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Abstract

In this paper we address the problem of the prohibitively large computational cost of ex-
isting Markov chain Monte Carlo methods for large–scale applications with high dimensional
parameter spaces, e.g. in uncertainty quantification in porous media flow. We propose a new
multilevel Metropolis-Hastings algorithm, and give an abstract, problem dependent theorem
on the cost of the new multilevel estimator based on a set of simple, verifiable assumptions.
For a typical model problem in subsurface flow, we then provide a detailed analysis of these
assumptions and show significant gains over the standard Metropolis-Hastings estimator. Nu-
merical experiments confirm the analysis and demonstrate the effectiveness of the method with
consistent reductions of a factor of O(10–50) in the ε-cost of the multilevel estimator over the
standard Metropolis-Hastings algorithm for tolerances ε around 10−3.

1 Introduction

The parameters in mathematical models for many physical processes are often impossible to deter-
mine fully or accurately, and are hence subject to uncertainty. It is of great importance to quantify
the uncertainty in the model outputs based on the (uncertain) information that is available on the
model inputs. A popular way to achieve this is stochastic modelling. Based on the available infor-
mation, a probability distribution (the prior in the Bayesian framework) is assigned to the input
parameters. If in addition, some dynamic data (or observations) Fobs related to the model outputs
are available, it is possible to reduce the overall uncertainty and to get a better representation of
the model by conditioning the prior distribution on this data (leading to the posterior).

In most situations, however, the posterior distribution is intractable in the sense that exact
sampling from it is unavailable. One way to circumvent this problem, is to generate samples using
a Metropolis–Hastings type Markov chain Monte Carlo (MCMC) approach [21, 25, 27], which
consists of two main steps: (i) given the previous sample, a new sample is generated according to
some proposal distribution, such as a random walk; (ii) the likelihood of this new sample (i.e. the
model fit to Fobs) is compared to the likelihood of the previous sample. Based on this comparison,
the proposed sample is then either accepted and used for inference, or it is rejected and we use
instead the previous sample again, leading to a Markov chain. A major problem with MCMC
is the high cost of the likelihood calculation for large–scale applications, e.g. in subsurface flow
where it involves the numerical solution of a partial differential equation (PDE) with highly varying
∗Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
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coefficients on a – for accuracy reasons – very fine spatial grid. Due to the slow convergence of
Monte Carlo averaging, the number of samples is also large and moreover, the likelihood has to be
calculated not only for the samples that are eventually used for inference, but also for the samples
that end up being rejected. Altogether, this leads to an often impossibly high overall complexity,
particularly in the context of high-dimensional parameter spaces (typically needed in subsurface
flow applications), where the acceptance rate of the algorithm can be very low.

We show here how the computational cost of the standard Metropolis-Hastings algorithm can be
reduced significantly by using a multilevel approach. This has already proved highly successful for
subsurface flow problems in the context of standard Monte Carlo estimators based on independent
and identically distributed (i.i.d.) samples [9, 1, 18, 6, 30]. The multilevel Monte Carlo (MLMC)
method was first introduced by Heinrich for the computation of high-dimensional, parameter-
dependent integrals [22], and then rediscovered by Giles [17] in the context of infinite-dimensional
integration in stochastic differential equations in finance. Similar ideas were also used by Brandt
and his co-workers to accelerate statistical mechanics calculations [2, 3]. The basic ideas are to
(i) exploit the linearity of expectation, (ii) introduce a hierarchy of computational models that are
assumed to converge (as the model resolution is increased) to some limit model (e.g. the original
PDE), and (iii) build estimators for differences of output quantities instead of estimators for the
quantities themselves. In the context of PDEs with random coefficients, the multilevel estimators
use a hierarchy of spatial grids and exploit that the numerical solution of a PDE on a coarser
spatial grid, and thus the evaluation of the likelihood, is computationally much cheaper than on a
fine grid. In that way each individual estimator will either have a smaller variance, since differences
of output quantities from two consecutive models go to zero with increased model resolution, or
it will require significantly less computational work per sample for low model resolutions. Either
way the cost of each of the individual estimators is significantly reduced, easily compensating for
the cost of having to compute L+ 1 estimators instead of one, where L is the number of levels.

However, the application of the multilevel approach in the context of MCMC is not straight-
forward. The posterior distribution, which depends on the likelihood, has to be level-dependent,
since otherwise the cost on all levels will be dominated by the evaluation of the likelihood on the
finest level leading to no real cost reduction. Instead, and in order to avoid introducing extra bias
in the estimator, we construct two parallel Markov chains {θn` }n≥0 and {Θn

`−1}n≥0 on levels ` and
` − 1 each from the correct posterior distribution on the respective level. The coarser of the two
chains is constructed using the standard Metropolis–Hastings algorithm, for example using a (pre-
conditioned) random walk. The main innovation is a new proposal distribution for the finer of the
two chains {θn` }n≥0. Although similar two-level sampling strategies have been investigated in other
applications [7, 13, 14], the computationally cheaper coarse models were only used to accelerate
the MCMC sampling and not as a variance reduction technique in the estimator. Some ideas on
how to obtain a multilevel version of the MCMC estimator can also be found in the recent work
[23] on sparse MCMC finite element methods.

The central result of the paper is a complexity theorem (cf. Theorem 3.5) that quantifies,
for an abstract large–scale inference problem, the gains in the ε-cost of the multilevel Metropolis–
Hastings algorithm over the standard version in terms of powers of the tolerance ε. For a particular
application in stationary, single phase subsurface flow (with a lognormal permeability prior with
exponential covariance), we then verify all the assumptions in Theorem 3.5. We show that the
ε-cost of our new multilevel version is indeed one order of ε lower than its single-level counterpart
(cf. Theorem 4.8), i.e. O(ε−(d+1)−δ) instead of O(ε−(d+2)−δ), for any δ > 0, where d is the spatial
dimension of the problem. The numerical experiments for d = 2 in Section 5 confirm all these
theoretical results. In fact, in practice it seems that the cost for the multilevel estimator grows
only like O(ε−d), but this seems to be a pre–asymptotic effect. The absolute cost is about O(10–50)
times lower than for the standard estimator for values of ε around 10−3, which is a vast improvement
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and brings the cost of the multilevel MCMC estimator down to a similar order than the cost of
standard multilevel MC estimators based on i.i.d. samples. This provides real hope for practical
applications of MCMC analyses in subsurface flow and for other large scale PDE applications.

The outline of the rest of the paper is as follows. In Section 2, we recall, in a very general
context, the Metropolis Hastings algorithm, together with results on its convergence. In Section
3, we then present a new multilevel version and give a general convergence analysis under certain,
problem-dependent, but verifiable assumptions. A typical model problem arising in subsurface flow
modelling is then presented in Section 4. We briefly describe the application of the new multilevel
algorithm to this application, and give a rigorous convergence analysis and cost estimate of the
new multilevel estimator by verifying the abstract assumptions from Section 3. Finally, in Section
5, we present some numerical results for the model problem discussed in Section 4.

2 Standard Markov chain Monte Carlo

We will start in this section with a review of the standard Metropolis Hastings algorithm, described
in a general context. We denote by θ := (θi)Ri=1 the RR–valued random input vector to the model,
and denote by X := (Xj)Mj=1 = X(θ) the RM–valued random output. Let further QM,R = G(X)
be some linear or non–linear functional of X. We shall often refer to M as the discretisation level
of the model.

We consider the setting where we have some real-world dynamic data (or observations) Fobs

available, and want to incorporate this information into our simulation in order to reduce the
overall uncertainty. The data Fobs usually corresponds to another linear or non-linear functional F
of the model output. In the context of groundwater flow modelling, this could for example be the
value of the pressure or the Darcy flux at or around a given point in the computational domain,
or the outflow over parts of the boundary.

Let us denote the conditional distribution of θ given Fobs by πM,R(θ). We assume that as
M,R → ∞, we have EπM,R [QM,R −Q] → 0 for some (inaccessible) random variable Q. We are
interested in estimating EπM,R [Q], for M , R sufficiently large. Hence, we compute approximations
(or estimators) Q̂M,R of EπM,R [QM,R]. To estimate this with a Monte Carlo type estimator, or
in other words by a finite sample average, we need to generate samples from the conditional
distribution πM,R. Using Bayes’ Theorem, we have

πM,R(θ) := P(θ |Fobs) =
L(Fobs | θ)P(θ)
PF (Fobs)

h L(Fobs | θ)P(θ). (2.1)

Since the normalising constant PF (Fobs) is not known in general, the conditional distribution πM,R

is generally intractable and exact sampling not available.
For the remainder of the paper, we will refer to the conditional distribution πM,R(θ) as the

posterior distribution, to L(Fobs | θ) as the likelihood and to P(θ) as the prior distribution. The
likelihood gives the probability of observing the data Fobs given a particular value of θ, and usually
involves computing the model response FM,R := F (X(θ)) and comparing this to the observed data
Fobs. Note that since the model output depends on the discretisation parameter M , the likelihood
and hence the posterior distribution πM,R will in general also depend on M . As already mentioned,
the posterior distribution πM,R is usually intractable. In order to generate samples for inference,
we will use the Metropolis Hastings MCMC algorithm in Algorithm 1.

Algorithm 1 creates a Markov chain {θn}n∈N, and the states θn are used in the usual way
as samples for inference in a Monte Carlo sampler. The proposal distribution q(θ′|θn) is what
defines the algorithm. A common choice is a simple random walk. However, as outlined in [20],
the basic random walk does not lead to dimension R independent convergence, and a better choice
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ALGORITHM 1. (Metropolis Hastings MCMC)

Choose θ0. For n ≥ 0:

• Given θn, generate a proposal θ′ from a given proposal distribution q(θ′|θn).

• Accept θ′ as a sample with probability

αM,R
(
θ′|θn

)
= min

{
1,
πM,R(θ′) q(θn|θ′)
πM,R(θn) q(θ′|θn)

}
(2.2)

i.e. θn+1 = θ′ with probability αM,R and θn+1 = θn with probability 1− αM,R.

is a preconditioned Crank-Nicholson (pCN) algorithm [11]. Below we will see that it is also the
crucial ingredient in our multilevel Metropolis-Hastings algorithm. When the proposal distribution
is symmetric, i.e. when q(θn|θ′) = q(θ′|θn), then the formula for αM,R (θ′|θn) in (2.2) simplifies.

Under reasonable assumptions, one can show that θnR ∼ πM,R, as n → ∞, and that sample
averages computed with these samples converge to expected values with respect to the desired
target distribution πM,R (see Theorem 2.2). The first several samples of the chain {θn}n∈N, say
θ0, . . . , θn0 , are not usually used for inference, since the chain needs some time to get close to the
target distribution πM,R. This is referred to as the burn–in of the MCMC algorithm. Although
the length of the burn-in is crucial for practical purposes, and largely influences the behaviour of
the resulting MCMC estimator for finite sample sizes, statements about the asymptotics of the
estimator are usually independent of the burn-in. We will therefore denote our MCMC estimator
by

Q̂MC
N :=

1
N

N+n0∑
n=n0

Q
(n)
M,R =

1
N

N+n0∑
n=n0

G (X(θn)) , (2.3)

for any n0 ≥ 0, and only explicitly state the dependence on n0 where needed.

2.1 Convergence analysis

We will now give a brief overview of the convergence properties of the Metropolis-Hastings algo-
rithm, which we will need below in the analysis of the multilevel variant. For more details we refer
the reader, e.g., to [27]. Let

K(θ|θ′) := αM,R(θ|θ′) q(θ|θ′) +
(

1−
∫

RR
αM,R(θ|θ′) q(θ|θ′) dθ′

)
δ(θ − θ′)

denote the transition kernel of the Markov chain {θn}n∈N, with δ(·) the Dirac delta function, and

E = {θ : πM,R(θ) > 0},
D = {θ : q(θ|θ′) > 0 for some θ′ ∈ E}.

The set E contains all parameter vectors which have a positive posterior probability, and is the
set that Algorithm 1 should sample from. The set D, on the other hand, consists of all samples
which can be generated by the proposal distribution q, and hence contains the set that Algorithm 1
will actually sample from. For the algorithm to fully explore the target distribution, we therefore
crucially require E ⊂ D. The following results are classical, and can be found in [27].
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Lemma 2.1. Provided E ⊂ D, πM,R is a stationary distribution of the chain {θn}n∈N.

Note that the condition E ⊂ D is sufficient for the transition kernel K(·|·) to satisfy the usual
detailed balance condition K(θ|θ′)πM,R(θ′) = K(θ′|θ)πM,R(θ).

Theorem 2.2. Suppose that EπM,R [|QM,R|] <∞ and

q(θ|θ′) > 0, for all (θ, θ′) ∈ E × E . (2.4)

Then
lim
N→∞

Q̂MC
N = EπM,R [QM,R] , for any θ0 ∈ E and n0 ≥ 0.

The condition (2.4) is sufficient for the chain {θn}n∈N to be irreducible, and it is satisfied
for example for the random walk sampler or for the pCN algorithm (cf. [20]). Lemma 2.1 and
Theorem 2.2 above ensure that asymptotically, sample averages computed with samples generated
by Algorithm 1 converge to the desired expected value. In particular, we note that stationarity of
{θn}n∈N is not required for Theorem 2.2, and the above convergence results hence hold true for
any burn–in n0 ≥ 0, and for all initial values θ0 ∈ E .

Now that we have established the (asymptotic) convergence of the MCMC estimator (2.3), let
us establish a bound on the cost of this estimator. We will quantify the accuracy of our estimator
via the root mean square error (RMSE)

e(Q̂MC
N ) :=

(
EΘ

[(
Q̂MC
N − EπM,R(Q)

)2
])1/2

, (2.5)

where EΘ denotes the expected value not with respect to the target measure πM,R, but with respect
to the joint distribution of Θ := {θn}n∈N as generated by Algorithm 1. We denote by Cε(Q̂MC

N )
the computational ε-cost of the estimator, that is the number of floating point operations that are
needed to achieve a RMSE of e(Q̂MC

N ) < ε.
Classically, the mean square error (MSE) can be written as the sum of the variance of the

estimator and its bias squared,

e(Q̂MC
N )2 = VΘ

[
Q̂MC
N

]
+
(
EΘ

[
Q̂MC
N

]
− EπM,R [Q]

)2
.

Here, VΘ is again the variance with respect to the approximating measure generated by Algo-
rithm 1. Using the triangle inequality and linearity of expectation, we can further write this as

e(Q̂MC
N )2 ≤ VΘ

[
Q̂MC
N

]
+ 2

(
EΘ

[
Q̂MC
N

]
− EπM,R

[
Q̂MC
N

])2
+ 2 (EπM,R [QM,R −Q])2 (2.6)

The three terms in (2.6) correspond to the three sources of error in the MCMC estimator. The
third (and last) term in (2.6) is the discretisation error due to approximating Q by QM,R. The
other two terms are the errors introduced by using an MCMC estimator for the expected value;
the first term is the error due to using a finite sample average and the second term is due to the
samples in the estimator not all being perfect (i.i.d.) samples from the target distribution πM,R.

Let us first consider the two MCMC related error terms. Quantifying, or even bounding, the
variance and bias of an MCMC estimator in terms of the number of samples N is not an easy task,
and is in fact still a very active area of research. The main issue with bounding the variance is that
the samples used in the MCMC estimator are not independent, which means that knowledge of the
covariance structure is required in order to bound the variance of the estimator. Asymptotically,
the behaviour of the MCMC related errors (i.e. Terms 1 and 2 on the right hand side of (2.6)) can
be described using the following Central Limit Theorem, which can again be found in [27].

5



Let θ̃0 ∼ πM,R. Then the auxiliary chain Θ̃ := {θ̃n}n∈N constructed by Algorithm 1 starting
from θ̃0 is stationary, i.e. θ̃n ∼ πM,R for all n ≥ 0. Note that the covariance structure of Θ̃ is
still implicitly defined by Algorithm 1 as for Θ. However, now V eΘ[Q̃nM,R] = VπM,R [Q̃M,R] and
E eΘ[Q̃nM,R] = EπM,R [Q̃M,R], for any n ≥ 0, and

CovπM,R,πM,R
[
Q̃0
M,R, Q̃

n
M,R

]
= EπM,R,πM,R

[(
Q̃0
M,R − EπM,R [QM,R]

)(
Q̃nM,R − EπM,R [QM,R]

)]
,

where Q̃nM,R := G(X(θ̃n)) and Eπ,π′ [Z] =
∫

RR
∫

RR Z(θ, θ′) dπ(θ) dπ′(θ′), for a random variable Z
that depends on θ and θ′. We now define the so called asymptotic variance of the MCMC estimator

σ2
Q := VπM,R

[
Q̃M,R

]
+ 2

∞∑
n=1

CovπM,R,πM,R
[
Q̃0
M,R, Q̃

n
M,R

]
.

Note that stationarity of the chain is assumed only in the definition of σ2
Q, i.e. for Θ̃, and it is not

necessary for the samples Θ actually used in the computation of Q̂MC
N .

Theorem 2.3 (Central Limit Theorem). Suppose σ2
Q <∞, (2.4) holds, and

P
[
αM,R = 1

]
< 1. (2.7)

Then we have
1√
N

(
Q̂MC
N − EπM,R [QM,R]

)
D−→ N (0, σ2

Q),

where D−→ denotes convergence in distribution.

The condition (2.7) is sufficient for the chain Θ to be aperiodic. It is difficult to prove theoreti-
cally. In practice, however, this condition is always satisfied, since not all proposals in Algorithm 1
will agree with the observed data and thus be accepted.

Theorem 2.3 holds again for any burn-in n0 ≥ 0 and any starting value θ0 ∈ E . It shows that
asymptotically, the sampling error of the MCMC estimator decays at a similar rate to the sampling
error of an estimator based on i.i.d. samples. Note that this includes both sampling errors, and so
the constant σ2

Q is in general larger than in the i.i.d. case where it is simply VπM,R [QM,R].
Since we are interested in a bound on the MSE of our MCMC estimator for a fixed number of

samples N , we make the following assumption:

A1. For any N ∈ N,

VΘ

[
Q̂MC
N

]
+
(
EΘ

[
Q̂MC
N

]
− EπM,R

[
Q̂MC
N

])2
.

VπM,R [QM,R]
N

, (2.8)

with a constant that is independent of M , N and R.

Non-asymptotic bounds such as in Assumption A1 are difficult to obtain, but have recently
been proved for certain Metropolis–Hastings algorithms, see e.g. [20, 28, 23]. These results require
that the chain is sufficiently burnt–in. The hidden constant usually depends on quantities such as
the covariances appearing in the asymptotic variance σ2

Q.
To complete the error analysis, let us now consider the last term in the MSE (2.6), the dis-

cretisation bias. As before, we assume EπM,R [QM,R −Q] → 0 as M,R → ∞, and we furthermore
assume that we have a certain order of convergence, i.e.

|EπM,R [QM,R −Q]| . M−α +R−α
′
, (2.9)
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for some α, α′ > 0. The rates α and α′ will be problem dependent. Let now R = Mα/α′ , such that
the two error contributions in (2.9) are balanced. Then it follows from (2.6), (2.8) and (2.9) that
the MSE of the MCMC estimator can be bounded by

e(Q̂MC
N )2 .

VπM,R [QM,R]
N

+M−α. (2.10)

Under the assumption that VπM,R [QM,R] ≈ constant, independent of M and R, it is hence sufficient
to choose N & ε−2 and M & ε−1/α to get a RMSE of O(ε).

Let us now give a bound on the computational cost to achieve this error, the so called ε-cost.
For this, assume that the cost to compute one sample QnM,R satisfies C(QnM,R) . Mγ , for some
γ > 0. Thus, with N & ε−2 and M & ε−1/α, the ε–cost of our MCMC estimator can be bounded
by

Cε(Q̂MC
N ) . NMγ . ε−2−γ/α. (2.11)

In practical applications, especially in subsurface flow, both the discretisation parameter M and
the length of the input random vector R usually need to be very large in order for EπM,R [QM,R] to
be a good approximation to Eπ∞ [Q]. Moreover, from the analysis above, we see that we need to use
a large number of samples N in order to get an accurate MCMC estimator with a small MSE. Since
each sample requires the evaluation of the likelihood L(Fobs|θn), and this is very expensive when
M and R are very large, the standard MCMC estimator (2.3) is often extraordinarily expensive in
practical situations. Additionally, the acceptance rate of the algorithm can be very low when R is
very large. This means that the covariance between the different samples will decay more slowly,
which again makes the hidden constant in Assumption A1 larger, and the number of samples we
have to take in order to get a certain accuracy increases even further.

To overcome the prohibitively large computational cost of the standard MCMC estimator (2.3),
we will now introduce a new multilevel version of the estimator.

3 Multilevel Markov chain Monte Carlo algorithm

The main idea of multilevel Monte Carlo (MLMC) simulation is very simple. We sample not just
from one approximation QM,R of Q, but from several. Let us recall the main ideas from [17, 9].

Let {M` : ` = 0, . . . , L} be an increasing sequence in N, i.e. M0 < M1 < . . . < ML =: M , and
assume for simplicity that there exists an s ∈ N\{1} such that

M` = sM`−1 , for all ` = 1, . . . , L. (3.1)

We also choose a (not necessarily strictly) increasing sequence {R`}L`=0 ⊂ N, i.e. R` ≥ R`−1, for
all ` = 1, . . . , L. For each level `, denote correspondingly the parameter vector by θ` ∈ RR` , the
quantity of interest by Q` := QM`,R` and the posterior distribution by π` := πM`,R` .

As for multigrid methods applied to discretised (deterministic) PDEs, the key is to avoid es-
timating the expected value of Q` directly on level `, but instead to estimate the correction with
respect to the next lower level. Since in the context of MCMC simulations, the target distribution
π` depends on `, the new multilevel MCMC (MLMCMC) estimator has to be defined carefully. We
will use the identity

EπL [QL] = Eπ0 [Q0] +
L∑
`=1

Eπ`,π`−1 [Q` −Q`−1] (3.2)

as a basis, where by the linearity of expectation

Eπ`,π`−1 [Q` −Q`−1] = Eπ` [Q`]
∫

RR`−1

dπ`−1(θ`−1) − Eπ`−1 [Q`−1]
∫

RR`
dπ`(θ`)

= Eπ` [Q`]− Eπ`−1 [Q`−1]. (3.3)
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The idea of the multilevel estimator is now to estimate each of the terms on the right hand
side of (3.2) independently, in a way that minimises the variance of the estimator for a fixed
computational cost. In particular, we will estimate each term in (3.2) by an MCMC estimator. The
first term Eπ0 [Q0] can be estimated using the standard MCMC estimator described in Algorithm 1,
i.e. Q̂MC

0,N0
as in (2.3) with N0 samples. We need to be more careful in estimating the differences

Eπ`,π`−1 [Q` − Q`−1], and build an effective two-level version of Algorithm 1. For every ` ≥ 1, we
denote Y` := Q` −Q`−1 and define the estimator on level ` as

Ŷ MC
`,N`

:=
1
N`

n`0+N`∑
n=n`0

Y
(n)
` =

1
N`

n`0+N`∑
n=n`0

Q`(θn` )−Q`−1(Θn
`−1),

where n`0 again denotes the burn-in of the estimator and N` is the number of samples on level `.
The main ingredient in this two level estimator is a judicious choice of the two input vectors θn`
and Θn

`−1 (see Section 3.1). The full MLMCMC estimator is now defined as

Q̂ML
L,{N`} := Q̂MC

0,N0
+

L∑
`=1

Ŷ MC
`,N`

, (3.4)

where it is important (i) that all the chains that are used to produce the L+ 1 estimators in (3.4)
are independent, and (ii) that the two chains {θn` }n∈N and {Θn

` }n∈N, that are used in Ŷ MC
`,N`

and
in Ŷ MC

`+1,N`+1
respectively, are drawn from the same posterior distribution π`, so that Q̂ML

L,{N`} is an
unbiased estimator of EπL [QL].

There are two main ideas in [17, 9] underlying the reduction in computational cost associated
with the multilevel estimator. Firstly, samples of Q`, for ` < L, are cheaper to compute than
samples of QL, reducing the cost of the estimators on the coarser levels for any fixed number of
samples. Secondly, if Vπ`,π`−1 [Y`]→ 0 as `→∞, we need only a small number of samples to obtain
a sufficiently accurate estimate of Eπ`,π`−1 [Y`] on the fine grids, and so the computational effort on
the fine grids is also greatly reduced. Here,

Vπ`,π`−1 [Y`] := Eπ`,π`−1

[(
Y` − Eπ`,π`−1 [Y`]

)2]
, (3.5)

where the expectation Eπ`,π`−1 is as in (3.3).
By using the telescoping sum (3.2) and by sampling from the posterior distribution π` on level

`, we ensure that a sample of Q`, for ` < L, is indeed cheaper to compute than a sample of QL. It
remains to ensure that Vπ`,π`−1 [Y`]→ 0 as `→∞.

3.1 The estimator for Q` −Q`−1

Let us for the moment fix 1 ≤ ` ≤ L. The challenge is now to generate the chains {θn` }n∈N and
{Θn

`−1}n∈N such that Vπ`,π`−1 [Y`] is small. To this end, we partition the input vector θ` into two
parts: the entries which are present already on level `−1 (the “coarse” modes), and the new entries
on level ` (the “fine” modes):

θ` = [θ`,C , θ`,F ],

where θ`,C has length R`−1, i.e. the same length as Θ`−1. The vector θ`,F has length R` −R`−1.
An easy way to construct θn` and Θn

`−1 such that Vπ`,π`−1 [Y`] is small, would be to generate θn`
first, and then simply use Θn

`−1 = θn`,C . However, since we require Θn
`−1 to come from a Markov

chain with stationary distribution π`−1, and θn` comes from the distribution π`, this approach is
not permissible. We will, however, use this general idea in Algorithm 2.
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ALGORITHM 2. (Metropolis Hastings MCMC for Q` −Q`−1)

Choose initial states Θ0
`−1 and θ0

` := [Θ0
`−1 , θ

0
`,F ]. For n ≥ 0:

• On level ` − 1: Given Θn
`−1 generate Θn+1

`−1 using Algorithm 1 with some proposal
distribution q`,C(Θ′`−1 |Θn

`−1) and acceptance probability

α`,C(Θ′`−1 |Θn
`−1) = min

{
1,
π`−1(Θ′`−1) q`,C(Θn

`−1|Θ′`−1)
π`−1(Θn

`−1) q`,C(Θ′`−1|Θn
`−1)

}
.

• On level `: Given θn` generate θn+1
` using Algorithm 1 with the specific proposal distri-

bution q`(θ′` | θn` ) induced by taking θ′`,C := Θn+1
`−1 and by generating a proposal for θ′`,F

from some proposal distribution q`,F (θ′`,F | θn`,F ). The acceptance probability is

α`(θ′` | θn` ) = min
{

1,
π`(θ′`) q

`(θn` |θ′`)
π`(θn` ) q`(θ′`|θn` )

}
.

The coarse sample Θn+1
`−1 is generated using the standard MCMC algorithm given in Algorithm 1,

using, e.g., a random walk or the pCN proposal distribution [11] for q`,C . Based on the outcome on
level `− 1, we then generate θn+1

` , using a new two-level proposal distribution in conjunction with
the usual accept/reject step from Algorithm 1. The proposal distribution q`,F for the fine modes
in that step can again be via a simple random walk or the pCN algorithm.

At each step in Algorithm 2, there are four different outcomes, depending on whether we accept
on both, one or none of the levels. The different possibilities are given in Table 1. Observe that
when we accept on level `, we always have θn+1

`,C = Θn+1
`−1 , i.e. the coarse modes are the same.

If, on the other hand, we reject on level `, we crucially return to the previous state θn` on that
level, which means that the coarse modes of the two states may differ. They will definitely differ
if we accept on level `− 1 and reject on level `. If both proposals are rejected then it depends on
the decision made at the previous state whether the coarse modes differ or not. In general, this

Level `− 1 test Level ` test Θn+1
`−1 θn+1

`,C

reject accept Θn
`−1 Θn

`−1

accept accept Θ′`−1 Θ′`−1

reject reject Θn
`−1 θn`,C

accept reject Θ′`−1 θn`,C

Table 1: Possible states of Θn+1
`−1 and θn+1

`,C in Algorithm 2.

“divergence” of the coarse modes may mean that Vπ`,π`−1 [Y`] does not go to 0 as ` → ∞ for a
particular application. But provided the modes are ordered according to their relative “influence”
on the likelihood L(Fobs|θ), we can guarantee that α`(θ′`|θn` ) → 1 and thus that Vπ`,π`−1 [Y`] → 0
as `→∞. We will show this for a subsurface flow application in Section 4.

The specific proposal distribution q` in Algorithm 2 can be computed very easily and at no
additional cost, leading to a simple formula for the “two-level” acceptance probability α`.
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Lemma 3.1. Let ` ≥ 1. Then

α`(θ′` | θn` ) = min

{
1,
π`(θ′`)π

`−1(θn`,C) q`,F (θn`,F |θ′`,F )
π`(θn` )π`−1(θ′`,C) q`,F (θ′`,F |θn`,F )

}
.

If we further suppose that the proposal distributions q`,C and q`,F are symmetric, then

α`,C(Θ′`−1 |Θn
`−1) = min

{
1,
π`−1(Θ′`−1)
π`−1(Θn

`−1)

}
and α`(θ′` | θn` ) = min

{
1,
π`(θ′`)π

`−1(θn`,C)
π`(θn` )π`−1(θ′`,C)

}
.

Proof. Let θa` and θb` be any two admissible states on level `. Since the proposals for the coarse
modes θ`,C and for the fine modes θ`,F are generated independently, the transition probability
q`(θb` |θa` ) can be written as a product of transition probabilities on the two parts of θ`. For the
coarse level transition probability, we have to take into account the decision that was made on level
`− 1. Hence,

q`(θb` |θa` ) = α`,C(θb`,C |θa`,C) q`,C(θb`,C |θa`,C) q`,F (θb`,F |θa`,F ). (3.6)

and so

q`(θa` |θb`)
q`(θb` |θa` )

=
min

{
1,

π`−1(θa`,C)q`,C(θb`,C |θ
a
`,C)

π`−1(θb`,C)q`,C(θa`,C |θ
b
`,C)

}
q`,C(θa`,C |θb`,C)q`,F (θa`,F |θb`,F )

min
{

1,
π`−1(θb`,C)q`,C(θa`,C |θ

b
`,C)

π`−1(θ`,C)q`,C(θb`,C |θ
a
`,C)

}
q`,C(θb`,C |θa`,C)q`,F (θb`,F |θa`,F )

=
π`−1(θa`,C)q`,F (θa`,F |θb`,F )

π`−1(θb`,C)q`,F (θb`,F |θa`,F )
.

This completes the proof of the first result, if we choose θa` := θn` and θb` := θ′`. The corollary for
symmetric distributions q`,C and q`,F follows by definition.

Remark 3.2 (Recursive algorithm). Note that one particular choice for the coarse level proposal
distribution in Step 1 of Algorithm 2 on each of the levels ` ≥ 1 is q`,C := q`−1, i.e. the “two-level”
proposal distribution defined in Step 2 of Algorithm 2 on level ` − 1. We can apply this strategy
recursively on every level and set q0 to be, e.g., the pCN algorithm [11]. So proposals for Q`−1

and for Q` get “pre-screened” at all coarser levels, starting always at level 0. The formula for
the acceptance probability α` in Lemma 3.1 does not depend on q`,C and so it remains the same.
However, this choice did not prove advantageous in practice. It requires ` + 1 evaluations of the
likelihood on level ` instead of two and it does not improve the acceptance probability. Instead,
we found that choosing the pCN algorithm for q`,C (as well as for q`,F ) worked better.

A simplified version of Algorithm 2, making use of the symmetry of the pCN proposal distri-
bution and of the formulae derived in Lemma 3.1, is given in Section 5 and will be used for the
numerical computations.

3.2 Convergence analysis

Let us now move on to convergence properties of the multilevel estimator. As in Section 2.1, let

K`(θ` | θ′`) := α`(θ` | θ′`) q`(θ` | θ′`) +
(

1−
∫

RR`
α`(θ` | θ′`) q`(θ` | θ′`) dθ′`

)
δ(θ` − θ′`),

denote the transition kernel of {θn` }n∈N, and define, for all ` = 0, . . . , L, the sets

E` = {θ` : π`(θ`) > 0},
D` = {θ` : q`(θ` | θ′`) > 0 for some θ′` ∈ E`}.

The following convergence results follow from the classical results, due to the telescoping sum
property (3.2) and the algebra of limits.
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Lemma 3.3. Provided E` ⊂ D`, π` is a stationary distribution of the chain {θn` }n∈N.

Theorem 3.4. Suppose that for all ` = 0, . . . , L, Eπ` [|Q`|] <∞ and

q`(θ` | θ′`) > 0, for all (θ`, θ′`) ∈ E` × E`. (3.7)

Then
lim

{N`}→∞
Q̂ML
L,{N`} = EπL [QL] , for any θ0

` ∈ E` and n`0 ≥ 0.

Let us have a closer look at the irreducibility condition (3.7). As in (3.6), we have

q`(θ`|θ′`) = α`,C(θ`,C |θ′`,C) q`,C(θ`,C |θ′`,C) q`,F (θ`,F |θ′`,F )

and thus (3.7) holds, if and only if, for all (θ`, θ′`) ∈ E`×E`, π`−1(θ`,C), q`,C(θ′`,C |θ`,C), q`,C(θ`,C |θ′`,C)
and q`,F (θ`,F |θ′`,F ) are all positive. The final three terms are positive for common choices of proposal
distributions, such as the random walk sampler or the pCN algorithm. The first term can also be
assured to be positive by appropriate choices for the likelihood and prior distributions.

We finish the abstract discussion of the new, hierarchical multilevel Metropolis-Hastings MCMC
algorithm with the main theorem that establishes a bound on the ε-cost of the multilevel estimator
under certain assumptions on the MCMC error, on the (weak) model error, on the strong error
between the states on level ` and on level `− 1 (in the two-level estimator for Y`), as well as on the
cost C` to advance Algorithm 2 by one state from n to n+ 1 (i.e. one evaluation of the likelihood
on level ` and one on level ` − 1). As in the case of the standard MCMC estimator, this bound
is obtained by quantifying and balancing the decay of the bias and the sampling errors of the
estimator. To state our assumption on the MCMC error and to define the mean square error of
the estimator we define Θ` := {θn` }n∈N ∪ {Θn

`−1}n∈N, for ` ≥ 1, and Θ0 := {θn0 }n∈N .

Theorem 3.5. Let ε < exp[−1] and suppose there are positive constants α, α′, β, β′, γ > 0 such
that α ≥ 1

2 min(β, γ) and R` & M
max{α/α′,β/β′}
` . Under the following assumptions,

M1. |Eπ` [Q` −Q]| . (M−α` +R−α
′

` )

M2. Vπ`,π`−1 [Y`] . M−β`−1 +R−β
′

`−1

M3. VΘ`
[Ŷ MC
`,N`

] + (EΘ`
[Ŷ MC
`,N`

]− Eπ`,π`−1 [Ŷ MC
`,N`

])2 . N−1
` Vπ`,π`−1 [Y`]

M4. C` . Mγ
` ,

there exists a number of levels L and a sequence {N`}L`=0 such that

e(Q̂ML
L,{N`})

2 := E∪`Θ`

[(
Q̂ML
L,{N`} − EπL [Q]

)2
]
< ε2,

and

Cε(Q̂ML
L,{N`}) .


ε−2 | log ε|, if β > γ,

ε−2 | log ε|3, if β = γ,

ε−2−(γ−β)/α | log ε|, if β < γ.

Proof. The proof of this theorem is very similar to the proof of the complexity theorem in the
case of multilevel estimators based on i.i.d samples (cf. [9, Theorem 1]), which can be found in the
appendix of [9]. First note that by assumption we have R−α

′

` . M−α` and R−β
′

` . M−β` .
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Furthermore, similar to (2.6), we can expand

e(Q̂ML
L,{N`})

2 ≤ V∪`Θ`

[
Q̂ML
L,{N`}

]
+ 2

(
E∪`Θ`

[
Q̂ML
L,{N`}

]
− EπL

[
Q̂ML
L,{N`}

])2
+ 2
(
EπL [QL −Q]

)2
.

Since the second term in the MSE above can be bounded by(
E∪`Θ`

[
Q̂ML
L,{N`}

]
− EπL

[
Q̂ML
L,{N`}

])2
=
( L∑
l=0

(
EΘ`

[
Ŷ MC
`,N`

]
− Eπ`,π`−1 [Ŷ MC

`,N`
]
))2

≤ (L+ 1)
L∑
l=1

(
EΘ`

[
Ŷ MC
`,N`

]
− Eπ`,π`−1 [Ŷ MC

`,N`
]
)2
,

where we have set Y0 := Q0 and Eπ0,π−1 [Ŷ MC
0,N0

] := Eπ0 [Q̂MC
0,N0

], it follows from Assumption M3 that

e(Q̂ML
L,{N`})

2 . (L+ 1)
L∑
`=0

N−1
` Vπ`,π`−1 [Y`] +

(
EπL [QL −Q]

)2
. (3.8)

In contrast to the MSE for multilevel estimators based on i.i.d samples, we hence have a factor
(L + 1) multiplying the sampling error term on the right hand side of (3.8). This implies that in
order to make this term less than ε2/2, the number of samples N` needs to be increased by a factor
of (L+ 1) compared to the i.i.d. case. The cost of the multilevel estimator is correspondingly also
increased by a factor of (L+ 1). The remainder of the proof remains identical.

Since L is chosen such that the second term in (3.8) (the bias of the multilevel estimator) is
less than ε2/2, it follows from Assumption M1 that L+ 1 . | log ε|. The bounds on the ε-cost then
follow as in [9, Theorem 1], but with an extra | log ε| factor.

Assumptions M1 and M4 are the same assumptions as in the single level case, and are related
to the bias in the model (e.g. due to discretisation) and to the cost per sample, respectively.
Assumption M3 is similar to assumption A1, in that it is a non-asymptotic bound for the sampling
errors of the MCMC estimator Ŷ MC

`,N`
. For this assumption to hold, it is in general necessary that

the chains have been sufficiently burnt in, i.e. that the values n`0 are sufficiently large.

4 Model Problem

In this section, we will apply the proposed MLMCMC algorithm to a simple model problem aris-
ing in subsurface flow modelling. Probabilistic uncertainty quantification in subsurface flow is of
interest in a number of situations, as for example in risk analysis for radioactive waste disposal or
in oil reservoir simulation. The classical equations governing (steady state) single phase subsurface
flow consist of Darcy’s law coupled with an incompressibility condition (see e.g. [12, 10]):

w + k∇p = g and div w = 0, in D ⊂ Rd, d = 1, 2, 3, (4.1)

subject to suitable boundary conditions. In physical terms, p denotes the pressure head of the
fluid, k is the permeability tensor, w is the filtration velocity (or Darcy flux) and g are the source
terms.

A typical approach to quantify uncertainty in p and w is to model the permeability as a random
field k = k(x, ω) on D×Ω, for some probability space (Ω,A,P). The mean and covariance structure
of k has to be inferred from the (limited) geological information available. This means that (4.1)
becomes a system of PDEs with random coefficients, which can be written in second order form as

−∇ · (k(x, ω)∇p(x, ω)) = f(x), in D, (4.2)
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with f := −div g. This means that the solution p itself will also be a random field on D × Ω. For
simplicity, we shall restrict ourselves to Dirichlet conditions p(ω, x) = p0(x) on ∂D, and assume
that the boundary conditions p0 and the sources g are known (and thus deterministic).

In this general form solving (4.2) is extremely challenging computationally and so in practice it
is common to use relatively simple models for k that are as faithful as possible to the measurements.
One model that has been studied extensively is a log-normal distribution for k, i.e. replacing the
permeability tensor by a scalar valued field whose log is Gaussian. It guarantees that k > 0 almost
surely (a.s.) in Ω, and it allows the permeability to vary over many orders of magnitude, which is
typical in subsurface flow.

When modelling a whole aquifer, a whole oil reservoir, or a sufficiently large region around a
potential radioactive waste repository, the correlation length scale for k is typically significantly
smaller than the size of the computational region. In addition, typical sedimentation processes
lead to fairly irregular structures and pore networks, and faithful models should therefore also
only assume limited spatial regularity of k. A covariance function that has been proposed in the
application literature (cf. [24]) is the following exponential two-point covariance function for log k:

C(x, y) := σ2exp
(
−‖x− y‖r

λ

)
, x, y ∈ D, (4.3)

where ‖ · ‖r denotes the `r-norm in Rd and typically r = 1 or 2. The parameters σ2 and λ denote
variance and correlation length, respectively. In subsurface flow applications typically only σ2 ≥ 1
and λ ≤ diamD will be of interest. This choice of covariance function implies that k is homogeneous
and it follows from Kolmogorov’s theorem [26] that k(·, ω) ∈ C0,t(D) a.s., for any t < 1/2.

For the purpose of this paper, we will for the remainder of this section assume that k is a
log-normal random field, where log k has mean zero and exponential covariance function (4.3) with
r = 1. However, other models for k are possible, and the required theoretical results can be found
in [6, 30, 29].

Let us briefly put model problem (4.2) into context for the MCMC and MLMCMC methods
described in sections 2 and 3. The quantity of interest Q is in this case some functional G of
the solution p, and QM,R is the same functional G evaluated at a discretised solution pM,R. The
discretisation level M denotes the number of degrees of freedom (e.g. grid nodes for standard
piecewise linear finite elements) for the numerical solution of (4.2) for a given sample, and the
parameter R denotes the number of random variables used to model the permeability k. The
random vector XM,R will contain approximate values of the pressure p at M given points in the
spatial domain D.

In order to apply the proposed MCMC methods to model problem (4.2), we hence need to
represent the permeability k in terms of a vector θ of random variables. For this, we will use the
Karhunen-Loève (KL-) expansion. For the Gaussian field log k, this is an expansion in terms of a
countable set of independent, standard Gaussian random variables {ξn}n∈N. It is given by

log k(ω, x) =
∞∑
n=1

√
µnφn(x)ξn(ω),

where {µn}n∈N are the eigenvalues and {φn}n∈N the corresponding L2-normalised eigenfunctions
of the covariance operator with kernel function C(x, y). For more details on its derivation and
properties, see e.g. [16]. We will here only mention that the eigenvalues {µn}n∈N are all non–
negative with

∑
n≥0 µn < +∞. For the particular covariance function (4.3) with r = 1, we have

µn . n−2 and hence there is an intrinsic ordering of importance in the KL-expansion.
Truncating the KL-expansion after a finite number R of terms gives an approximation of k in
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terms of R standard normal random variables,

kR(ω, x) = exp

[
R∑
n=1

√
µnφn(x)ξn(ω)

]
.

The coefficients {ξn}Rn=1 will be our input random vector θ in the MCMC algorithms. To achieve a
level-dependent representation of k, we simply truncate the KL-expansion after a sufficiently large,
level-dependent number of terms R`, such that the truncation error on each level is bounded by
the discretisation error, and set θ` := {ξn}R`n=1.

For the spatial discretisation of model problem (4.2), we will use standard, continuous, piecewise
linear finite elements (see e.g. [4, 8] for more details). Other spatial discretisation schemes are
possible, see for example [9] for a numerical study with finite volume methods and [19] for a
theoretical treatment of mixed finite elements. We choose a regular triangulation Th of mesh width
h of our spatial domain D, which results in M = O(h−d) degrees of freedom for the numerical
approximation. A sequence of discretisation levels M` satisfying (3.1) can then be constructed by
choosing a coarsest mesh width h0, and choosing h` := s−`h0. A common (but not necessarily
the optimal) choice is s = 2 and uniform refinement between the levels. We will denote the finite
element solution on level ` by p`.

Let us finally specify the prior distribution and likelihood model that we will assume for the
remainder of this paper. The prior distribution P` of θ` is simply a standard R`-dimensional
Gaussian:

P`(θ`) ∝
1

(2π)R`/2
exp

− R∑̀
j=1

ξ2j
2

 . (4.4)

For the likelihood we also choose a normal distribution, centred around the model response F `(θ`) =
F(p`(θ`)) and with variance σ2

F,`:

L`(Fobs | θ`) ∝ exp

[
−‖Fobs − F `(θ`)‖2

2σ2
F,`

]
. (4.5)

Recall that the coarser levels in our multilevel estimator are introduced only to accelerate the
convergence and that the multilevel estimator is still an unbiased estimator of the expected value
of QL with respect to the posterior πL on the finest level L. Hence, the posterior distributions on
the coarser levels π`, ` = 0, . . . , L − 1, do not have to model the measured data as faithfully as
πL. In particular, this means that we can choose larger values of the fidelity parameter σ2

F,` on the
coarse levels, which will increase the acceptance probability on the coarser levels, since it is easier
to match the model response F `(θ`) with the data Fobs. As we will see below (cf. Assumption A3),
the growth in σ2

F,` has to be controlled.

4.1 Convergence analysis

We now perform a rigorous convergence analysis of the MLMCMC estimator Q̂ML
L,{N`} introduced

in Section 3 to the described model problem (4.1). Using Theorem 3.4, we will first verify that
indeed this multilevel estimator is an unbiased estimator of EπL [QL], before we go on to quantify
its computational cost by verifying the assumptions of Theorem 3.5.

To conclude that the multilevel estimator converges to the correct expected value EπL [QL] as
the number of samples tends to infinity, we only need to verify the irreducibility condition (3.7)
in Theorem 3.4. As already noted in Section 3, for common choices of proposal distribution, the
condition holds true if we have π`−1(θ`,C) > 0 for all θ` s.t. π`(θ`) > 0. Since both the prior and
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the likelihood were chosen as normal distributions, and normal distributions have infinite support,
the conclusion then follows.

Theorem 4.1. Suppose that for all ` = 0, . . . , L, Eπ` [|Q`|] <∞. Then

lim
{N`}→∞

Q̂ML
L,{N`} = EπL [QL] , for any θ0

` ∈ E` and n`0 ≥ 0.

Let us now move on to quantifying the cost of the multilevel estimator, and verify that the
assumptions in Theorem 3.5 hold for our model problem. We will prove M1 and M2. As mentioned
earlier, assumption M3 involves bounding the mean square error of an MCMC estimator, and a
proof of M3 is beyond the scope of this paper. Results of this kind can be found in e.g. [28, 20].
We will also not address M4, which is an assumption on the cost of obtaining one sample of Q`. In
the best case, with an optimal linear solver to solve the discretised (finite element) equations for
each sample, M4 is satisfied with γ = 1.

Since they will become useful later, let us recall some of the main results in the convergence
analysis of multilevel Monte Carlo estimators based on independent and identically distributed
(i.i.d.) samples, rather than samples generated by Algorithm 2. An extensive convergence analysis
of finite element multilevel estimators based on i.i.d. samples for model problem (4.1) with log–
normal coefficients can be found in [6, 30, 29]. We firstly have the following result on the convergence
of the finite element error in the natural H1–norm.

Theorem 4.2. Let g be a Gaussian field with constant mean and covariance function (4.3) with r =
1, and let k = exp[g] in model problem (4.2). Suppose D ⊂ Rd is Lipschitz polygonal (polyhedral).
Then

EP`
[
|p− p`|qH1(D)

]1/q
≤ Ck,f,p0,q (M−1/2d+δ

` +R
−1/2+δ
` ),

for any q < ∞ and δ > 0, where the (generic) constant Ck,f,p0,q (here and below) depends on the
data k, f , p0 and on q, but is independent of any other parameters.

Proof. This follows from [30, Proposition 4.1].

Convergence results for functionals G of the solution p can now be derived from Theorem 4.2
using a duality argument. We will here for simplicity only consider bounded, linear functionals,
but the results can easily be extended to any continuously Frèchet differentiable functional (see
[30, §3.2]). We make the following assumption on the functional G (cf. Assumption F1 in [30]).

A2. For given ω ∈ Ω, let G : H1(D)→ R be linear, and suppose that, for any q <∞, there exists
CG ∈ Lq(Ω), such that

|G(v)| . CG(ω)‖v‖H1/2−δ , for all δ > 0.

An example of a functional which satisfies A2 is a local average of the pressure,
∫
D∗ p dx for some

D∗ ⊂ D. The main result on the convergence for functionals is the following.

Lemma 4.3. Let the assumptions of Theorem 4.2 be satisfied, and suppose G satisfies A2. Then

EP` [|G(p)− G(p`)|q]1/q ≤ Ck,f,p0,q
(
M
−1/d+δ
` +R

−1/2+δ
`

)
,

for any q <∞ and δ > 0.

Proof. This follows from [30, Corollary 4.1].
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Note that assumption A2 is crucial in order to get the faster convergence rates of the spatial
discretisation error in Lemma 4.3. For multilevel estimators based on i.i.d. samples, it follows
immediately from Lemma 4.3 that the (corresponding) assumptions M1 and M2 are satisfied, with
α = 1/d+ δ, α′ = 1/2 + δ and β = 2α, β′ = 2α′, for any δ > 0 (see [30] for details).

The aim is now to generalise the result in Lemma 4.2 to include the framework of the new
MLMCMC estimator. There are two issues which need to be addressed. Firstly, the bounds in
assumptions M1 and M2 in Theorem 3.5 involve moments with respect to the posterior distributions
π`, which are not known explicitly, but are related to the prior distributions P` through Bayes’
Theorem. Secondly, the samples which are used to compute the differences Qn` −Qn`−1 are generated
by Algorithm 2, and may differ not only due to the truncation order, but also because they come
from different Markov chains (i.e. Θn

`−1 is not necessarily equal to θn`,C , as seen in Table 1).
To circumvent the problem of the intractability of the posterior distribution, we have the

following lemma, which relates moments with respect to the posterior distribution π` to moments
with respect to the prior distribution P`.

Lemma 4.4. For any random variable Z = Z(θ`) and for any q s.t. EP` [|Z|q] <∞, we have

|Eπ` [Zq] | . EP` [|Z|q] .

Similarly, for any random variable Z = Z(θ`,Θ`−1) and for any q s.t. EP`,P`−1
[|Z|q] <∞, we have∣∣Eπ`,π`−1 [Zq]

∣∣ . EP`,P`−1
[|Z|q] .

Proof. Using Bayes’ Theorem (2.1), we have

|Eπ` [Zq] | =
∣∣∣∣∫

RR`
Zq(θ`)

L`(Fobs | θ`)P`(θ`)
PF (Fobs)

dθ`

∣∣∣∣ ≤ supθ` [L`(Fobs | θ`)]
PF (Fobs)

∫
RR`
|Z(θ`)|q P`(θ`) dθ`.

Since the likelihood L` is not a discrete probability measure, so that supθ` [L`(Fobs | θ`)] <∞, the
first claim of the Lemma then follows, since PF (Fobs) is a constant. The second claim of the Lemma
can be proved analogously.

Note that it follows immediately from Lemmas 4.3 and 4.4 and the linearity of expectation that
assumption M1 in Theorem 3.5 is satisfied, with α = 1/d− δ and α′ = 1/2− δ, for any δ > 0. In
order to prove M2, we further have to analyse the situation where the two samples θn` and Θn

`−1

used to compute Y n
` “diverge”, i.e. when Θn

`−1 6= θn`,C .
We need to make the following two assumptions on the parameters σ2

F,` in the likelihood model
(4.5) and on the growth of the dimension R`.

A3. The dimension R` →∞ as `→∞ and

(R` −R`−1)(2π)−
R`−R`−1

2 . R
−1/2+δ
`−1 , for all δ > 0.

A4. The sequence of fidelity parameters {σ2
F,`}∞`=0 satisfies

σ−2
F,` − σ

−2
F,`−1 . max

(
R
−1/2+δ
`−1 ,M

−1/d+δ
`−1

)
, for all δ > 0.

For A3 to be satisfied it suffices that R` −R`−1 grows logarithmically with R`−1. Assumption A4
holds for example, if we choose the fidelity parameter to be constant for all ` ≥ `0, for some `0 ≥ 0.

Under these assumptions we can now prove that assumption M2 in Theorem 3.5 is satisfied,
with β = 1/d− δ and β′ = 1/2− δ, for any δ > 0.
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Lemma 4.5. For n ∈ N, let θn` and Θn
`−1 be the nth states of the Markov chains generated by

Algorithm 2. Let the assumptions of Theorem 4.2, as well as Assumptions A3 and A4 hold, and
suppose that F and G both satisfy Assumption A2. Denote Y n

` = Q`(θn` )−Q`−1(Θn
`−1). Then

Vπ`,π`−1 [Y n
` ] ≤ Ck,f,p0

(
M
−1/d+δ
`−1 +R

−1/2+δ
`−1

)
, for any δ > 0.

To prove Lemma 4.5, we first need some preliminary results. Firstly, note that for Θn+1
`−1 6= θn+1

`,C

to be the case, the proposal on level ` at state n + 1 had to be rejected. Given the proposal θ′`
and the previous state θn` , the probability of this rejection is given by 1 − α`(θ′`|θn` ). We need to
quantify this probability, and this leads to the following crucial result.

Theorem 4.6. Suppose F satisfies A2 and A3 and A4 hold. Then

lim
`→∞

α`(θ′` | θ′′` ) = 1, for P` − almost all θ′`, θ
′′
` .

Furthermore,

EP`,P`
[
(1− α`)q

]1/q
≤ Ck,f,p0,q

(
M
−1/d+δ
`−1 +R

−1/2+δ
`−1

)
,

for any q <∞ and δ > 0.

Proof. We will first derive a bound on 1− α`(θ′` | θ′′` ), for ` > 1 and for θ′` and θ′′` given. First note

that if
π`(θ′`)π

`−1(θ′′`,C)

π`(θ′′` )π`−1(θ′`,C)
≥ 1, then 1− α`(θ′` | θ′′` ) = 0. Otherwise, we have

1− α`(θ′` | θ′′` ) =

(
1−

π`(θ′`)
π`−1(θ′`,C)

)
+

(
π`(θ′`)π

`−1(θ′′`,C)
π`(θ′′` )π`−1(θ′`,C)

)(
1−

π`(θ′′` )
π`−1(θ′′`,C)

)

≤

∣∣∣∣∣1− π`(θ′`)
π`−1(θ′`,C)

∣∣∣∣∣+

∣∣∣∣∣1− π`(θ′′` )
π`−1(θ′′`,C)

∣∣∣∣∣ . (4.6)

Let us consider either of these two terms and set θ` = (ξj)
R`
j=1 to be either θ′` or θ′′` . Using the

definition of π` in (2.1), as well as the models (4.4) and (4.5) for the prior and the likelihood,
respectively, we have

π`(θ`)
π`−1(θ`,C)

=
P`(θ`) L`(Fobs|θ`)
P`−1(θ`,C)L`−1(Fobs|θ`,C)

(4.7)

= exp

− (2π)−
R`−R`−1

2

R∑̀
j=R`−1+1

ξ2j
2
− ‖Fobs − F`(θ`)‖2

σ2
F,`

+
‖Fobs − F`−1(θ`,C)‖2

σ2
F,`−1

 .

Denoting F` := F (θ`) and F`−1 := F (θ`,C), and using the triangle inequality, we have that

‖Fobs − F`‖2

σ2
F,`

− ‖Fobs − F`−1‖2

σ2
F,`−1

≤

(
‖Fobs − F`−1‖+ ‖F` − F`−1‖

)2

σ2
F,`

− ‖Fobs − F`−1‖2

σ2
F,`−1

= ‖Fobs − F`−1‖2
(
σ−2
F,` − σ

−2
F,`−1

)
+

2‖Fobs − F`−1‖+ ‖F` − F`−1‖
σ2
F,`

‖F` − F`−1‖.

Since F was assumed to satisfy A2, it follows from the theory in [5, 30] (for the particular covariance
function C(x, y) in (4.3) with r = 1) that

‖F` − F`−1‖ . Ck`,f,p0(θ`)
(
‖k` − k`−1‖C0(D) + M

−1/d+δ
`

)
,
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for almost all θ` and for a constant Ck`,f,p0(θ`) < ∞ that depends on θ` only through k` :=

exp
(∑R`

j=1
√
µjφjξj

)
. Since ‖F`−1‖ can be bounded independently of `, for almost all θ` (again

courtesy of Assumption A2), and since ‖Fobs − F`−1‖ ≤ ‖Fobs‖+ ‖F`−1‖, we can deduce that

‖Fobs − F`‖2

σ2
F,`

− ‖Fobs − F`−1‖2

σ2
F,`−1

. Ck`,f,p0(θ`)
(

(σ−2
F,` − σ

−2
F,`−1) + ‖k` − k`−1‖C0(D) +M

−1/d+δ
`

)
.

Finally, substituting this into (4.7) and using the inequality |1− exp(x)| ≤ |x| exp |x| we have∣∣∣∣1− π`(θ`)
π`−1(θ`,C)

∣∣∣∣ . Ck`,f,p0(θ`)
(

(2π)−
R`−R`−1

2 ζ` + (σ−2
F,` − σ

−2
F,`−1) + ‖k` − k`−1‖C0(D) +M

−1/d+δ
`

)
,

(4.8)

for almost all θ`, where ζ` :=
∑R`

j=R`−1+1 ξ
2
j , i.e. a realisation of a χ2-distributed random variable

with R` −R`−1 degrees of freedom.
Now as ` → ∞, due to Assumption A3 we have R` → ∞ and (2π)−(R`−R`−1)/2ζ` → 0, almost

surely. Moreover, M` → ∞ and it follows from [5, Prop. 3.6 & §7.1] that ‖k` − k`−1‖C0(D) → 0,
almost surely. Hence, using also A4 we have

lim
`→∞

∣∣∣∣1− π`(θ`)
π`−1(θ`,C)

∣∣∣∣ = 0, for almost all θ`.

The first claim of the Theorem then follows immediately from (4.6).
For the bound on the moments of 1− α`, we use that all finite moments of Ck`,f,p0(θ`) can be

bounded independently of ` (cf. [5, 30]). It also follows from [5, Prop. 3.11 & §7.1] that

EP`
[
‖k` − k`−1‖qC0(D)

]1/q
. R

−1/2+δ
` , for any δ > 0, q <∞.

Finally, since ζ` is χ2-distributed with R` −R`−1 degrees of freedom, we have

EP` [ζ
q
` ] = 2q

Γ
(

1
2(R` −R`−1) + q

)
Γ
(

1
2(R` −R`−1)

) . (R` −R`−1)q , for any δ > 0, q <∞.

Thus, the bound on the qth moment of 1 − α` follows immediately from (4.8), Assumptions A3
and A4 and Hölder’s inequality.

We will further need the following result.

Lemma 4.7. For any θ`, let k`(θ`) := exp
(∑R`

j=1
√
µjφjξj

)
and κ(θ`) := minx∈D k`(·, x). Then

|p`(θ`)− p`(θ′`)|H1(D) .
‖f‖H−1(D)

κ(θ`)κ(θ′`)
‖k`(θ`)− k`(θ′`)‖C0(D), for almost all θ`, θ

′
`, (4.9)

and
EP`,P`

[
|p`(θ`)− p`(θ′`)|

q
H1(D)

]1/q
≤ constant, (4.10)

for any q <∞, where the hidden constants are independent of ` and p`.

Proof. Using the definition of κ(θ`), as well as the identity∫
D
k`(θ`)∇p`(θ`) · ∇v dx =

∫
D
fv dx =

∫
D
k`(θ′`)∇p`(θ′`) · ∇v dx, for all v ∈ H1

0 (D),
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(deduced from (4.2)) we have

κ(θ`)|p`(θ`)− p`(θ′`)|2H1(D) ≤
∫
D
k`(θ`)∇

(
p`(θ`)− p`(θ′`)

)
· ∇
(
p`(θ`)− p`(θ′`)

)
dx

≤
∫
D

(
k`(θ`)− k`(θ′`)

)
∇p`(θ′`) · ∇

(
p`(θ`)− p`(θ′`)

)
dx.

Due to the standard estimate |p`(θ`)|H1(D) . ‖f‖H−1(D)/κ(θ`) this implies (4.9)

It follows from [5, Prop. 3.10] that EP` [κ(θ`)−q] and EP`,P`
[
‖k`(θ`)‖qC0(D)

]
can be bounded

independently of `. The result then follows from an application of the Minkowski inequality to

EP`,P`
[
‖k`(θ`)− k`(θ′`)‖

q

C0(D)

]1/q
, as well as Hölder’s inequality.

Using Theorem 4.6 and Lemma 4.7, we are now ready to prove Lemma 4.5.

Proof of Lemma 4.5. Let θn` and Θn
`−1 be the nth states of the Markov chains generated by Algo-

rithm 2 on level `. It follows from Lemma 4.4 and the fact that Vπ[X] ≤ Eπ[X2], for any random
variable X and any measure π, that

Vπ`,π`−1

[
Q`(θn` )−Q`−1(Θn

`−1)
]

. EP`,P`−1

[(
Q`(θn` )−Q`−1(Θn

`−1)
)2]

. (4.11)

Now, to simplify the presentation let us set θ := θn` , θC = θn`,C and θF = θn`,F , and denote by
θ′ = θ′` the proposal generated at the nth step of Algorithm 2 with θ′C = Θn

`−1 and with some θ′F .
Note that θ′ 6= θ only if this proposal has been rejected at the nth step. It follows from (4.11) by
the triangle inequality that

Vπ`,π`−1

[
Q`(θ)−Q`−1(θ′C)

]
. EP`,P`

[(
Q`(θ)−Q`(θ′)

)2]+ EP`,P`−1

[(
Q`(θ′)−Q`−1(θ′C)

)2]
.

(4.12)

A bound on the second term follows immediately from Lemma 4.3, i.e.

EP`,P`−1

[(
Q`(θ′)−Q`−1(θ′C)

)2] ≤ Ck,f,p0

(
M
−2/d+δ
` +R−1+δ

`

)
. (4.13)

The first term in (4.12) is nonzero only if θ 6= θ′. We will now use Theorem 4.6 and Lemma 4.7, as
well as the characteristic function I{θ 6=θ′} ∈ {0, 1} to bound it. Firstly, Hölder’s inequality gives

EP`,P`
[(
Q`(θ)−Q`(θ′)

)2] = EP`,P`
[(
Q`(θ)−Q`(θ′)

)2 I{θ 6=θ′}
]

≤ EP`,P`
[(
Q`(θ)−Q`(θ′)

)2q1]1/q1 EP`,P`
[
I{θ 6=θ′}

]1/q2 , (4.14)

for any q1, q2 s.t. q−1
1 + q−1

2 = 1. Since the functional G was assumed to be linear and bounded
on H1(D) ⊂ H1/2−δ, for all δ > 0 (Assumption A2), it follows from Lemma 4.7 that the term
EP`,P`

[
(Q`(θ)−Q`(θ′))2q1

]
in (4.14) can be bounded by a constant independent of `, for any

q1 <∞. Moreover, using the law of total expectation, we have

EP`,P`
[
I{θ 6=θ′}

]
= EP`,P`

[
P
[
θ 6= θ′ | θ, θ′

] ]
.

Since θ 6= θ′ only if the proposal θ′ has been rejected on level ` at the nth step, the probability
that this happens can be bounded by 1− α`(θ′|θ), and so it follows by Theorem 4.6 that

EP`,P`
[
I{θ 6=θ′}

]
≤ EP`,P`

[
1− α`(θ′|θ)

]
. M

−1/d+δ
` +R

−1/2+δ
` (4.15)

Combining (4.12)-(4.15) the claim of the Lemma then follows.
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We now collect the results in the preceding lemmas to state our main result of this section.

Theorem 4.8. Under the same assumptions as in Lemma 4.5, the Assumptions M1 and M2 in
Theorem 3.5 are satisfied, with α = β = 1/d− δ and α′ = β′ = 1/2− δ, for any δ > 0.

If we assume that we can obtain individual samples in optimal cost C` . h−d` log(h−1
` ), e.g. via

a multigrid solver, we can satisfy Assumption M4 with γ = 1 + δ, for any δ > 0. Then it follows
from Theorems 3.5 and 4.8, as well as equation (2.11), that we can get the following theoretical
upper bounds for the ε-costs of classical and multilevel MCMC applied to model problem (4.2)
with log-normal coefficients k, respectively:

Cε(Q̂MC
N ) . ε−(d+2)−δ and Cε(Q̂ML

L,{N`}) . ε−(d+1)−δ, for any δ > 0. (4.16)

We clearly see the advantages of the multilevel method, which gives a saving of one power
of ε compared to the standard MCMC method. Note that for multilevel estimators based on
i.i.d samples, the savings of the multilevel method over the standard method are two powers of
ε for d = 2, 3. The larger savings stem from the fact that β = 2α in this case, compared to
β = α in the MCMC analysis above. The numerical results in the next section for d = 2 show
that in practice we do seem to observe β ≈ 1 ≈ 2α, suggesting Cε(Q̂ML

L,{N`}) = O(ε−d). However,
we do not believe that this is a lack of sharpness in our theory, but rather a pre-asymptotic
phase. The constant in front of the leading order term in the bound of Vπ`,π`−1 [Y n

` ], namely the

term EP`,P`
[

(Q`(θn` )−Q`(θ′`))
2q1
]1/q1 in (4.14), depends on the difference between Q`(θn` ) and

Q`(θ′`). In the case of the pCN algorithm for the proposal distributions q`,C and q`,F (as used in
Section 5 below) this difference will be small, since θ and θ′ will in general be very close to each
other. However, the difference is bounded from below and so we should eventually see the slower
convergence rate for the variance as predicted by our theory.

5 Numerics

In this section we describe the implementation details of the MLMCMC algorithm and examine
the performance of the method in estimating the expected value of some quantity of interest for
our model problem (4.2). We start by presenting in Algorithm 3 a simplified version of Algorithm 2
given in Section 3 using symmetric proposal distributions for q`,C and q`,F , describing in some more
detail the evolution of the multilevel Markov chain used to approximate Eπ`,π`−1 [Y`].

5.1 Implementation Details

Given the general description of the multilevel sampling in Algorithm 3, it remains to describe
several computational details of the method, such as the choice of the symmetric transition prob-
abilities q`,C(Θ′`−1|Θn

`−1) and q`,F (θ′`,F |θn`,F ), the values R` defining the partition of the KL modes
over the multilevel hierarchy, as well as various MCMC tuning parameters.

For all our symmetric proposal distributions q`,C and q`,F , ` = 1, . . . , L, we use the so-called
precondition Crank-Nicholson (pCN) random walk proposed by Cotter et al. in [11]. Given the
current state θn, the jth entry of the proposal is obtained by

θ′j =
√

1− β2 θnj + β ξj , (5.4)

where ξj ∼ N (0, 1) and β is a tuning parameter used to control the size of the step in the proposal,
that may be chosen level dependent, i.e. β = β`. In the numerical experiments, we typically choose
β` < β0 for ` = 1, . . . , L.

20



ALGORITHM 3. (Simplified Metropolis Hastings MCMC for Y`, ` > 0)

Choose initial states Θ0
`−1 and θ0

` . For n ≥ 0:

• On level `− 1:

– Given Θn
`−1, generate Θ′`−1 from a symmetric distribution q`,C(Θ′`−1|Θn

`−1).

– Compute α`,C(Θ′`−1|Θn
`−1) = min

{
1,
π`−1(Θ′`−1)
π`−1(Θn

`−1)

}
. (5.1)

– Set Θn+1
`−1 =

{
Θ′`−1 with probability α`,C(Θ′`−1|Θn

`−1)

Θn
`−1 with probability 1− α`,C(Θ′`−1|Θn

`−1).

• On level `:

– Given θn` , let θ′`,C = Θn+1
`−1 and draw θ′`,F from a symmetric distribution q`,F (θ′`,F |θn`,F ).

– Compute α`(θ′`|θn` ) = min

{
1,
π`(θ′`)
π`(θn` )

π`−1(θn`,C)
π`−1(θ′`,C)

}
. (5.2)

– Set θn+1
` =

{
θ′` ≡ [Θn+1

`−1 , θ
′
`,F ] with probability α`(θ′`|θn` )

θn` with probability 1− α`(θ′`|θn` ).

• Compute Y n+1
` = Q`

(
θn+1
`

)
−Q`−1

(
Θn+1
`−1

)
(5.3)

The other free parameters in Algorithm 3 are the parameters σ2
F,` found in the likelihood model

described in (4.5). The value of σ2
F,` controls the fidelity with which we require the model response

to match the observed data on level `. In our implementation we fix the fine-level likelihood variance
σ2
F,L to a value consistent with traditional single level MCMC simulations (i.e. the measurement

error associated with Fobs in a practical application), and then allow the remaining parameters to
increase on coarser levels. This is done for two reasons. First, because the coarse simulations do
not include all stochastic modes of the model, and so the coarse approximation will not necessarily
agree exactly with the observed data. Second, since the coarse approximations necessarily include a
higher level of discretisation error, it makes sense to relax the restrictions on the agreement between
the model response and the observed data. Due to the consistency of the multilevel estimator, the
choices of σ2

F,`, ` < L, will only influence the overall cost of the estimator and not the bias. The
particular values used in the presented numerical experiments are chosen so that the values of
likelihood variance increase with the characteristic mesh size in the hierarchy. Specifically we fix
the value of σ2

F,L on the finest grid, and then set

σ2
F,` = (1 + κhl)σ2

F,`+1, ` = 0, . . . , L− 1, (5.5)

where hl is the mesh size on level l and κ is a tuning parameter. This choice ensures assumption A4.
To reduce dependence of the simulation on the initial state of the Markov chain, and to aid

in the exploration of the potentially multi-modal stochastic space, we simulate multiple parallel
chains simultaneously. The variance of the multilevel estimator VΘ`

[Ŷ MC
`,N`

] is approximated on
each grid level by s2`,N using the method of Gelman and Rubin [15]. Finally, due to the very high-
dimensional parameter space in our numerical experiments, both the single-level and multilevel
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samplers displayed poor mixing properties. As such, we use a thinning process to decrease the
correlation between consecutive samples, whereby we include only every T th sample in the approx-
imation of the level-dependent estimator, where T is some integer thinning parameter [27]. Then,
after discarding n0 initial burn-in samples, the approximation of Eπ`,π`−1 [Y`] is computed by

Ŷ MC
`,N`

:=
1
N`

n0+N`∑
n=n0

Y
(nT )
` .

After the initial burn-in phase, the multilevel MCMC simulation is run until the weighted sum
of the estimators from the L+ 1 grid levels satisfies

L∑
`=0

s2`,N`
N`

≤ ε2

2
(5.6)

for some user prescribed tolerance ε. The total cost of the multilevel estimator is minimised when
the number of samples on each level is chosen to satisfy

N` ∝
√

Vπ`,π`−1 [Y`] /C` ≈
√
s2`,N`/C`, (5.7)

as described in [9], where C` is the cost of generating a single sample of Y` on level `. We assume
this cost to be expressed as

C` = C?ηγ`M
γ
` , (5.8)

where the constant C? may depend on the parameters σ2 and λ in (4.3), but does not depend on
`. The factors η` reflect the additional cost for the auxiliary coarse solve required on grid ` − 1.
For the experiments presented below, with geometric coarsening by a factor of 4, we have η0 = 1
and η` = 1.25 for j = 1, . . . , L. When an optimal linear solver (e.g. algebraic multigrid) is used to
perform the forward solves in the simulation we can take γ ≈ 1. For a given accuracy ε, the total
cost of the multilevel estimator can be written as

Cε
(
Q̂ML
L,{N`}

)
:=

L∑
`=0

C`N`. (5.9)

5.2 Numerical Experiments

We consider (4.2) defined on the domain D = (0, 1)2 with f ≡ 1. The boundary conditions are
taken to be Dirichlet on the lateral boundaries of the domain, and Neumann on the top and bottom:

p|x1=0 = 1, p|x1=1 = 0,
∂p

∂n

∣∣∣∣
x2=0

= 0,
∂p

∂n

∣∣∣∣
x2=1

= 0.

The quantity of interest we approximate in our numerical simulation is the flux through the
“outflow” part of the boundary, given by

qout := −
∫ 1

0
k
∂p

∂x1

∣∣∣∣
x1=1

dx2. (5.10)

The (prior) conductivity field is modelled as a log-normal random field with covariance function
(4.3) with r = 1. The “observed” data Fobs is obtained synthetically by generating a reference
conductivity field from the prior, solving the forward problem, and evaluating the pressure at 9
randomly selected points in the domain. The domain is discretised using piecewise linear finite

22



0 1 2 3
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Level

lo
g 2 V

ar
ia

nc
e

 

 

Q
l

Q
l
 − Q

l−1

0 1 2 3
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

Level

lo
g 2 |M

ea
n|

 

 

Q
l

Q
l
 − Q

l−1

0 1 2 3
10

2

10
3

10
4

10
5

10
6

10
7

10
8

Level

S
a
m

p
le

s

 

 

ε = 0.005

ε = 0.001

ε = 0.0005

ε = 0.0003

10
−3

10
1

10
2

Accuracy ε

ε2  C
os

t

 

 

Standard MCMC
Multilevel MCMC

Figure 1: Performance plots for λ = 0.5, σ2 = 1, RL = 169, and m0 = 16.

elements on a 2D uniform triangular mesh. The coarsest mesh contains m0 = 16 grid points in
each direction, with subsequently refined meshes containing m` = 2`m0 in each direction, with the
total number of grid points on level ` defined as M` = m2

` . Five parallel chains are used in each
multilevel estimator.

The top two plots in Figure 1 show the results of a four-level simulation with λ = 0.5, σ2 = 1,
and m0 = 16. The partition of the KL modes was such that R0 = 96, R1 = 121, R2 = 153, and
R3 = 169. Five parallel chains were used for each level-dependent estimator. The fidelity parameter
in the likelihood on the finest grid was taken to be σ2

F,L = 10−4. The fidelity parameters on the
other levels were obtained by equation (5.5) with κ = 1. The simulation was stopped when the
variance of the multilevel estimator reached ε2/2 with ε = 8×10−4. The top left plot compares the
variance of quantities Q` and Y` on each level. The top right plot compares the mean of quantities
Q` and Y` on each level. The plots for Y` seem to decay with O(h2

` ) and O(h`), respectively. This
suggests that at least in the pre-asymptotic phase our theoretical result on the variance which
predicts O(h`) (in Theorem 4.8) is not sharp (see comments at the end of Section 4). The result
on the bias seems to be confirmed.

The bottom two plots in Figure 1 show the number of samples N` required on each level of
the multilevel MCMC sampler and compare the computational cost of the standard and multilevel
MCMC samplers for varying values of accuracy ε, respectively. Note that for larger values of ε
fewer grid levels are required to attain a reduction in variance equivalent to the spatial discretisation
error. The total cost of the simulation is given in terms of the cost of one forward solve on the
coarsest grid (which is the same in each case). The y-axis is scaled by ε2. It is clear that the
multilevel sampler attains a dramatic reduction in computational cost over the standard MCMC
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Figure 2: Average acceptance rate α` of the multilevel sampler (left figure) and estimates for qout

for nine reference data sets (right figure) for λ = 0.5, σ2 = 1, RL = 169, and m0 = 16.

sampler. The precise speedup of the multilevel over the standard algorithm can be evaluated by
taking the ratio of the total cost of the respective estimators, as defined by (5.7)-(5.9). When an
optimal linear solver (such as AMG, with γ ≈ 1) is used for the forward solves in the four-level
simulation with ε = 8 × 10−4 (as in the top plots of Figure 1), the computational cost of the
simulation is reduced by a factor of 50. When a suboptimal linear solver is used (say, γ ≈ 1.5 for
a sparse direct method) the computational cost is reduced by a factor of 275.

Figure (2) (left) confirms that the average acceptance rates α` of the fine-level samplers – the
last three dots in Figure (2) (left) – tend to 1 as ` increases, and E[1−α`] ≈ O(h`), as predicted in
Theorem 4.6. Finally, the results in Figure (2) (right) demonstrate the good agreement between the
MLMCMC estimate Q̂ML

L,{N`} and the standard MCMC estimate Q̂MC
N of the quantity of interest qout

for nine distinct sets of reference data with three levels of fine-grid resolution. As before, the coarse
grid in each case was defined with m0 = 16, the tolerance for both estimators was ε = 8×10−4 and
the model for the log-normal conductivity field is parametrised by λ = 0.5, σ2 = 1 and RL = 169
on the finest grid.
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