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HPC Growth

2007

® Processor
cores: 512

e storage: 90 TB
* FLOPS: 5.7 TF

e Owners: 3

2008

® Processor
cores: 1536

e memory: 3072
GB

e data storage:
180 TB

e FLOPS: 15.1
TFLOPS Peak

e Owners: 7

~ 2010

2009

* Processor cores:
2840

e Memory: 6016
GB

¢ Data storage: 180
B

¢ Performance: 28
TFLOPS

e Owners: 12

* Processor cores:
4088

* GPU cores: 4300
e Memory:
9936GB

¢ Data storage: 396
B

¢ Performance:
61.7 TF

e Owners: 13

2011

e Processor
Cores: 5248

e Memory: 12288
¢ Data storage:

¢ Performance:
74.6 TF

e Owners:17
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Support Multidisciplinary Research

*Diverse Research Cyber-Infrastructure

= One size does NOT fit all
High Performance Computing (HPC)
» Distributed Memory (MPI

framework)
» Shared Memory (OpenMP Web Storage ST
framework)
= High Throughput Computing (HTC) Vis and

= Diverse storage requirements Il

= Web portals and scientific databases
= Remote Visualization (Vis) and
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Broad application support

Macromolecules

Ground Water

Genetics

Physics Procedia

Bioinformatics

Systematic Biology

Journal of Biogeography

Journal of Applied Remote Sensing
Journal of Chemical Theory and Computation
Physical Review Letters

Journal of Physical Chemistry

Journal of Physics: Condensed Matter

Proceeding of the National Academy of
Science

Biophysical Journal
Journal Chemical Theory Computation

International Journal of Human Modeling
and Simulation

International Journal of Crashworthiness
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Journal: J. Phys. Chem.

PLoS Pathogens

Journal of Virology

Journal of the American Chemical Society
The Journal of Chemical Physics

PLoS Biology

Ocean Modeling

Journal of Computer-Aided Molecular Design

Journal of Geophysical Research —
Atmospheres

Evolution

Atmosphere-Ocean

Ecological Complexity

Water Resources Research

International Journal of Impact Engineering
SPE Reservoir Evaluation & Engineering
Journal of Biogeography

Political Analysis

... and many more
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OMPUTING

y background is in evo-
lutionary biology, so 1
frequently find myself bor-
rowing concepts like “bet-
hedging,” “hybrid vigor” and “punctu-
ated equilibrium” to help make decisions
related to acquiring and supporting high
performance computing assets in a highly
variable and often unpredictable academ-
ic environment. Borrowing from this field
is not new. Economics has a long history

Survival in the
Academic Jungle

Darwinian evolution meets high performance computing

evolutionary perspective when acquiring

and supporting research computing assets

is that it teaches you to carefully and

honestly consider

= what is being optimized

= which of the many variables that you
need to evaluate are predictable

= how the previous two considerations
will change over time.

If this sounds like a hard problem, that is

because it is.

“It is not the strongest of the species that
survives, nor the most intelligent that survives. It
is the one that is the most adaptable to change.”
— Charles Darwin

of using evolutionary theory to explain
and make predictions regarding the
behavior of complex systems. Therefore,
it should come as no surprise that con-
cepts designed originally to explain
organic phenomena also have value in
the metal and silicon world of scientific
computing support. Despite their
distinctly different appear-
ances, at some level, the
forces driving these
systems are very
similar.
Icould (and I

OPTIMIZE WHAT?

Five years ago, Florida State Univer-
sity (FSU) faced a dilemma not uncom-
mon to large universities supporting
diverse research programs. The problem
was that researchers were complaining
that they lacked adequate computing
and storage resources to support their
research programs and, by extension,
to fulfill their obligations to external
funding agencies. The dilemma was that
these complaints were made while, at the
same time, FSU was supporting a shared
supercomputer that had recently run a















Homoplasy

Phylogeny



Evolutionary Biology

Evolutionary thinking

What are the products
of evolution?

What motivates
questions 1n
evolutionary biology?

Some applications
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Nature, it seems, is the popular name
For milliards and milliards and milliards
Of particles playing their infinite game
Of billiards and billiards and billiards.

Piet Hein
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Evolutionary Biology

Evolutionary thinking

What are the products of
evolution?

What motivates questions in
evolutionary biology?

Some applications

Systematics

Conservation biology
— Faith, 1992 (phylogeny and
conservation priorities%
— Baker and Palumbi, 1994 (illegal
whale hunting)
Epidemiology
— Bush et al. 1999 (predictive
evolution)
Forensics

— Qu, C.etal. 1992, Hillis and
Huelsenbeck, 1994 (dental practice
HIV transmission)

Gene function prediction

— Chang and Donoghue, 2000;

Bader, et al., 2001
Drug Development

— Halbur, et al., 1994



Scale of Diversity in Time and Space
Modeling Perspective

e Changes at or below the species
level

— Interested in changes in allele
frequencies

— Mutation

— Selection (Natural and
otherwise)

— Genetic Drift
— Gene flow or Migration
" e Changes above species level

— Compounded effects of
microevolutionary processes

e Evolution is a unified theory

— Models require the notion of
scale




Macroevolution

Ernst Haeckel’s “Geneological Tree”, 1879

PEDIGREE OF MAN

* Phylogenetic Framework S =S, |
Involves an attempt to estimate the 2
evolutionary history of a collection

of organisms (taxa) or other
biological objects.

 Fundamental part of modern
biology

 Two major endeavors

— estimating the evolutionary tree
(branching order, branch lengths)

— using the trees (phylogenies) as
analytical framework for further
evolutionary study




“Typical” procedure used to infer
Phylogeny




Phylogenetic Inference

e Score the Phylogeny (small problem*)
— Maximum parsimony
— Maximum likelihood
— Distance (Least-squares and Minimum Evolution)

e Search for the Best Phylogeny (large problem™)
— Exact search
— Heuristic search
— Stochastic search

e Test the Reliability of Results

— Support for individual tree nodes
— Support for complete tree topologies

* From a computation perspective



Common Tree Terms

Branch,
Edge,
Evolutionary Lineage

E Tip,
Root Terminal Node,
AW Leaf --

B A, B, C, D, and E represent
contemporary sequences

nternal node,
Vertex,

Split,
Divergence point,
Hypothetical ancestors



Common Tree Terms

polytomy (hard or soft)
Star Tree Bifurcating Tree

completely unresolved partially unresolved completely resolved



Common Tree Representations

Homo sapiens

Gorilla

Lemur catta

Pongo

Unrooted cladogram

Pongo
Gorilla

Lemur catta

Pan

Homo sapiens

Circle tree

Lemur catta

Homo sapiens

Pan

Gorilla

Pongo

Lemur catta

Rooted
slanted
cladogram

Homo sapiens Rooted

Pan

Gorilla

Pongo

slanted
cladogram
with ingroup
monophyletic

Lemur catta
Homo sapiens
Pan
Gorilla
Pongo
—— 0.05 changes
Rooted

phylogram



Parsimony (optimality criterion)

* In general, choose the tree requiring the fewest
number of character-state changes (AKA, steps)

— In other words, minimize the number of ad hoc
assumptions (e.g., convergences, parallelisms,
reversals).

 Homoplasy is typically used to mean
convergences, parallelisms, and reversals

e Assume character independence; e.g., can
calculate length required by each character and
sum over characters to get total tree length



Parsimony (Small problem)

Minimize the number of ad hoc assumptions on a given tree (e.g., convergences,
parallelisms, reversals)

Fitch parsimony (unordered/nonadditive): Each change
counts 1 step, regardless of the nature of this change.

A C

Sove
A L

(1) ..GGACAAGTTTA..
(2) ..AGACAACTCTA..
(3) ..GGATACGTTAA..

(4) ..GGATATCCTAG... TWO Steps



Phylogeny Parsimony

Fitch parsimony (unordered/nonadditive)
4(-2) internal state sets




Example with PAUP*

1.Execute primates data set > execute pr‘imate—mtDNA—'i.n'ter"l.eaved .Nex;

2.Find the most parsimonious || > mprsets 10;
reconstruction




Maximum Parsimony Variants

Assign different costs to different changes. For example, Transversions or
changes between a purine (A/G) and a pyrimidine (C/T) can be weighted
higher than transitions, which are changes between two purines or between
two pyrimidines.

M

A C
X
G T I=53teps



Parsimony Variants

Generalized parsimony (Tv=>5 and Ti=1)
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Example with PAUP*

1.Look at what user types > showusertypes;

have already been defined. || > ctype 2_1:all;

2.0pen the primates data set > mprset 10;

in the PAUP* editor.

3.Set the transition types to
2 1

4.Look at the possible
ancestral character sets for
position 10.

5.What is missing in one of
the ancestral character sets?




Previous examples calculated tree lengths
under parsimony using * brute force”

 For each character:

— Consider every possible ancestral state
reconstruction

— Count total cost required for each of these
reconstructions

— Sum over all characters



Maximum Likelihood Criterion
as used in phylogenetics

Formalized for Phylogenetic reconstruction by Joseph
Felsenstein in 1981.

Provides an objective criterion for model comparison.

Provides a mathematical framework to account for
unobserved changes

Overall goal: Find a tree topology, branch lengths, and
associated parameter estimates that maximizes the
probability of obtaining the observed data, given a
model of evolution.
Likelihood(hypothesis)«Prob(datalhypothesis)
Likelihood(tree,model) = k Prob(sequences|tree,model)



Substitution Scenarios

Multiple substitutions
Single substitution
Parallel substitution

Convergent
substitution

Back substitution

From Yang, 2006: Fig. 1.1

¥909A

C=>T

A3>G> C

G2>A=> G

A

C
A
T
T
A
C
G
A
C

O>O>>0—-

OX>OH0O>—0-

O>O>>0—H

Vv W
O =0



Substitution Models

For example, what is p,(2), where p ,(0) =1

Scenario I: no change

(1-30) py(1) A A
Lo [

Scenario II: changes to non- A and then back to A

o[l - p,(1)] A Not A
Iy l
Therefore
p/2)=1-3a)p,(1)+afl -p,(1)]

Using recurrence, calculate p for any time interval

py(tr1) =1 =30) p,(t) + a[1 —p (V)]
or

Ap (1) = -dap (1) +



Substitution Rate Matrix
Jukes and Canter 1969

-- Single rate governs all substitutions

-- Alpha represents mean instantaneous substitution rate
-- elements represent rate of change from base i to basej
during inf. dt

-- diagonal are set to minus sum of off diag. so base freqgs
remain in equilibrium To

A C G T
A (Ba o o o )

From C | ¢ —3a « o

G a a -3a o

T \ «a o a -3af



Maximum likelihood inference
in phylogenetics

)

(1)
(2)
(3)
(4)

1 7
C..GGACA. A..GT
C..AGACA.A..CT

N
[TTA..C
[CTA..C

C..GGATA..C..G’

[TAA...C

C..GGATA..T..CCTAG...C

(6)

N
\

(6)

C

T



Maximum likelihood inference
in phylogenetics

Log likelihood at site j (InZ;) =

C T

A A A A
\ / \ /
Prob a / + Prob C

a a

A
\ / //
+ + Prob t



Maximum likelihood inference
in phylogenetics

Single site

Score A AC T
S \ /
InL; =Pr, +Pr, ... Prg= E PI’Z. Prob {acg’g
=1 {acgt}

where K (number of reconstructions) = 4(-2)

Total ML
Score

N
InL=InL, +InL, +...+InL, = ElnLj
j=1



Stochastic Modeling

e Continuous-time Markov chains

— a mathematical model for the random evolution of a
memory-less system

— Used to help solve many multi-dimensional problems

e Properties of Markov model
— Nucleotide sites evolve independently

— Four nucleotides are the states of the chain and they are
at an equilibrium frequency (stationarity)

— Substitution rates do not change over time

— Markov chain has no memory
» ‘given the present, the future does not depend on the past’

— Assumptions are not always biologically relevant



Example with PAUP*

1.Change the optimality > set criterion=1likelihood;
criterion to likelihood. > reconstruct 10;
2 .What is the best ancestral > reconstruct 1;

character reconstruction for
character 10?

3.What 1s the best ancestral
character reconstruction for
character 1?




Maximum likelihood inference
in phylogenetics

The Relevance of Branch Lengths

CCA A A AAA A A CCA A AAAA A A




When does maximum likelithood
work better than parsimony?

o When you re in the “Felsenstein Zone ™

A C

(Felsenstein, 1978)



The long-branch attraction (LBA) problem

Pattern type

1 4

A | =Uninformative (constant) A
A Il = Uninformative G
C lIl = Uninformative G
G IV = Misinformative G

The true phylogeny of
1,2,3and 4

(zero changes required on any tree)
(one change required on any tree)

(two changes required on true tree)

A A
2 3



Parsimony vs. likelihood in the Felsenstein Zone

0.9 - e
0.8 - /

0.7 A / 67.5% 67.5%
] @
§ 0.6 - A4
= 1 15%
O . / (expected differences/site)
<
0.4 A /@
03e—® T T T T T T T T T T T T T T T T T T
0.2 1 ~¢- Parsimony
-® ML/JC
01 N ¢
0 —t ¢ T ¢ T ¢ T
20 100 1,000 10,000 100,000

Sequence length



Substitution Models

GTR

General Time Reversible model:
6 substitution types
4 base frequencies

A C G
PN RLL /R A A R 1,
C (VR 13 A A R A
G 1 1, -Hbr 4D+
T 1, I 1

Uil

-1, +En 467




Violations of equal rates




Among site rate heterogeneity

equal rates?

Lemur
Homo
Pan
Goril
Pongo
Hylo
Maca

»
>

AAGCTTCATAG
AAGCTTCACCG
AAGCTTCACCG
AAGCTTCACCG
AAGCTTCACCG
AAGCTTTACAG
AAGCTTTTCCG

TTGCATCATCCA
TTGCATCATCCA

TTACGCCATCCA ..
TTACGCCATCCA ..
..GCAACCACCCTC
..IGCAACCGTCCT
..CGCAACCATCCT

TTACGCCATCCT
TTACATTATCCG
TTACATTATCCG

..ITTACATCATCCA
..I'TACATCCTCAT

TTACATCCTCAT
CCCACGGACTTA

* Proportion of invariable sites

— some site don’ t change do to strong functional or structural constraint
(Hasegawa et al., 1985)

e Site specific rates

— uses a single rate for a sets of characters

e Gamma distributed rates
— P (scale) and a (shape). Set  to 1/a to get a mean rate of 1. (Yang, 1993)



Among site rate heterogeneity

*Model among-site rate variation with a gamma distribution
Gamma has a scale parameter () and shape parameter (o)

*set f = 1/a so that mean rate is equal to 1
0.08

a=200

Frequency
o
o
g

0.027




Among site rate heterogeneity

Modeling among-site rate variation with a gamma distribution...
discrete approximation

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01




Maximum likelihood inference

in phylogenetics
Nested Models

=
[

GTR+I+I' 3 (bf)+6 (sub)+2 (rh)
GTR+I" 3 (bf)+6 (sub) +1 (rh)
GTR 3 (bf) +6 (sub)
HKY85+I+I' 3 (bf)+2 (sub)+2(rh)
HKY85+I" 3 (bf)+2 (sub)+1 (rh)
HKY85 3 (bf)+2(sub)
K2P+I+I' 2 (sub)+2(rh)
K2P+I' 2 (sub)+1(rh)
K2P 2 (sub)
JC+I+I' 1 (sub)+2(rh)
JC+I" 1 (sub)+1 (rh)
JC 1 (sub)

© =
o

EDNWDN WSO



Choosing a model




11

Essentially, all models are wrong, but
some are useful” Box, 1987




Example with PAUP*

1.Select the General Time > Lset nst=6 matrix=estimate;
Reversible model > lscore 1;
2 Estimate the score of the > lset rates=gamma shape=estimate;
> Lscore 1;

tree currently in memory

3.Add the rate heterogeneity
parameter gamma.

4 .Estimate the score of the
tree currently in memory.

5.What is the difference
between the scores?




Maximum likelihood inference

Choosing a DNA substitution model

Hylobates

\

Homo sapiens 7_( Pongo

Pan Gorilla

GTR+I' GTR

InL, =-2625.73859 InL, =-2664.43013

38.69 = ?, with one additional parameter



Choosing among Likelihood
Methods

Choose the model that maximizes a “goodness of
fit” statistic without adding unnecessary
parameters.

e Likelihood Ratio Test (LRT)
e Akaike Information Criterion (AIC)
 Bayesian Information Criterion (BIC)

e Monte Carlo Simulations or Parametric
Bootstrap



Hierarchical Likelihood Ratio Test

e A=1L,/ L, choose the simpler model when A is large

— Ly = ML estimate of simpler model (fewer free parameters, lower
likelihood -- e.g., without rate heterogeneity).

— L= ML estimate of more complicated model (more free parameters,
higher likelihood -- e.g., with rate heterogeneity).
e To obtain a confidence interval we use the fact that -2InA is generally
w2 distributed with k degrees of freedom.
— where k is the difference between the number of free parameters used
to calculate Ly and L, (L, has k fewer parameters then L,).
e (Cons
— Stepwise procedure does not guarantee finding a optimal model.

— Arbitrary significance level

e Bigger alpha increase Type | error, reject null when it should have been accepted
(Bias toward more complicated model)

* Smaller alpha increase Type Il error, accept null when it should have been rejected
(Bias toward simpler model)

— Problem of multiple tests
— Starting point dependencies



Maximum likelihood models

for nested models

Hylobates Hylobates
Pongo
| | |
Homo sapiens Pongo Homo sapiens
Pan 7-<Gorilla Pan Gorilla
GTR+I' GTR
-InL, =2625.73859 -InL, =2664.43013

= 2(-InL, - -InL,)
¥241=77.38308, P < 0.0001



Example using JModelTest

1.Compare the two score > Open JModelTest;
values using the program > Select “Tools”>”LRT calculator”;
JModelTest. > Enter the two likelihood scores;

2.Is the difference significant?
3.Are you surprised?




Akaiki Information Criterion (AIC)

e AIC=-2InL+ 2K
e  Where,

InL is the maximum likelihood value of a specific model of nucleotide sequence evolution
and tree topology given the data.

K = the number of parameters free to vary

* Smaller AIC indicates a better model
— More parameters in model first term decreases and second term increases

e (Cons

— The number of characters in an alignment must be large compared to the number of
parameters (n/K > 40), otherwise the asymptotic properties of the method are not met.

* Second order or Corrected AIC (AIC,)

2K(K +1)
n-K-1

Where 7 is the total number of characters in an alignment
If n is big relative to K then the correction term become negligible.

« AIC= AIC +



Bayesian Information Criterion
(BIC)

BIC = -2InL + Klog(n)
Where,

InL 1s the maximum likelihood value of a specific model
of nucleotide sequence evolution and tree topology
given the data.

K = the number of parameters free to vary

n = the total number of characters in an alignment
Smaller BIC indicates a better model
If n > 8 the BIC selects simpler models than the AIC

Possible Cons
— Assumes flat, improper priors
— Penalizes parameter-rich models more severely



Pros and Cons of each Method

From Posada and Buckley, 2004

Applies easily to non-nested models no
Simultaneous comparison of multiple models no
Does not depend on subjective significance level no
Incorporates topological uncertainty no
Easy to compute yes
Assesses model selection uncertainty no
Allows model averaging no
Possible to specify prior information for models no

Possible to specify prior information for model params  no

Designed to approximate rather than identify, truth no

*Not the BIC

yes
yes
Yes**
yes*
no*
yes
yes
yes
yes*

no

** In a sense, the interpretation of Bayes factors could be considered as subjective

yes
yes
yes
no

yes
yes
yes
yes
no

yes



Parametric Bootstrap.

Monte Carlo simulations

Homo sapiens

Pan

]t

Pongo

Hylobates

Generate data
sets on tree
given branch
lengths and
substitution
parameters

Simulated data sets

Lemur
Homo
Pan
Goril
Pongo
Hylo
Maca

Lemur
Homo
Pan
Goril
Pongo
Hylo
Maca

Lemur
Homo
Pan
Goril
Pongo
Hylo
Maca

AAGCTTCATAG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTTACAG...
AAGCTTTTCCG...

AAGCTTCATAG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTTACAG...
AAGCTTTTCCG...

AAGCTTCATAG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTTACAG...
AAGCTTTTCCG...

TTACATCATCCA
TTACATCCTCAT
TTACATCCTCAT
CCCACGGACTTA
GCAACCACCCTC
TGCAACCGTCCT
CGCAACCATCCT

TTACATCATCCA
TTACATCCTCAT
TTACATCCTCAT
CCCACGGACTTA
GCAACCACCCTC
TGCAACCGTCCT
CGCAACCATCCT

TTACATCATCCA
TTACATCCTCAT
TTACATCCTCAT
CCCACGGACTTA
GCAACCACCCTC
TGCAACCGTCCT
CGCAACCATCCT



Parametric bootstr

ap

for non-nested models:
Monte Carlo Simulations

Simulate under
substitution model

Replicate i

T1

T2

GTR+SS

Lemur AAGCTTCATAG..TTACATCATCCA
Homo AAGCTTCACCG..TTACATCCTCAT
Pan AAGCTTCACCG..TTACATCCTCAT
Goril AAGCTTCACCG..CCCACGGACTTA
Pongo AAGCTTCACCG..GCAACCACCCTC
Hylo AAGCTTTACAG..TGCAACCGTCCT
Maca AAGCTTTTCCG..CGCAACCATCCT

|

InL’,

T4

GTR

Lemur AAGCTTCATAG..TTACATCATCCA
Homo AAGCTTCACCG..TTACATCCTCAT
Pan AAGCTTCACCG..TTACATCCTCAT
Goril AAGCTTCACCG..CCCACGGACTTA
Pongo AAGCTTCACCG..GCAACCACCCTC
Hylo AAGCTTTACAG..TGCAACCGTCCT
Maca AAGCTTTTCCG..CGCAACCATCCT

|

InL',

o' .=InL' - InL’,



Number of Pseudoreplicates

Parametric bootstrap for non-nested
models: Monte Carlo Simulations

18 ==

16 ==

14 =

Observed 0

[y
N
1

[
o]
1

0. =InL', - InL/,



Maximum likelihood inference
in phylogenetics

e Uses all the information in the data set
e Requires an explicit model of evolution
 Models are fairly robust to misspecification

e Several goodness-of-fit measures for
comparing models

w Branch lengths are used in score
calculations



Distance as an Optimality Criterion

* Sequence data are reduced to pairwise distances
e Fitch and Margoliash (1967) & Cavalli-Sforza and Edwards (1967)

Attempts to minimize the difference between the observed pairwise distances
and the path length distances between two taxa on a tree topology

T-1 T
E =E szj | dij — pij I

i=1 j=i+l
d;; is the observed pairwise distance
p;; 1s the path length distance between taxa i and j on the tree.

w;; 1s a weighting factor that could be used to down-weight distances with
high variance.

o is often set to 2, so that E becomes the least-squares fit criterion
e  Minimum Evolution (Kidd and Sgaramella-Zonta, 1971)

 E from FM is used to fit branch lengths

» the best tree is the one with the smallest sum of branch lengths



Distance as an Optimality Criterion

Least-squares

AN W (\)
Q&
EEN w

ﬁ‘«\ B&
wQ‘ |

~

P = ath p;;=d, for all i and j if the tree
p3=a+c+d ¢ : :
~ opology is correct and distances
Piy=atcte are additive
Do;=b+c+d
P2y=btcte Least-squares branch lengths are those values of
p3y=d+e a, b, ¢, d, and e that maximize the fit between

p;andthed; .



Distance as an Optimality Criterion

Minimum Evolution and Least-squares

ME

LS Brlens

0.28611
0.04436
0.01511
0.04463
0.05044
0.05038

0.08485

0.57588

Pan

Lemur catta

Homo sapiens

Pongo

Gorilla

Least-Squares

d, Pi SS

0.39646 0.39021 0.000039
0.39838 0.39602 0.000006
0.09506 0.09507 0.000000
0.37222 0.38084 0.000074
0.11172 0.11011 0.000003
0.11431 0.11592 0.000003
0.37096 0.37096 0.000000
0.18107 0.18894 0.000062
0.19399 0.19475 0.000001
0.18820 0.17958 0.000074

0.000261



Example with PAUP*

1.Set the optimality criterion || > Set criterion=distance;

to distance. > dscore 1;

2 .Calculate the Minimum > dset objective=lsfit;

Evolution (ME) score of the || > dscore 1;
tree

3.What is the distance used
for the ME objective
function?

4.Change the objective
function to least-squares.

5.What is the score of the tree
now?




Select an Optimality Criterion

e Parsimony
— discrete characters
— not explicitly model-based

e [ikelihood

— discrete and continuous characters
— explicit model of evolution
e Distance (Least-squares and Minimum Evolution)
— pairwise distances
— some distances are/are not explicitly model-based



Choosing among methods

Objective Criteria

Consistency

— ability of a method to converge on the truth as more data are accumulated
Efficiency

— how quickly a method converges on the truth as more data are accumulated
Robustness

— measure of sensitivity to violations of a method’ s assumptions
Computational speed

— time required to obtain a solution
Discriminating ability

— ameasure of proximity to other trees
Versatility

— ameasure of the kind of information that can be incorporated into an analysis



Choosing among methods

Analytical results

— conditions requiring consistency of methods and similarity between methods (no common
mechanism)

— Felsenstein, 1978; Chang, 1996; Rogers, 1997; Tuffley and Steel, 1997
Simulations

—  “Mutate Data” on the tree according to the model so that number of changes on a branch are
proportional to the defined branch length.

— Huelsenbeck and Hillis, 1993; Gaut and Lewis, 1995; Huelsenbeck, 1995; Bruno and Halpern,
1999; Swofford et al. 2001
Experimental phylogenies
— Track the evolution of biological entities.

— Fitch and Atchley 1985; Atchley and Fitch 1991 [lab mice]; Hillis et al. 1992, 1994 [virus
sequences and mutagens]

Philosophical

—  Only parsimony is consistent with “Popperian falsification” (Popper, 1959)
—  Kluge 1997; de Queiroz and Poe, 2001



Break/Questions/Wakeup




Phylogeny Inference

What do I want to get out the analyses?

Accurate picture of evolutionary relationship among the sequences
Comparison among competing hypotheses

Estimate of divergence dates

Robustness of the data set

Select an optimality criterion

Maximum parsimony
Maximum likelihood
Distance (Least-squares and Minimum Evolution)

Select a search strategy
Test the Robustness of the search results

Support for individual tree nodes
Support for complete tree topologies



Evaluating Trees
Unrooted bifurcating (2N-5)!!

Sequences Number of Trees
1
3
15
105
945
10395
135,135
2,027,025
34,459,425
654,729,075

13 13,749,310,575
14 316,234,143,225
15 7,905,853,580,625

o - > 00U AW



Example with PAUP*

1.Delete all but the first 8 taxa || » undelete 1-8/only;
in the primates data set. > set criterion=parsimony;

2.Change the criterion to > alltrees;

parsimony.
3.Calculate the score of all
possible trees.

4.How many trees were
evaluated?

5.How long did it take?




Evaluating Trees
Rooted bifurcating (2N—3)! !

Sequences Number of Trees }~_< (
3

3

4 15

5 105

6 945 4 2 3 1
7 10395

8 135,135 W
9 2,027,025

10 34,459 425 4 2 3 1
11 654,729,075

12 13,749,310,575 ‘
13 316,234,143,225

14 7,905,853,580,625

15 2,134,580,4667,6875

4

4 2 3 1

4

4 2 1 3

b4

4 2 3 1

N



Algorithms for phylogenetic tree
reconstruction --

e Exact Methods

— Exhaustive
— Branch and Bound

e Heuristic Methods
— Uphill (greedy) searches ;«3,'..

— Star Decomposition .
* Neighbor Joining

— Divide and Conquer
e Short Quartet Method
* Disk Covering
* Quartet Puzzling

e Stochastic Methods

— Simulated Annealing
— Genetic Algorithms
— Markov Chain Monte Carlo




Exhaustive Search
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Branch-and-Bound

5#{31009

Get a quick upper
bound, say 1001

1

Only evaluated

8 trees 2 #(
.. 1015 /X,1001



Example with PAUP*

1.Find the best tree using the || > bandb;
“Branch and Bound”
algorithm.

2.How long did this take

compared to the exhaustive
search?




Heuristic Search Algorithms

e (et a starting tree
— Current tree
— Neighbor joining
— Stepwise addition
* Branch swapping
— Nearest Neighbor Interchange (NNI)
— Subtree Pruning and Regrafting (SPR)
— Tree Bisection and Reconnection (TBR)



Getting a Starting Tree

Stepwise Addition Algorithms

E.g., as is, simple, closest, further, random



Getting a Starting Tree

Stepwise Addition Algorithms

As Is

— add in order found in matrix
Closest

— add unplaced taxa that requires smallest increase
Furthest

— add unplaced taxa that requires largest increase
Simple

— Farris’ s (1970) “simple algorithm” uses a set of pairwise reference
distances

Random
— random permutation of taxa is used to select the order



Getting a Starting Tree

Stepwise Addition Algorithms

e “Greedy” algorithms

— only make upward moves

* Prone to getting stuck on local optima



Random Addition Sequence




Example with PAUP*

1.Undelete all the taxa in the
primates data set.

2 .Run a heuristic search
3.What is the default starting
tree method?

4.Change the addition
sequence method to
random.

> undelete all;

> hsearch;
> hsearch start=stepwise addseg=random




Branch swapping
Nearest Neighbor Interchange (NNI)




Branch swapping
Subtree Pruning and Regrafting (SPR)

A /i




Branch swapping

Tree Bisection and Reconnection (TBR)
E

F

D
B
A
B G
A / A
E C
C D B
D D .
E G E
> C D
F - A _
G G B G
B
A
C




Example with PAUP*

1.Run another heuristic > hsearch;
search. > hsearch swap=nni;

2.What is the default branch
swapping algorithm?

3.Change the branch
swapping algorithm to
nearest neighbor
interchange.

4.Does this change reduce the
overall runtime of the
search?

5.What' s the consequence of
this change? (hint: how
many trees were evaluated?)




Does Branch Swapping Matter?

1.8e+07
1.6e+07
1.4e+07
1.2e+07
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Phylogeny Inference

What do I want to get out the analyses?

Accurate picture of evolutionary relationship among the sequences
Comparison among competing hypotheses

Estimate of divergence dates

Robustness of the data set

Select an optimality criterion

Maximum parsimony
Maximum likelihood
Distance (Least-squares and Minimum Evolution)

Select a search strategy
Test the Robustness of the search results

Support for individual tree nodes
Support for complete tree topologies



Assessing Confidence of the
Phylogenetic Tree

14

12

10

MP tree = 1300 £ ?
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Distribution of tree scores




Consensus Trees

e Represent the hierarchical information common to
a set of rival trees

strict: only those groups appearing on all the rival trees

semistrict: groups are retained if they are not
contradicted by a rival trees.

majority-rule: groups are retained if they are found a
pre-specified percentage of rival trees.

adams: similar to strict, except that it makes no claim
regarding monophyletic groups. Instead, groups are
said to be nested.



Consensus Trees
2 3
Ky < A4
strict semistrict 50% majority-rule

7 7 d

Adams




Example with PAUP*

1.Rest all PAUP* parameters || > reset factory;

to their default “factory” > hsearch;
settings. > contree;

2.Run a parsimony heuristic
search.

3.Create a consensus tree
from the two that your
heuristic search found.

4 What 1s the default
consensus method?

5.What information is lost?




Ways of assessing support for a
tree topology

Bootstrap/Jackknite analyses
Parametric bootstrap
KH-test and others

Bayesian Posterior Probabilities



Bootstrap Technique

(Efron, 1979)

u= 5 (true mean)
I

=53 i=48  4=51
Sample mean pseudo replicate 1 pseudo replicate n
one replicate



Lemu
Homo
Pan

Gori
Pong
Hylo
Maca

Bootstrapping Phylogenetic Data

(Felsenstein, 1985)

§

r addddrcaTtdd. rrAdardad
arddiTcacdd..rtadaTddn
adddgrcacdd..rTAdaTdd

1 aAddaTcacdd..ccdacadad

o adddaTcacdd..ceanccAda
arddaTTacad. . rcddacddn
Y Te e el {c Melele : ENelel: U

Original data set

—_

Lemur catta
Homo sapiens
Pan

Gorilla

Pongo
Hylobates

Macaca fuscata

QH 3@ Q0
H Qa4

[laNaVaW=NaWaWall

Q
=]

Lemur
Homo
Pan
Goril
Pongo
Hylo
Maca

AAGCTTCATAG..
AAGCTTCACCG..
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTTACAG..
AAGCTTTTCCG...

TTACATCATCCA
TTACATCCTCAT
TTACATCCTCAT
CCCACGGACTTA
GCAACCACCCTC
TGCAACCGTCCT
CGCAACCATCCT

pseudo rep 1

Lemur catta

_E Homo sapiens
Pan

Gorilla

Pongo

Hylobates

Macaca fuscata

Lemur
Homo
Pan
Goril
Pongo
Hylo
Maca

AAGCTTCATAG..
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTCACCG...
AAGCTTCACCG..
AAGCTTTACAG..
AAGCTTTTCCG...

.TTACATCATCCA

TTACATCCTCAT
TTACATCCTCAT
CCCACGGACTTA
GCAACCACCCTC
TGCAACCGTCCT
CGCAACCATCCT

pseudo rep n

Lemur catta

E Homo sapiens
Pan

Gorilla

Pongo

Hylobates

Macaca fuscata



50% Majority-rule Consensus

100

91

100

57

tree

Lemur catta ( 1 )

Homo sa piens 2 ° *
( //?;****.

Pan (3)

Gorilla (4) * % % %
Pongo (5) * %
Hylobates (6) . * % e o o o

Macaca fuscata (7)

Ckkk ok



Jackknifing Phylogenetic Data

Also used to assess support for nodes on a given
tree

Data are sampled without replacement

Replicates represent some fraction of the total data
set.

Jackknife tree 1s also displayed as a majority-rule
consensus tree, where support for a node is given
as the percent of the jackknife replicates which
contain the split.



Example with PAUP*

1.Switch criterion to
maximum likelihood.

2.Run a bootstrap analysis
using the default options.

3.How long did this take?

4.Run a bootstrap analysis
using the “Subtree Pruning
and Regrafting” algorithm
and set the reconstruction
limit to 8.

5.How long did this take
relative to the default
heuristic method?

> set criterion=likelihood;
> bootstrap;

> bootstrap /swap=spr reconlimit=8;




Parametric Bootstrap

e H{0m0 S2DiENS

Pan

e (0112

Pongo

Hylobates

Generate data
sets on tree
given branch
lengths and
substitution
parameters

Simulated data sets

Lemur AAGCTTCATAG TTACATCATCCA
Homo GCTTCACCG, TTACATCCTCAT

Goril AAGCTTCACCG.CCCACGGACTTA
Pongo AAGCTTCACCG.LGCAACCACCCTC
Hylo AAGCTTTACAG.TGCAACCGTCCT
Maca AAGCTTTTCCG..CGCAACCATCCT

Lemur AAGCTTCATAG . TTACATCATCC
Homo AAGCTTCACCG, TTACATCCTCAT
Pan AAGCTTCACCG, TTACATCCTCAT
Goril AAGCTTCACCG.CCCACGGACTT
Pongo AAGCTTCACCG. . GCAACCACCCTC
Hylo AAGCTTTACAG, . TGCAACCGTCCT
Maca GCTTTTCCG,.CGCAACCATCCT

Lemur AAGCTTCATAG.TTACATCATCCA
Homo AAGCTTCACCG. TTACATCCTCAT
Pan  AAGCTTCACCG.TTACATCCTCAT
Goril AAGCTTCACCG.CCCACGGACTTA
Pongo AAGCTTCACCGLGCAACCACCCTC
Hylo AAGCTTTACAG.TGCAACCGTCCT
Maca AAGCTTTTCCG.CGCAACCATCCT

P Homo sapiens

—"an

b 301l

Pongo

Hylobates

Homo sapiens

Gorilla

Pongo

Hylobates

P Homo sapiens

—"an

b 301l

Pongo

\_/‘ .

reestimate the tree



Kishino-Hasegawa Test (KH-test)
(Kishino and Hasegawa, 1989)

Lemur catta Lemur catta
Tarsius syrichta Tarsius syrichta
Saimiri sciureus

Saimiri sciureus

Macaca fuscata Macaca fuscata
I; M. mulatta _|;

M. mulatta

L M. fascicularis

— M. fascicularis

| —— M. sylvanus | —— M. sylvanus

Homo sapiens

] Homo sapiens
—— Pan ‘ —— Pan

| —— Gorilla ] Gorilla
Pongo Pongo
Hylobates Hylobates

-InL = 5728.06210 -InL. =5735.81631
7.75420 £ 7



Kishino-Hasegawa Test (KH-test)

Null Hypothesis

If we select the tree topologies a priort:

H,, E[8]=0
H;: E[8]#0

The test statistic 1s the score
difference between the

competing hypotheses.

What is the distribution of 0
under the null?



Kishino-Hasegawa Test (KH-test)

Bootstrap Null distribution
(Hasegawa and Kishino, 1989)

Nonparametric bootstrap can be used to generate the Null F.
Sample from the empirical data set with replacement

6'1- = lnL'T] - lnL’TZ , where i 1s a bootstrap replicate

6,] — lnL,T] - lnL’Tz wzo-- | Observed 6

o', =InL'y, - InL',, \

0'; =InL'y, - InL', ﬁ _h_’_r

| - N
r / ' 0

o', =InL';, - InL',

where n is the number of bootstrap replicates



Kishino-Hasegawa Test (KH-test)

(Time saving methods)

e RELL - Resample Estimated Log-Likelood (Kishino et al.,
1990)

— Replicate [nL scores for each tree are obtained by resampling the
sitewise log-likelihood scores from the original analysis

— large data sets required

e Estimate the variance of 0 by estimating the variance of the
sitewise log-likelihoods (Kishino and Hasegawa, 1989)

— No resampling is required




Kishino-Hasegawa Test (KH-test)
(Kishino and Hasegawa, 1989)

Kishino-Hasegawa test:
KH test using RELL bootstrap, two-tailed test
Number of bootstrap replicates = 1000

KH-test

1 5728.06210 (best)
2 5735.81631 7.75420 0.177



KH-test Assumptions

Trees must be selected a priori

Sites are independently and i1dentically
distributed

Large number of sites are sampled

Alternative to KH-test relaxes constraint
that trees are selected a priori

— SH-test (Shimodaira and Hasegawa, 1999)



Shimodaira-Hasegawa (SH-test)
(Shimodaira and Hasegawa, 1999)

The test statistic 1s the score difference between the
Maximum Likelihood tree and every other tree compared:

1.e., 0= InLy, - InL

Hypotheses that we wish to test are:
H,:  all trees are equally good explanations of the data

H,: some or all trees are not equally
good explanations of the data

>

What is the expected distribution

of 0 under the null?
Hint: We know /nL,, = [nL




Shimodaira-Hasegawa (SH-test)
(Shimodaira and Hasegawa, 1999)

» Generate nonparametric bootstrap
replicates (could also use RELL)

* For each replicate evaluate each candidate
tree (T, T, T5, Ty, ... T)) and center
likelihood scores by subtracting the mean
[nL for that replicate

e Generate Null distribution -- find max
adjusted score for each replicate and
calculate the difference between Max and

each adjusted tree score.

* Test Trees using observed differences
-- one-sided test

(InL'\, InL',, InL5, InL'y, ... InL"))!

r ’ ’
«',=[nL'; - mean(/nL’,)
find max(oc’,, o'y, o'y o, L OC’J.)’

!

O'p= &'y~ X'y
Or= InLyy - InLy (Observed for each T))

20 =—

— Observed 0

15 =

Number of replicates




Example with PAUP*

1. Get two trees in memory.

2.Reset PAUP* options to the
factory defaults.

3. Compare under the likelihood
criterion using the two-tailed KH-
test, where the null distribution is
based on a normal distribution.

4. Change the test distribution to
RELL.

5. Change the test distribution to
Full.

6. Do the same for one-tailed KH-
test
7. Do the same for the SH-test

8. Do you notice any similarities
between the KH-test results and
those of the SH-test?

> reset factory;

> hsearch;

> Lscore
> Lscore
> Lscore
> Lscore
> Lscore
> Lscore
> Lscore
> Lscore

R R R R R R R

1

rell=yes;

> Lscore

rell=no;

1

2/khtest=normal ;

2/khtest=bootstrap;
2/khtest=bootstrap rell=no;
2/khtest=normal tailkh=1;
2/khtest=bootstrap tailkh=1;
2/khtest=bootstrap rell=no tailkh=1;
2/shtest=yes khtest=normal;
2/shtest=yes khtest=bootstrap

2/shtest=yes khtest=bootstrap




PAUP* Demonstration

e PAUP* web site:
— http://paup.sc.fsu.edu/

e Using PAUP*

— Documentation, command reference/tutorial

e http://paup.sc.fsu.edu/downl.html

— Current Protocols in Bioinformatics

e http://www .currentprotocols.com

— Chapter 6: Inferring evolutionary relationship
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