l), are Lagrange fundamental polynomials of
degree p(l) — 1, which are completely determined by the property <p( ) (yg )l) =0

n,j
Using the convention that Mﬁ(o) = 0, we introduce the difference operator given
by

A]:l(l) — Z/Iﬁ(l) _ uﬁ(l—l)_ (5.2)

For the multivariate case, we let I = (I1,...,Iy) € Nf denote a multi-index and
L € N denote the total level of the sparse grid approximation. Now, from (5.2), the
L-th level generalized sparse-grid approzimation of v € C°(T) is given by

ADI] = > ®AP<” (5.3)

g()<Ln=1

where g : Nf — N is another strictly increasing function that defines the mapping
between the multi-index I and the level L used to construct the sparse grid. The single
level approximation (5.3) requires the independent evaluation of v on a deterministic
set of distinct collocation points given by

Hy? = U ®{ynj }

g())<Ln=1
12
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having cardinality M.

REMARK 5.2.  For the MLSC method, the interpolation operators Iyy, introduced
in Section 3.2 are chosen as A}Y with My = Mp. Indeed, this is done for the
numerical examples of Section 6.

The particular choices of the one-dimensional growth rate p(l) and the func-
tion ¢(l) define a general multi-index set JP9(L) used in the construction of the
sparse grid, and the corresponding underlying polynomial space of the approximation
denoted Pp.(r)(I") [3,18]. Some examples of functions p(l) and g(I) and the corre-
sponding polynomial approximation spaces are given in Table 5.1. In the last example

in the table @ = (a1,...,an) € Rf is a vector of weights reflecting the anisotropy

of the system, i.e., the relative importance of each dimension [24]; we then define

Qpnin i= r{lin . The corresponding anisotropic versions of the other approxima-
n=1,...,

tions and corresponding polynomial subspaces can be analogously constructed.

TABLE 5.1
The functions p: Ny — Ny and g : Nf — N and the corresponding polynomial subspaces.

Polynomial Space p(l) g(l)

Tensor product p(l) =1 1§}La§XN(l" -1)
Total degree p(l) =1 Zgzl(ln -1)
Hyperbolic cross p(l) =1 ny:l(ln -1
Sparse Smolyak p()=2"1411>1 SN —1)

Anisotropic Sparse Smolyak p()=2"141,1>1 ZN e (1. —1), a

N
€RY

Table 5.1 defines several polynomial spaces. A means for constructing a basis
for polynomial subspaces consists of the selecting a set of points and the defining
basis functions based on those points, e.g., Lagrange fundamental polynomials. For
Smolyak polynomial spaces, the most popular choice of points are the sparse grids
based on the one-dimensional Clenshaw-Curtis abscissas [9] which are the extrema
of Chebyshev polynomials, including the end-point extrema. The resulting multi-
dimensional points are given by, for level [ and in the particular case I';, = [—1, 1] and
p(l) > 1,

O - eos(TU=DY p i1
Ynj = COb(p(l)—l orj=1,...,p().

In particular, the choice p(l) given in Table 5.1 for the Smolyak case results in a
nested family of one-dimensional abscissas, i.e., {yff)j fg)l C {yg;l)}ﬁgjl), so that
the sparse grids are also nested, i.e., H7? C H77,. Using g(I) in (5.3), given as in
Table 5.1 for the Smolyak polynomial space, corresponds to the most widely used
sparse-grid approximation, as first described in [25].

Other nested families of sparse grids can be constructed from, e.g., the Newton-
Cotes and Gauss-Patterson one-dimensional abscissas.

REMARK 5.3. In general, the growth rate p(l) can be chosen as any increasing
function on N. However, to construct the approzimation (5.3) in the tensor product,
total degree, hyperbolic cross, and Smolyak polynomial spaces, the required functions p
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and g are described in Table 5.1. Moreover, if the underlying abscissas can be nested,
as for the Clenshaw-Curtis points described above, the approximation (5.3) remains
a Lagrange interpolant. For non-nested point families, such as standard Gaussian
abscissas, the approzimation (5.3) is no longer guaranteed to be an interpolant. As
such, additional errors may be introduced that must be analyzed [23].

5.1.1. General convergence analysis for multidimensional interpolants.
The convergence with respect to the total number of collocation points for the tensor
product, sparse isotropic, and anisotropic Smolyak approximations was analyzed in
[1,23,24]. In what follows, our goal is to prove the bounds on the interpolation error
in the approximate solutions up, and the functionals 1 (uy, ), for k € Ng. Let W
denote a general Banach space and, for n € {1,..., N}, define I';, := ], I'; and
let y denote an arbitrary element of I'},. We will use the following theorem, proved
in [23,24].

THEOREM 5.4. Let v € CO(T; W) be such that for each random direction n €
{1,..., N}, v admits an analytic extension in the region of the complex plane X(n; ) :=
{z € C: dist(z,T,) < 7,}. Then, there exist constants C(N) and u(N), depending
on N, such that

lo = ALTv]| L rawry < C(N) MM ¢ (v),
where M7, is the number of points used by AV? and

— *
Cv) = max Jnax  max [v(z, yn)llw- (5.4)

REMARK 5.5. Anisotropic sparse grid approximations. For anisotropic
Smolyak approzimations, we use a weight vector a = (ayq,...,ay), where a, is re-
lated to T, in Lemma 5.7 and corresponds to the rate of convergence of the best
approzimation of an analytic function by a polynomial; see [24, section 2.2]. In par-
ticular, for v € CO(T,; W) that admits an analytic extension in the region of the
complex plane X(n;1,) = {z € C, dist(z,I'y) < 1,} for some 1, > 0, we have

2 2
. - ) < - p(ln)an 55
whin lv = wlloom,wy < o —7¢ Lesnax vl (5:5)

1 21 472
0 n =1 - 1 o,
= 2°g<|rn+\/ *w)

For an isotropic grid, all the components of the weight vector ac are the same so that
one has to take the worst case scenario, i.e., choose the components of « to all equal
Qmin, because one has no choice but to assume the worst convergence rate in (5.5).
REMARK 5.6. Dimension-dependent convergence rate. Table 5.2 provides
specific values of the convergence rate u(N) in Theorem 5.4 for some choices of grids,
including some sparse grids. In particular, the abscissas are here chosen as the nested
Clenshaw-Curtis points, with the mapping p(l) given in Table 5.1 describing the cor-
responding polynomial approrimation space. As seen in Table 5.2, the asymptotic rate
of convergence [ in general deteriorates with growing dimension N of the stochastic
space. The use of sparse grid SC methods is hence only of interest for dimensions
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N for which p > 1/2 so that the error still converges faster than the corresponding
Monte Carlo sampling error. The multilevel approzimation presented in this paper
suffers from the same deterioration of convergence rate, and roughly speaking, the
MLSC method can improve on the multilevel Monte Carlo method only when standard
SC performs better that standard Monte Carlo; see [10, Theorem 4.1].

TABLE 5.2
Convergence rates for N-dimensional interpolation operators; see Theorem 5.4.

Grid type w(N)

Full tensor product Qmin

Classical Smolyak #&LN)
amin(log(2)e—1/2)
log(2)+> N_, Smin

on

Anisotropic classical Smolyak

5.2. Multilevel approximation using sparse grids. The goal of this section
is to prove the analyticity assumptions of Theorem 5.4 for the approximate solutions
up,, and the functionals ¢ (up, ) for k € Ny and hence conclude that the corresponding
sparse grid interpolants satisfy assumptions A5 and F2, respectively. We start with
the required result for the approximate solutions up,; this result was proved in [1,
Lemmas 3.1 and 3.2].

LEMMA 5.7. If f € CO%;L%(D)) and if a € CP (I'; L>(D)) and uniformly
bounded away from zero, then the solution of the problem (2.1) satisfiesu € C°(T'; H}(D)).
Furthermore, under the assumption that, for every y = (yn,y) € T, there exists
Y < 00 such that for all j € Ny

97 a(y)
a(y)

107 fllz2(p)
L+ fllz2py —

J i

nJ°

<7,j  and

Lo (D)

the solution u(yn,y,x) as a function of yn, u : '), — COT:; HY(D)), admits an
analytic extension u(z,yk,x), z € C, in the region of the complex plane X(n; 1,) with
0 < 7y < (2y,)7 Y. Moreover, for all z € %(n;7,),

[u(2)lcors 3 (py) < A

for some constant A\ > 0 independent of n.

Define the Banach space A(T'; H} (D)) consisting of all functions v € C°(T; Hg (D))
such that, for alln € {1,..., N}, v admits an analytic extension in the region X(n;7,).
It follows from Lemma 5.7 that, under appropriate assumptions on a and f, we have
u € A(T; HY(D)). Because the dependence on y is unchanged in the approximate
solution wy, , it also follows that uy, € A(T; HY(D)) for all k € Ny, and hence also
Upy, — Un,_, € A(T; H} (D)) for all k € N.

Similar to A4, it follows from standard finite element theory [4, 8] that with
W = H}(D) and ¢ as in (5.4), (up,) can be bounded by a constant independent
of k, whereas ((up, — up, ,) can be bounded by a constant multiple of h{ for some
a > 0. In general, the constants appearing in these estimates will depend on norms of
a and f as well as on the mesh refinement parameter . We can hence conclude that
with Ty, = Ii’f , assumption A5 is satisfied for the interpolation schemes considered
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in Theorem 5.4. Therefore, for the numerical examples presented in Section 6, we
utilize the sparse grid stochastic collocation as the interpolatory scheme.

Now we verify the analyticity assumption in Theorem 5.4 also for the functionals
1 (u). Because Lemma 5.7 already gives an analyticity result for u, we use the following
result, which can be found in [27], about the composition of two functions on general
normed vector spaces.

THEOREM 5.8. Let X1, Xo, and X3 denote normed vector spaces and let 6 :
X1 — X5 and v : X9 — X3 be given. Suppose that 0 admits an analytic extension to
the set Xl and v admits an analytic extension to the set Xg, with 0()21) C Xg. Then,
the composition v o8 : X1 — X3 admits an analytic extension to the set X;.

Hence, if we can show that 1 is an analytic function of u, we can conclude that
¥(u) is an analytic function of y,,. To this end, we need the notion of analyticity for
functions defined on general normed vector spaces, which we will now briefly recall.

Given normed vector spaces X; and X, and an infinitely Frechet differentiable
function 0 : X; — X5, we can define a Taylor series expansion of # at the point £ in
the following way [5]:

o0

Toe(w) =Y % F0(E)(w — €, (5.6)

j=07"

where x,¢ € X, the notation (z — &)’ denoting the j-tuple (z —&,...,x — £) and
d70(¢) denoting the j-linear operator corresponding to the j-th Fréchet differential
DIg(€). The function 6 is then said to be analytic in a set Z C X if, for every z € Z,
Ty .(x) = 6(x) for all z in a neighbourhood N, (2) = {x € Z : ||z — z||x, < r}, for
some 7 > 0.

A sufficient condition for 6 to be analytic in a set Z is thus that ||d76(z)|| < C75!
for all z € Z and some C < oo, where || - || denotes the usual operator norm. Note
that this condition is trivially satisfied if ||d/ f(z)|| = O for all z € Z and all j > j*,
for some j* € N.

LEMMA 5.9. Let the assumptions of Lemma 5.7 be satisfied. Suppose ¥, viewed
as a mapping from CO(T%; HY(D)) to CO(T%;R), admits an analytic extension to the
set X(u) C CO(Tr; HY(D;C)), and u(z;yk,z) € X(u) for all z € X(n;7,). Then,
o u, viewed as a mapping from T, to CO(T':;R) admits an anlytic extension to the
set X(n; 7).

Together with Theorem 5.4, now with W = R, it then follows from Lemma
5.9 that assumption F2 in Theorem 4.5 is satisfied for the interpolation schemes
considered in this section, provided the functional v is an analytic function of u. Note
that the function ¢ in Theorem 5.4 acts on v (u) instead of u in this case, leading to
optimal convergence rates in h of the stochastic interpolation error.

To finish the analysis, we give some examples of functionals that satisfy the as-
sumptions of Lemma 5.9.

EXAMPLE 5.10. (Bounded linear functionals) In this case, there exists a constant
Cy such that |¢(w)| < Cyl|wl| gy (p) for all w € Hy(D) so that ¢ : C°(T}; Hy (D)) —
C°(T'%;R). Furthermore, for any v, w € C°(T%; H} (D)), we have

dp(v)(wr) = P(wr)  and  FYP) =0 Vj>2

which implies that ¢ admits an analytic extension to all of C°(I'; Hi (D; C)). Exam-
ples of bounded linear functionals include point evaluations of the solution « in one
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spatial dimension and local averages of the solution u in some subdomain D* C D,
computed as ﬁ f p- udz, in any spatial dimension.

ExAMPLE 5.11.  (Higher order moments of bounded linear functionals) As a
generalization of the above example, consider the functional ¥(v) = ¢(v)?, for some
bounded linear functional ¢ on Hg (D) and some g € N. As before, it follows from the
boundedness of ¢ that ¢ : CO(T:; HY(D)) — C°(T%;R). For any v € CO(T:; HY(D)),
the differentials of v are

dp(v)(wi, ..., w;) = $(v)T H(q —i+1) plwy), 1<j<gq

diep(v) =0, Jjzaq+1,

from which it follows that 1) admits an analytic extension to all of CO(T}; H} (D; C)).

EXAMPLE 5.12.  (Spatial L?-norm) Consider the functional ¢ (v) = [, v3dz =
Hv||%2(D). In this case, it follows from the Poincare inequality that v : CO(T'}; HY (D)) —
CO(T%;R). For any v € CO(T:; HY(D)), the differentials of ¢ are

(o)) =2

vwy,  d*(v)(wr,ws) = 2/ wowy, and dih(v) =0 V5 >2
D

D
which implies that ¢ admits an analytic extension to all of CO(T%; H(D;C)).

For the functional ¢(v) = || 12(p), we use the identity a — b = (a® — b?)/(a + b)
to derive that, for all v # 0,
B Jpvwidz B Jp wawy

= , and dy(v) =0 Vj>2.
o]l z2(p)

dip(v)(wr) d?p(v) (wr, wa)

 lvllzemy
It then follows that ¢ admits an analytic extension to any subset X(u) C C%(T%; H} (D; C))
not containing 0. The analysis in this example can easily be extended to the func-
tionals [|v]| g1 (p) and HUH%C%(D)'

6. Numerical Examples. The aim of this section is to demonstrate numerically
the significant reductions in computational cost possible with the use of the MLSC
approach. As an example, consider the following boundary value problem on either
D =(0,1) or D = (0,1)2:

{ -V (a(y,x)Vu(y,x)) =1 forx € D

u(y,x) =0 for x € 0D. (6.1)

The coefficient a takes the form

a(y,x) = 0.5+ exp

N
> Vi (62

where {y, }nen is a sequence of independent, uniformly distributed random variables
on [-1,1] and {A\,}nen and {b,}nen are the eigenvalues and eigenfunctions of the
covariance operator with kernel function C(z,z’) = exp[—||x — x/||1]. Explicit ex-
pressions for {\, }nen and {b,}nen are computable [13]. In the case D = (0,1), we
have

D — and  bP(x) = A, (sin(w,x) + w, cos(w,x)) for all n € N,

w2 +1
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where {wy, }nen are the (real) solutions of the transcendental equation

2w

tan(w) = m

and the constant A, is chosen so that ||b,|z2(0,1) = 1. In two spatial dimensions,
with D = (0,1)2, the eigenpairs can be expressed as

2D _ 1D y1D 2D __ 31D ;1D
AP = AP A and b2 = pPplt

for some i,, j, € N. In both one and two spatial dimensions, the eigenvalues A, decay
quadratically with respect to n [6].

It is shown in [1, Example 3] that with the coefficient a of the form (6.2) and
f =1, the assumptions of Lemma 5.7 are satisfied with v, = v/Ay||bn || oo ().

For spatial discretization, we use continuous, piecewise-linear finite elements on
uniform triangulations of D, starting with a mesh width of h = 1/2. As interpolation
operators, we choose the (isotropic) sparse grid interpolation operator (5.3), using p
and g given by the classic Smolyak approximation in Table 5.1, based on Clenshaw-
Curtis abscissas; see Section 5.

The goal of the computations is to estimate the error in the expected value of a
functional ¢ of the solution of (6.1). For fair comparisons, all values of ¢ reported are
relative accuracies, i.e., we have scaled the errors by the value of E[¢)(u)] itself. We
consider two different settings: in Section 6.1, we consider problem (6.1) in two spatial
dimensions with N = 10 random variables whereas, in Sections 6.2 and 6.3, we work
in one spatial dimension with N = 20 random variables. Because the exact solution u
is unavailable, the error in the expected value of /() has to be estimated. In Sections
6.1 and 6.2, we compute the error with respect to an “overkilled” reference solution
obtained using a fine mesh spacing h* and high interpolation level L*. However,
because this is generally not feasible in practice, we show in Section 6.3 how the error
can be estimated when the exact solution is not available and one cannot compute
using a fine spatial mesh and high stochastic interpolation level. The cost of the
multilevel estimators is computed as discussed in Section 4.2 and Remark 4.4, with
v =d, i.e., by assuming the availability of an optimal linear solver. For non-optimal
linear solvers for which v > d, the savings possible with the multilevel approach will
be even greater than demonstrated below.

6.1. d =2,N = 10. As the quantity of interest, we choose the average value of
u in a neighborhood of the midpoint (1/2,1/2), computed as 9 (u) = ﬁ Jp- u(x)dx,
where D* denotes the union of the six elements adjacent to the node located at
(1/2,1/2) of the uniform triangular mesh with mesh size h = 1/256.

We start by confirming, in Figure 6.1, the assumptions of Theorem 4.5. The
reference values are computed with spatial mesh width h* = 1/256 and stochastic
interpolation level L* = 5.

The top-left plot of Figure 6.1 shows the convergence of the finite element error
in the expected value of ©(u), and confirms that assumption F1 of Theorem 4.5 holds
with a = 2.

The top-right plot of Figure 6.1 shows the behavior of the function ¢ from Theorem
5.4 for the quantities ¥ (up) and ¥(up) — ¥ (uzp). We see that whereas ((¢(up)) is
bounded by a constant independent of h and {(1(up) — ¥ (usgp)) decays quadratically
in h. This confirms assumption F3 with § = 2.

The bottom-left plot of Figure 6.1 shows the interpolation error in ¥ (uy) scaled
by h3 and the interpolation error in ) (uy) — ¥ (ugp) scaled by h? for several values of
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Fic. 6.1. D = (0,1)2, N = 10. Top left: E[Zsv(up)] and E[Tst)(uq j256) — L5t (up)] versus 1/h.

Top right: {((up)) and (¥ (ur) — ¢ (usp)) versus 1/h. Bottom left: E[Zsv(up) — Ty (up)]/hE and
(Zs5 ((un) — ¥(uan)) — T ((up) — ¥(uap)]/h? versus My, for various h. Bottom right: number of
samples My _j. versus k.

h. According to assumptions F2 and F3, these plots should all result in a straight
line CM~*, where C' = C;C¢. The best fit which has C'= 0.05 and p = 1.4 is added
for comparison.

The bottom-right plot of Figure 6.1 shows the number of samples M} computed
using the formula (4.6), with C = 0.05 and pu = 1.4, for several values of €. The
finest level K was determined using the estimates on the finite element error from the
top-left plot. Solid lines correspond to numbers rounded up to the nearest integer, as
is done in (4.7), whereas dotted lines correspond to the number of samples rounded
up to the next level of the sparse grid.

In Figure 6.2, we study the cost of the standard and multilevel collocation methods
to achieve a given total accuracy e. In both plots, the data labeled ‘SC’ and ‘MLSC’
denote standard and multilevel stochastic collocation, respectively. For data labeled
‘formula’, the number of samples was determined by the formula (4.6) with C = 0.05
and p = 1.4, rounded up to the next sparse grid level (the dotted lines in the bottom
right plot of Figure 6.1). For data labeled ‘best’, the number of samples was chosen
manually so as to achieve a total accuracy e for the smallest computational cost. For
all methods, we chose hy = 1/4.

In the left plot of Figure 6.2, we simply plot the computational cost of the different
estimators against €. For comparison, we have also added corresponding results for
Monte Carlo (MC) and multilevel Monte Carlo (MLMC) estimators. In both the
‘formula’ and the ‘best’ case, the multilevel collocation method outperforms standard
SC. Both collocation-based methods outperform both Monte Carlo approaches.

In the right plot in Figure 6.2, we compare the observed computational cost with
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Fig. 6.2. D = (0,1)2, N = 10. Left: computational cost versus relative error €. Right:
computational cost scaled by e~ 136 wversus relative error €.

that predicted by Theorem 4.5 for the standard and multilevel collocation methods.
In our computations, we observed a =~ 2, § =~ 2, and p =~ 1.4, which with v = 2 gives
computational costs of e~ and ¢~'72 for the multilevel and standard SC method,
respectively. We therefore plot the computational cost scaled by £!. We see that both
multilevel methods indeed seem to grow approximately like e~ !, with the ‘formula’
case growing slightly faster for large value of € and the ‘best’ case growing slightly
faster for small values of €. The costs for both standard collocation methods grow a
lot faster with e.

Figure 6.3 provides results for a different quantity of interest, 1 (u) = [|ul|z2(p).
The left plot corresponds to the bottom-left plot in Figure 6.1 and again confirms that
the interpolation error in 9 (us) — 1 (uap,) scales with h2. The right plot corresponds
to the left plot of Figure 6.2, where we plot the computational cost of the different
estimators against €. We see that all collocation-based methods outperform the Monte
Carlo approaches. In both the ‘formula’ and the ‘best’ case, the multilevel collocation
method again outperforms standard SC.

10 [ =
—% - MU

o f| —E—5C (Formula
107 f B ~HLSC (Formula)
—E—SC (best)

1 fL=8 = HLSC (best)

10 10 10 10
Relative total error €

Fia. 6.3. D = (0,1)2, N = 10. Left: E[Zsy)(up) — Iar, ¥ (un)l/hE and [Ts(¢(up) — tp(uszp)) —
— (uap)]/h? versus My, for various h. Right: computational cost versus relative error

REMARK 6.1. Before considering the second model problem, let us briefly com-
ment on the differences between the ‘best’ and the ‘formula’ multilevel methods. The
‘formula’ multilevel collocation method performs sub-optimally mainly for two reasons.
First, it always rounds up the number of samples My, to the nearest sparse grid level,
which may be substantially higher than the number of samples actually required. Sec-
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ondly, it does not take into account sign changes in the interpolation error, which in
practice can lead to significant reductions in the interpolation error of the multilevel
method. For both of these reasons, the interpolation error is often a lot smaller than
the required €/2, leading to sub-optimal performance. This issue is partly addressed
in Section 6.3, where we consider not always rounding up, but rounding the number
of samples either up or down to the nearest sparse grid level.

6.2. d =1,N = 20. We now repeat the numerical tests done in the previous
section for the case D = (0,1) and N = 20. For the quantity of interest, we choose
the expected value of the solution u evaluated at = = %. The reference values are
computed using the mesh width h* = 1/1024 and interpolation level L* = 5.

We again start by confirming, in Figure 6.4, the assumptions of Theorem 4.5.
The four plots of that figure convey the same information as do the corresponding
plots in Figure 6.1 and again confirm assumptions F1, F2, and F3 of that theorem
with & = 2 and § = 2 and, in the bottom-right plot, the best line fit C' = C;C¢ with

C =0.005 and p = 0.8.
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FiG. 6.4. D = (0,1), N =20. Top left: E[Z59(up)] and E[Zs59(uy/256) — Loy (un)] versus 1/h.
Top right: ((up) and ((up — uap) versus 1/h. Bottom left: E[Zs(v) — T, ¥(v)]/¢(v) versus My
for various v. Bottom right: number of samples Mg _ versus k.

Figure 6.5 conveys the same information and uses the same labeling as does
Figure 6.2. Again, for both the ‘formula’ and ‘best’ cases, the multilevel collocation
method eventually outperforms standard SC and both collocation-based methods also
outperform the Monte Carlo approaches. Based on the values o = 2, § =~ 2, and
i ~ 0.8, Theorem 4.5 now predicts the computational costs of 7125 and ¢~ for
the multilevel and the standard collocation methods, respectively. The right-plot in
Figure 6.5 indicates that the ‘formula’ multilevel collocation method indeed seems to
grow like e71'2% whereas the ‘best’ multilevel method actually seems to grow slower
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for small values of €. This is likely due to the different signs of the interpolation
errors in the multilevel estimator. Also, again, the costs for both standard collocation
methods grow a lot faster with e.

—E—HLSC (Fornula)
—& “HLSE (hest)

Computational cost.

o [
—H - HLHC
3 [| B st (Formula)
107 g ~EF THLSC (Fornula)
&S0 (best)
2 F =S —HLSC (best) , , -3
-7 -6 -5 - - - - -5 - -
10 1 10 10 1 10 10 i) 10 10
Relative total error £ Relative total error £

Computational cost scaled by €17

Fic. 6.5. D = (0,1), N = 20. Left: computational cost versus relative error €. Right:
computational cost scaled by e 125 versus relative error €.

6.3. Practical implementation. In Sections 6.1 and 6.2, the accuracy of the
computed estimates was assessed by comparison to a reference solution. Of course, in
practice, a fine-grid, high-level reference solution is not available. Therefore, in this
section, we describe how to implement the MLSC method without having recourse to
a reference solution. We suggest the following practical strategy that is similar to the
one proposed in [14].

1. Estimate the constants «, 8, 1, and C = Cy C¢.

2. Start with K = 1.

3. Calculate the optimal number of samples M,k =0,..., K, according to the
formula (4.6), and round to the nearest sparse grid level.

4. Test for convergence using

El(un, ) = ¢ (un,_,)] = (% = 1) E[(¢p(u) — ¢ (un,))]-

5. If not converged, set K = K + 1 and return to step 3.
Note that in this procedure, steps 3 and 4 ensure that the interpolation error and the
spatial discretization error are each less than the required tolerance €/2, respectively.

The estimation of the constants «, 3, u, and C' in step 1 can be done relatively
cheaply from computations done using mesh widths hg, k1, and hy and interpolation
levels £ = 0,1,2. For the results provided below, we estimated the convergence rate
a from the level 1 interpolants Z; of ¥(ug), ¥ (u1), and ¥ (us), resulting in a ~ 2.1.
In light of the results in Section 5, we assumed § = . We then used the first three
interpolation levels of ¥ (ug) and ¥ (u1) — ¥ (ug) to obtain the estimates C' = 0.01 and
1~ 0.8. Note that the value of u is the same as in Section 6.2 whereas the value of
the constant C'is slightly larger. This is due to the fact that, for the large values of h
used to estimate this constant, the function (¢ (up) — ¥ (uap)) has probably not yet
settled into its asymptotic quadratic decay.

As mentioned in Section 6.1, always rounding the number of samples resulting
from formula (4.6) up to the next sparse grid level may lead to a substantial increase
in the computational cost and hence a sub-optimal performance of the multilevel
method. In practice, one might therefore consider not always rounding up, but instead
rounding either up or down. As long as we do not round down more frequently than
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we round up, or at least not much more often, this approach should still result in an
interpolation error below the required tolerance /2.

Table 6.3 shows the number of samples Mg . resulting from the implementation
described in this section for the model problem with d =1 and N = 20 from Section
6.2. For each value of e, the first row, denoted by ‘formula’; corresponds to the
numbers Mg _j, resulting from formula (4.6) rounded up to the nearest integer. The
second row, denoted ‘up’, are the numbers in the first row rounded up to the next
corresponding sparse grid level. For the final row, denoted ‘up/down’, the rounding
of the number of samples was done in the following way: First, all numbers were
rounded either up or down to the nearest corresponding sparse grid level. If this
resulted in more numbers being rounded down than up, we chose the number that
was rounded down by the largest amount and then instead rounded this number up.
This procedure was continued iteratively. The same was done when more numbers
were rounded up than down.

| e || leva | 0 1 2 3 4
formula 191 48 15
6.3e-4 up 841 841 41
up/down 841 41 41
formula 3002 747 233 73
7.9e-5 up 11561 841 841 841
up/down 841 841 841 41
formula 27940 6949 2169 677 212
1.4e-5 up 120401 11561 11561 841 841
up/down | 11561 11561 841 841 841
formula | 110310 27433 8562 2672 834
4.7¢-6 up 120401 120401 11561 11561 841
up/down | 120401 11561 11561 11561 841
TABLE 6.1

D = (0,1), N = 20. Number of samples My _j computed using formula (4.6) and various
rounding schemes.

To confirm that the adaptive procedure still achieves the required tolerance on
the total error, we have, for Table 6.3, computed the stochastic interpolation and
finite element errors (with respect to a reference solution) and the computational cost
of the multilevel approximations from Table 6.3. For comparison, we have added
the results for the multilevel method which was manually found to give a total error
less than ¢ at minimal cost, which was already computed in Section 6.2 assuming
a reference solutions was available. Note that for large values of ¢, the adaptive
procedure described in this section overestimated the finite element error, leading to a
larger number of levels K compared to that found in Section 6.2. It is clear from Table
6.3 that not only does the alternative rounding procedure yield the required bound on
the error, it also significantly reduces the computational cost of the multilevel method,
bringing it close to what was manually found to be the minimal cost possible.

7. Concluding remarks. Computing solutions of stochastic partial differential
equations using stochastic collocation methods can become prohibitively expensive as
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’ € ‘ ‘ Interpolation error  Spatial error Cost

6.30.4 up 6.7e-5 3.4e-5 8266
' up/down 2.8¢-4 3.4e-5 4902
best 8.0e-5 2.9¢-4 369
2.2¢- .3e-
7 965 up e-5 6.3e-6 85558
up/down 3.0e-5 6.3e-6 15650
best 2.4e-5 3.4e-5 4591
up 2.7e-6 1.6e-6 853207
1.4e-5
up/down 8.3e-6 1.6e-6 158714
best 3.9e-6 6.3e-6 119699
up 7.3e-8 1.6e-6 1519787
4.7e-6
up/down 1.2e-6 1.6e-6 1038183
best 1.2e-6 1.6e-6 1038183
TABLE 6.2

D = (0,1), N = 20. Stochastic interpolation and spatial errors (with respect to the reference
solution) and computational cost of various multilevel methods.

the dimension of the random parameter space increases. Drawing inspiration from re-
cent work in multilevel Monte Carlo methods, this work proposed a multilevel stochas-
tic collocation method, based on a hierarchy of spatial and stochastic approximations.
A detailed computational cost analysis showed, in all cases, a sufficient improvement
in costs compared to single-level methods. Furthermore, this work provided a frame-
work for the analysis of a multilevel version of any method for SPDEs in which the
spatial and stochastic degrees of freedom are decoupled.

The numerical results practically demonstrated this significant decrease in com-
plexity versus single level methods for each of the problems considered. Likewise, the
results for the model problem showed multilevel SC to be superior to multilevel MC
even up to N = 20 dimensions.

One of the largest obstacles to the practicality of stochastic collocation methods
is the huge growth in the number of points between grid levels. In the multilevel case,
this can lead to a large amount of computational inefficiency. Certain simple rounding
schemes were proposed to mitigate this effect, and proved to be extremely effective
for the problems considered. Similarly, since most of our example problems involved
computation of a reference solution for the estimation of the necessary constants,
a more practical multilevel stochastic collocation algorithm that dispensed with the
need for a reference solution was proposed and tested.

It is clear that for any sampling method for SPDEs, whether Monte Carlo or
stochastic collocation, multilevel methods are to be preferred over single-level meth-
ods for improved efficiency. Especially in the case of stochastic collocation methods,
multilevel approaches enable one to further delay the curse of dimensionality, temper-
ing the explosion of computational effort that results when the stochastic dimension
increases. Though Monte Carlo methods are often preferable for problems involving
a large stochastic dimension, multilevel approaches greatly improve the effectiveness
of stochastic collocation methods versus Monte Carlo methods.
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